Decompositions of Ehrhart h^{*}-polynomials for rational polytopes

Matthias Beck ${ }^{1}$, Benjamin Braun² ${ }^{2}$ and Andrés R. Vindas-Meléndez* ${ }^{2}$
${ }^{1}$ Department of Mathematics, San Francisco State University \& Mathematisches Institut, Freie Universität Berlin
${ }^{2}$ Department of Mathematics, University of Kentucky

Abstract

The Ehrhart quasipolynomial of a rational polytope P encodes the number of integer lattice points in dilates of P, and the h^{*}-polynomial of P is the numerator of the accompanying generating function. We provide two decomposition formulas for the h^{*}-polynomial of a rational polytope. The first decomposition generalizes a theorem of Betke and McMullen for lattice polytopes. We use our rational Betke-McMullen formula to provide a novel proof of Stanley's Monotonicity Theorem for the h^{*}-polynomial of a rational polytope. The second decomposition generalizes a result of Stapledon, which we use to provide rational extensions of the Stanley and Hibi inequalities satisfied by the coefficients of the h^{*}-polynomial for lattice polytopes. Lastly, we apply our results to rational polytopes containing the origin whose duals are lattice polytopes.

Keywords: Ehrhart quasipolynomial, Ehrhart series, generating function, h^{*}-polynomial

1 Introduction

For a d-dimensional rational polytope $P \subset \mathbb{R}^{d}$ (i.e., the convex hull of finitely many points in \mathbb{Q}^{d}) and a positive integer t, let $L_{P}(t)$ denote the number of integer lattice points in $t P$. Ehrhart's theorem [3] tells us that $L_{P}(t)$ is of the form $\operatorname{vol}(P) t^{d}+k_{d-1}(t) t^{d-1}+\cdots+$ $k_{1}(t) t+k_{0}(t)$, where $k_{0}(t), k_{1}(t), \ldots, k_{d-1}(t)$ are periodic functions in t. We call $L_{P}(t)$ the Ehrhart quasipolynomial of P, and Ehrhart proved that each period of $k_{0}(t), k_{1}(t), \ldots, k_{d-1}(t)$ divides the denominator q of P, which is the least common multiple of all its vertex coordinate denominators. The Ehrhart series is the rational generating function

$$
\operatorname{Ehr}(P ; z):=\sum_{t \geq 0} L(P ; t) z^{t}=\frac{h^{*}(P ; z)}{\left(1-z^{q}\right)^{d+1}}
$$

where $h^{*}(P ; z)$ is a polynomial of degree less than $q(d+1)$, the h^{*}-polynomial of $P .{ }^{1}$

[^0]Our first main contributions are generalizations of two well-known decomposition formulas of the h^{*}-polynomial for lattice polytopes due to Betke-McMullen [2] and Stapledon [11]. (All undefined terms are specified in the sections below.)

Theorem 3.2. For a triangulation T with denominator q of a rational d-polytope P,

$$
\operatorname{Ehr}(P ; z)=\frac{\sum_{\Omega \in T} B(\Omega ; z) h\left(\Omega ; z^{q}\right)}{\left(1-z^{q}\right)^{d+1}} .
$$

Theorem 4.4. Consider a rational d-polytope P that contains an interior point $\frac{\text { a }}{\ell}$, where $\mathbf{a} \in \mathbb{Z}^{d}$ and $\ell \in \mathbb{Z}_{>0}$. Fix a boundary triangulation T of P with denominator q. Then

$$
h^{*}(P ; z)=\frac{1-z^{q}}{1-z^{\ell}} \sum_{\Omega \in T}\left(B(\Omega ; z)+B\left(\Omega^{\prime} ; z\right)\right) h\left(\Omega ; z^{q}\right)
$$

Our second main result is a generalization of inequalities provided by Hibi [5] and Stanley [9] that are satisfied by the coefficients of the h^{*}-polynomial for lattice polytopes.

Theorem 4.7. Let P be a rational d-polytope with denominator q, let $s:=\operatorname{deg} h^{*}(P ; z)$. The h^{*}-vector $\left(h_{0}^{*}, \ldots, h_{q(d+1)-1}^{*}\right)$ of P satisfies the following inequalities:

$$
\begin{align*}
h_{0}^{*}+\cdots+h_{i+1}^{*} & \geq h_{q(d+1)-1}^{*}+\cdots+h_{q(d+1)-1-i}^{*}, & & i=0, \ldots,\left\lfloor\frac{q(d+1)-1}{2}\right\rfloor-1 \tag{1.1}\\
& h_{s}^{*}+\cdots+h_{s-i}^{*} \geq h_{0}^{*}+\cdots+h_{i}^{*}, & & i=0, \ldots, q(d+1)-1 \tag{1.2}
\end{align*}
$$

Inequality (1.1) is a generalization of a theorem by Hibi [5] for lattice polytopes, and (1.2) generalizes an inequality given by Stanley [9] for lattice polytopes, namely the case when $q=1$. Both inequalities follow from the a / b-decomposition of the $\overline{h^{*}}$-polynomial for rational polytopes given in Theorem 4.6 in Section 4, which in turn generalizes results (and uses rational analogues of techniques) by Stapledon [11].

This paper is an extended abstract of [1] and some proofs are omitted. The paper is structured as follows. In Section 2 we provide notation and background. In Section 3 we prove Theorem 3.2 and use this to give a novel proof of Stanley's Monotonicity Theorem. In Section 4 we prove Theorems 4.4 and 4.7. We conclude in Section 5 with some applications.

2 Set-Up and Notation

A pointed simplicial cone is a set of the form

$$
K(\mathbf{W})=\left\{\sum_{i=1}^{n} \lambda_{i} \mathbf{w}_{i}: \lambda_{i} \geq 0\right\}
$$

where $\mathbf{W}:=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$ is a set of n linearly independent vectors in \mathbb{R}^{d}. If we can choose $\mathbf{w}_{i} \in \mathbb{Z}^{d}$ then $K(\mathbf{W})$ is a rational cone and we assume this throughout this paper. Define the open parallelepiped associated with $K(\mathbf{W})$ as

$$
\begin{equation*}
\operatorname{Box}(\mathbf{W}):=\left\{\sum_{i=1}^{n} \lambda_{i} \mathbf{w}_{i}: 0<\lambda_{i}<1\right\} \tag{2.1}
\end{equation*}
$$

Observe that we have the natural involution $\iota: \operatorname{Box}(\mathbf{W}) \cap \mathbb{Z}^{d} \rightarrow \operatorname{Box}(\mathbf{W}) \cap \mathbb{Z}^{d}$ given by

$$
\begin{equation*}
\iota\left(\sum_{i} \lambda_{i} \mathbf{w}_{i}\right):=\sum_{i}\left(1-\lambda_{i}\right) \mathbf{w}_{i} \tag{2.2}
\end{equation*}
$$

We set Box $(\{0\}):=\{0\}$.
Let $u: \mathbb{R}^{d} \rightarrow \mathbb{R}$ denote the projection onto the last coordinate. We then define the box polynomial as

$$
\begin{equation*}
B(\mathbf{W} ; z):=\sum_{\mathbf{v} \in \operatorname{Box}(\mathbf{W}) \cap \mathbb{Z}^{d}} z^{u(\mathbf{v})} \tag{2.3}
\end{equation*}
$$

If $\operatorname{Box}(\mathbf{W}) \cap \mathbb{Z}^{d}=\varnothing$, then we set $B(\mathbf{W} ; z)=0$. We also define $B(\varnothing ; z)=1$.
Lemma 2.1. $B(\mathbf{W} ; z)=z^{\sum_{i} u\left(\mathbf{w}_{i}\right)} B\left(\mathbf{W} ; \frac{1}{z}\right)$.
Next, we define the fundamental parallelepiped $\Pi(\mathbf{W})$ to be a half-open variant of $\operatorname{Box}(\mathbf{W})$, namely,

$$
\Pi(\mathbf{W}):=\left\{\sum_{i=1}^{n} \lambda_{i} \mathbf{w}_{i}: 0 \leq \lambda_{i}<1\right\} .
$$

We also want to cone over a polytope P. If $P \subset \mathbb{R}^{d}$ is a rational polytope with vertices $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{Q}^{d}$, we lift the vertices into \mathbb{R}^{d+1} by appending a 1 as the last coordinate. Then

$$
\begin{equation*}
\operatorname{cone}(P)=\left\{\sum_{i=1}^{n} \lambda_{i}\left(\mathbf{v}_{i}, 1\right): \lambda_{i} \geq 0\right\} \subset \mathbb{R}^{d+1} \tag{2.4}
\end{equation*}
$$

We say a point is at height k in the cone if the point lies on cone $(P) \cap\left\{\mathbf{x}: x_{d+1}=k\right\}$. Note that $q P$ is embedded in cone (P) as cone $(P) \cap\left\{\mathbf{x}: x_{d+1}=q\right\}$.

A triangulation T of a d-polytope P is a subdivision of P into simplices (of all dimensions). If all the vertices of T are rational points, define the denominator of T to be the least common multiple of all the vertex coordinate denominators of the faces of T. For each $\Delta \in T$, we define the h-polynomial of Δ with respect to T as

$$
\begin{equation*}
h_{T}(\Delta ; z):=(1-z)^{d-\operatorname{dim}(\Delta)} \sum_{\Delta \subseteq \Phi \in T}\left(\frac{z}{1-z}\right)^{\operatorname{dim}(\Phi)-\operatorname{dim}(\Delta)} \tag{2.5}
\end{equation*}
$$

where the sum is over all simplices $\Phi \in T$ containing Δ. When T is clear from context, we omit the subscript. Note that when T is a boundary triangulation of P, the definition of the h-vector will be adjusted according to dimension, that is, d should be replaced by $d-1$ in (2.5).

For a d-simplex Δ with denominator p, let \mathbf{W} be the set of ray generators of cone (Δ) at height p, which are all integral. We then define the h^{*}-polynomial of Δ as the generating function of the last coordinate of integer points in $\Pi(\mathbf{W})=: \Pi(\Delta)$, that is, $h^{*}(\Delta ; z)=$ $\sum_{\mathbf{v} \in \Pi(\Delta) \cap \mathbb{Z}^{d+1}} z^{u(\mathbf{v})}$. With this consideration, the Ehrhart series of Δ can be expressed as $\operatorname{Ehr}(\Delta ; z)=\frac{h^{*}(\Delta ; z)}{\left(1-z^{p}\right)^{d+1}}$. We adjust this definition when Δ is a rational m-simplex of a triangulation T with denominator q. Namely, we let $\mathbf{W}=\left\{\left(\mathbf{r}_{1}, q\right), \ldots,\left(\mathbf{r}_{m+1}, q\right)\right\}$, where the $\left(\mathbf{r}_{i}, q\right)$ are integral ray generators of cone (Δ) at height q. The corresponding h^{*}-polynomial of Δ is a function of q and the Ehrhart series of Δ can be expressed as

$$
\operatorname{Ehr}(\Delta ; z)=\frac{h^{*}(\Delta ; z)}{\left(1-z^{q}\right)^{m+1}}
$$

We may think of $h^{*}(\Delta ; z)$ as computed via $\sum_{\mathbf{v} \in \Pi(\mathbf{W}) \cap \mathbb{Z}^{d+1}} z^{u(\mathbf{v})}$.

3 Rational Betke-McMullen Decomposition

3.1 Decomposition à la Betke-McMullen

Let P be a rational d-polytope and T be a triangulation of P with denominator q. For an m-simplex $\Delta \in T$, let $\mathbf{W}=\left\{\left(\mathbf{r}_{1}, q\right), \ldots,\left(\mathbf{r}_{m+1}, q\right)\right\}$, where the $\left(\mathbf{r}_{i}, q\right)$ are the integral ray generators of cone (Δ) at height q as above. Further, set $B(\mathbf{W} ; z)=: B(\Delta ; z)$ and similarly $\operatorname{Box}(\mathbf{W})=$: $\operatorname{Box}(\Delta)$. We emphasize that the h^{*}-polynomial, fundamental parallelepiped, and box polynomial of Δ depend on the denominator q of T.

A point $\mathbf{v} \in$ cone (Δ) can be uniquely expressed as $\mathbf{v}=\sum_{i=1}^{m+1} \lambda_{i}\left(\mathbf{r}_{i}, q\right)$ for $\lambda_{i} \geq 0$. Define

$$
\begin{equation*}
I(\mathbf{v}):=\left\{i \in[m+1]: \lambda_{i} \in \mathbb{Z}\right\} \quad \text { and } \quad \overline{I(\mathbf{v})}:=[m+1] \backslash I \tag{3.1}
\end{equation*}
$$

where $[m+1]:=\{1, \cdots, m+1\}$.
Lemma 3.1. Fix a triangulation T with denominator q of a rational d-polytope P and let $\Delta \in T$. Then for $\Omega:=\operatorname{conv}\left\{\frac{\mathbf{r}_{i}}{q}: i \in \overline{I(\mathbf{v})}\right\} \subseteq \Delta, h^{*}(\Delta ; z)=\sum_{\Omega \subseteq \Delta} B(\Omega ; z)$.

Theorem 3.2. For a triangulation T with denominator q of a rational d-polytope P,

$$
\operatorname{Ehr}(P ; z)=\frac{\sum_{\Omega \in T} B(\Omega ; z) h\left(\Omega ; z^{q}\right)}{\left(1-z^{q}\right)^{d+1}}
$$

Proof. We write P as the disjoint union of all open nonempty simplices in T and use Ehrhart-Macdonald reciprocity [3, 8]:

$$
\begin{aligned}
\operatorname{Ehr}(P ; z) & =1+\sum_{\Delta \in T \backslash\{\varnothing\}} \operatorname{Ehr}\left(\Delta^{\circ} ; z\right)=1+\sum_{\Delta \in T \backslash\{\varnothing\}}(-1)^{\operatorname{dim}(\Delta)+1} \operatorname{Ehr}\left(\Delta ; \frac{1}{z}\right) \\
& =1+\sum_{\Delta \in T \backslash\{\varnothing\}}(-1)^{\operatorname{dim}(\Delta)+1} \frac{h^{*}\left(\Delta ; \frac{1}{z}\right)}{\left(1-\frac{1}{z^{q}}\right)^{\operatorname{dim}(\Delta)+1}} \\
& =1+\sum_{\Delta \in T \backslash\{\varnothing\}} \frac{\left(z^{q}\right)^{\operatorname{dim}(\Delta)+1}\left(1-z^{q}\right)^{d-\operatorname{dim}(\Delta)} h^{*}\left(\Delta ; \frac{1}{z}\right)}{\left(1-z^{q}\right)^{d+1}} .
\end{aligned}
$$

Note that the Ehrhart series of each Δ is being written as a rational function with denominator $\left(1-z^{q}\right)^{d+1}$. Using Lemma 3.1,

$$
\begin{aligned}
\operatorname{Ehr}(P ; z) & =1+\sum_{\Delta \in T \backslash \varnothing} \frac{\left(z^{q}\right)^{\operatorname{dim}(\Delta)+1}\left(1-z^{q}\right)^{d-\operatorname{dim}(\Delta)} \sum_{\Omega \subseteq \Delta} B\left(\Omega ; \frac{1}{z}\right)}{\left(1-z^{q}\right)^{d+1}} \\
& =\frac{\sum_{\Delta \in T}\left[\left(z^{q}\right)^{\operatorname{dim}(\Delta)+1}\left(1-z^{q}\right)^{d-\operatorname{dim}(\Delta)} \sum_{\Omega \subseteq \Delta} B\left(\Omega ; \frac{1}{z}\right)\right]}{\left(1-z^{q}\right)^{d+1}} .
\end{aligned}
$$

By Lemma 2.1,

$$
\begin{aligned}
h^{*}(P ; z) & =\sum_{\Delta \in T}\left[\left(z^{q}\right)^{\operatorname{dim}(\Delta)+1}\left(1-z^{q}\right)^{d-\operatorname{dim}(\Delta)} \sum_{\Omega \subseteq \Delta} B\left(\Omega ; \frac{1}{z}\right)\right] \\
& =\sum_{\Delta \in T}\left[\left(z^{q}\right)^{\operatorname{dim}(\Delta)+1}\left(1-z^{q}\right)^{d-\operatorname{dim}(\Delta)} \sum_{\Omega \subseteq \Delta}\left(z^{q}\right)^{-\operatorname{dim}(\Omega)-1} B(\Omega ; z)\right] \\
& =\sum_{\Omega \in T} \sum_{\Omega \subseteq \Delta}\left(z^{q}\right)^{\operatorname{dim}(\Delta)-\operatorname{dim}(\Omega)}\left(1-z^{q}\right)^{d-\operatorname{dim}(\Delta)} B(\Omega ; z) \\
& =\sum_{\Omega \in T}\left[B(\Omega ; z)\left(1-z^{q}\right)^{d-\operatorname{dim}(\Omega)} \sum_{\Omega \subseteq \Delta}\left(\frac{z^{q}}{1-z^{q}}\right)^{\operatorname{dim}(\Delta)-\operatorname{dim}(\Omega)}\right]
\end{aligned}
$$

Using the definition of the h-polynomial, the theorem follows.

3.2 Rational h^{*}-Monotonicity

We now show how the following theorem follows from our rational Betke-McMullen formula.

Theorem 3.3 (Stanley Monotonicity [10]). Suppose that $P \subseteq Q$ are rational polytopes with $q P$ and $q Q$ integral (for minimal possible $q \in \mathbb{Z}_{>0}$). Define the h^{*}-polynomials via

$$
\operatorname{Ehr}(P ; z)=\frac{h^{*}(P ; z)}{\left(1-z^{q}\right)^{\operatorname{dim}(P)+1}} \quad \text { and } \quad \operatorname{Ehr}(Q ; z)=\frac{h^{*}(Q ; z)}{\left(1-z^{q}\right)^{\operatorname{dim}(Q)+1}}
$$

Then $h_{i}^{*}(P ; z) \leq h_{i}^{*}(Q ; z)$ coefficient-wise.
The following lemma assumes familiarity with Cohen-Macaulay complexes and related theory.

Lemma 3.4. Suppose that P is a polytope and T a triangulation of P. Let $P \subseteq Q$ be a polytope and T^{\prime} be a triangulation of Q such that T^{\prime} restricted to P is T. Further, if $\operatorname{dim}(P)<\operatorname{dim}(Q)$, assume that there exists a set of affinely independent vertices $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of Q outside the affine span of P such that (1) the join $T * \operatorname{conv}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a subcomplex of T^{\prime} and (2) $\operatorname{dim}(P *$ conv $\left.\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}\right)=\operatorname{dim}(Q)$. For every face $\Omega \in T$, the coefficient-wise inequality $h_{T}(\Omega ; z) \leq$ $h_{T^{\prime}}(\Omega, z)$ holds.

Proof of Theorem 3.3. Let P be a polytope contained in Q. Let T be a triangulation of P and let T^{\prime} be a triangulation of Q such that T^{\prime} restricted to P is T, where if $\operatorname{dim}(P)<\operatorname{dim}(Q)$ the triangulation T^{\prime} satisfies the conditions given in Lemma 3.4. (Note that such a triangulation T^{\prime} can always be obtained from T, e.g., by extending T using a placing triangulation.) By Theorem 3.2, $h^{*}(P ; z)=\sum_{\Omega \in T} B(\Omega ; z) h_{T}\left(\Omega ; z^{q}\right)$. Since P is contained in Q,

$$
h^{*}(Q ; z)=\sum_{\Omega \in T} B(\Omega ; z) h_{\left.T^{\prime}\right|_{P}}\left(\Omega ; z^{q}\right)+\sum_{\Omega \in T^{\prime} \backslash T} B(\Omega ; z) h_{T^{\prime}}\left(\Omega ; z^{q}\right)
$$

By Lemma 3.4, the coefficients of $\sum_{\Omega \in T} B(\Omega ; z) h_{T^{\prime}}\left(\Omega ; z^{q}\right)$ dominate the coefficients of $\sum_{\Omega \in T} B(\Omega ; z) h_{T}\left(\Omega ; z^{q}\right)$. This further implies that the coefficients of $h^{*}(Q ; z)$ dominate the coefficients of $h^{*}(P ; z)$ since

$$
\begin{aligned}
\sum_{\Omega \in T} B(\Omega ; z) h_{T}\left(\Omega ; z^{q}\right) & \leq \sum_{\Omega \in T} B(\Omega ; z) h_{T^{\prime}}\left(\Omega ; z^{q}\right) \\
& \leq \sum_{\Omega \in T} B(\Omega ; z) h_{T^{\prime} \mid P}\left(\Omega ; z^{q}\right)+\sum_{\Omega \in T^{\prime} \backslash T} B(\Omega ; z) h_{T^{\prime}}\left(\Omega ; z^{q}\right)
\end{aligned}
$$

$4 h^{*}$-Decompositions from Boundary Triangulations

4.1 Set-up

Throughout this section we will use the following set-up. Fix a boundary triangulation T with denominator q of a rational d-polytope P. Take $\ell \in \mathbb{Z}_{>0}$, such that ℓP contains a lattice point \mathbf{a} in its interior. Thus $(\mathbf{a}, \ell) \in$ cone $(P)^{\circ} \cap \mathbb{Z}^{d+1}$ is a lattice point in the interior
of the cone of P at height ℓ, and cone $((\mathbf{a}, \ell))$ is the ray through the point (\mathbf{a}, ℓ). We cone over each $\Delta \in T$ and define $\mathbf{W}=\left\{\left(\mathbf{r}_{1}, q\right), \ldots,\left(\mathbf{r}_{m+1}, q\right)\right\}$ where the $\left(\mathbf{r}_{i}, q\right)$ are integral ray generators of cone (Δ) at height q. As before, we have the associated box polynomial $B(\mathbf{W} ; z)=: B(\Delta ; z)$. Now, let $\mathbf{W}^{\prime}=\mathbf{W} \cup\{(\mathbf{a}, \ell)\}$ be the set of generators from \mathbf{W} together with (\mathbf{a}, ℓ) and we set cone $\left(\Delta^{\prime}\right)$ to be the cone generated by \mathbf{W}^{\prime}, with associated box polynomial $B\left(\mathbf{W}^{\prime} ; z\right)=: B\left(\Delta^{\prime} ; z\right)$.

Corollary 4.1. For each face Δ of T,

$$
B(\Delta ; z)=z^{q(\operatorname{dim}(\Delta)+1)} B\left(\Delta ; \frac{1}{z}\right) \quad \text { and } \quad B\left(\Delta^{\prime} ; z\right)=z^{q(\operatorname{dim}(\Delta)+1)+\ell} B\left(\Delta^{\prime} ; \frac{1}{z}\right) .
$$

Observe that when $\Delta=\varnothing$ is the empty face, $B(\varnothing ; z)=1$, but $B\left(\varnothing^{\prime} ; z\right)=B((\mathbf{a}, \ell) ; z)$. This differs from the scenario in [11] where Stapledon's set-up determined that $B\left(\varnothing^{\prime}, z\right)=$ 0 . For a real number x, define $\lfloor x\rfloor$ to be the greatest integer less than or equal to x. Additionally, define the fractional part of x to be $\{x\}=x-\lfloor x\rfloor$.

4.2 Boundary Triangulations

For each $\mathbf{v} \in$ cone (P) we associate two faces $\Delta(\mathbf{v})$ and $\Omega(\mathbf{v})$ of T, as follows. The face $\Delta(\mathbf{v})$ is chosen to be the minimal face of T such that $\mathbf{v} \in$ cone $\left(\Delta^{\prime}(\mathbf{v})\right)$, and we define

$$
\Omega(\mathbf{v}):=\operatorname{conv}\left\{\frac{\mathbf{r}_{i}}{q}: i \in \overline{I(\mathbf{v})}\right\} \subseteq \Delta(\mathbf{v}),
$$

where $\overline{I(\mathbf{v})}$ is defined as in (3.1) and the $\left(\mathbf{r}_{i}, q\right)$ are ray generators of cone (Δ). In an effort to make our statements and proofs less notation heavy, for the rest of this section we write $\Delta(\mathbf{v})=\Delta$ and $\Omega(\mathbf{v})=\Omega$ with the understanding that both depend on \mathbf{v}. Furthermore, for $\mathbf{v}=\sum_{i=1}^{m+1} \lambda_{i}\left(\mathbf{r}_{i}, q\right)+\lambda(\mathbf{a}, \ell)$ where $\lambda, \lambda_{i} \geq 0$, define $\{\mathbf{v}\}:=\sum_{i \in \overline{I(\mathbf{v})}}\left\{\lambda_{i}\right\}\left(\mathbf{r}_{i}, q\right)+\{\lambda\}(\mathbf{a}, \ell)$.

Lemma 4.2. Given $\mathbf{v} \in$ cone (P), construct $\Delta=\Delta(\mathbf{v})$ as described above, with cone (Δ) generated by $\left(\mathbf{r}_{1}, q\right), \ldots,\left(\mathbf{r}_{m+1}, q\right)$. Then \mathbf{v} can be written uniquely as

$$
\begin{equation*}
\{\mathbf{v}\}+\sum_{i \in I(\mathbf{v})}\left(\mathbf{r}_{i}, q\right)+\sum_{i=1}^{m+1} \mu_{i}\left(\mathbf{r}_{i}, q\right)+\mu(\mathbf{a}, \ell), \tag{4.1}
\end{equation*}
$$

where $\mu, \mu_{i} \in \mathbb{Z}_{\geq 0}$.
Corollary 4.3. Continuing the notation above,

$$
\begin{equation*}
u(\mathbf{v})=u(\{\mathbf{v}\})+q(\operatorname{dim} \Delta(\mathbf{v})-\operatorname{dim} \Omega(\mathbf{v}))+\sum_{i=1}^{m+1} q \mu_{i}(\mathbf{v})+\mu(\mathbf{v}) \ell . \tag{4.2}
\end{equation*}
$$

The following theorem provides a decomposition of the h^{*}-polynomial of a rational polytope in terms of box and h-polynomials. It is important to note again that the h^{*}-polynomial depends on the denominator of the boundary triangulation.
Theorem 4.4. Consider a rational d-polytope P that contains an interior point $\frac{\mathbf{a}}{\ell}$, where $\mathbf{a} \in \mathbb{Z}^{d}$ and $\ell \in \mathbb{Z}_{>0}$. Fix a boundary triangulation T of P with denominator q. Then

$$
h^{*}(P ; z)=\frac{1-z^{q}}{1-z^{\ell}} \sum_{\Omega \in T}\left(B(\Omega ; z)+B\left(\Omega^{\prime} ; z\right)\right) h\left(\Omega ; z^{q}\right)
$$

Proof. By Corollary 4.3,

$$
\begin{aligned}
\frac{h^{*}(P ; z)}{\left(1-z^{q}\right)^{d+1}} & =\sum_{\mathbf{v} \in \operatorname{cone}(P) \cap \mathbb{Z}^{d+1}} z^{u(\mathbf{v})} \\
& =\sum_{\mathbf{v} \in \operatorname{cone}(P) \cap \mathbb{Z}^{d+1}} z^{u(\{\mathbf{v}\})+q(\operatorname{dim} \Delta(\mathbf{v})-\operatorname{dim} \Omega(\mathbf{v}))+\sum_{i=1}^{\operatorname{dim}(\Delta)+1} q \mu_{i}(\mathbf{v})+\mu(\mathbf{v}) \ell} \\
& =\sum_{\Delta \in T} \sum_{\Omega \subseteq \Delta} z^{q(\operatorname{dim} \Delta-\operatorname{dim} \Omega)} \sum_{\mathbf{v} \in\left(\operatorname{Box}(\Omega) \cup \operatorname{Box}\left(\Omega^{\prime}\right)\right) \cap \mathbb{Z}^{d+1}} z^{u(\mathbf{v})} \sum_{\mu_{i}, \mu \geq 0} z^{\Sigma_{i=1}^{\operatorname{dim}(\Delta)+1} q \mu_{i}+\mu \ell} \\
& =\sum_{\Delta \in T} \sum_{\Omega \subseteq \Delta} \frac{\left(B(\Omega ; z)+B\left(\Omega^{\prime} ; z\right)\right) z^{q(\operatorname{dim} \Delta-\operatorname{dim} \Omega)}}{\left(1-z^{q}\right)^{\operatorname{dim}(\Delta)+1}\left(1-z^{\ell}\right)} \\
& =\frac{1}{1-z^{\ell}} \sum_{\Omega \in T}\left(B(\Omega ; z)+B\left(\Omega^{\prime} ; z\right)\right) \sum_{\Omega \subseteq \Delta} \frac{\left(z^{q}\right)^{\operatorname{dim}(\Delta)-\operatorname{dim}(\Omega)}}{\left(1-z^{q}\right)^{\operatorname{dim}(\Delta)+1}} \\
& =\frac{1}{\left(1-z^{\ell}\right)\left(1-z^{q}\right)^{d}} \sum_{\Omega \in T}\left(B(\Omega ; z)+B\left(\Omega^{\prime} ; z\right)\right) h\left(\Omega ; z^{q}\right)
\end{aligned}
$$

4.3 Rational Stapledon Decomposition and Inequalities

Using Theorem 4.4, we can rewrite the h^{*}-polynomial of a rational polytope P as

$$
h^{*}(P ; z)=\frac{1+z+\cdots+z^{q-1}}{1+z+\cdots+z^{\ell-1}} \sum_{\Omega \in T}\left(B(\Omega ; z)+B\left(\Omega^{\prime} ; z\right)\right) h\left(\Omega ; z^{q}\right)
$$

Next, we turn our attention to the polynomial

$$
\begin{equation*}
\overline{h^{*}}(P ; z):=\left(1+z+\cdots+z^{\ell-1}\right) h^{*}(P ; z) . \tag{4.3}
\end{equation*}
$$

We know that $h^{*}(P ; z)$ is a polynomial of degree at most $q(d+1)-1$, thus $\overline{h^{*}}(P ; z)$ has degree at most $q(d+1)+\ell-2$. We set f to be the degree of $\overline{h^{*}}(P ; z)$ and s to be the degree of $h^{*}(P ; z)$. We can recover $h^{*}(P ; z)$ from $\overline{h^{*}}(P ; z)$ for a chosen value of ℓ; if we write

$$
\overline{h^{*}}(P ; z)=\overline{h_{0}^{*}}+\overline{h_{1}^{*}} z+\cdots+\overline{h_{f}^{*}} z^{f}
$$

then

$$
\begin{equation*}
\overline{h_{i}^{*}}=h_{i}^{*}+h_{i-1}^{*}+\cdots+h_{i-l+1}^{*} \quad i=0, \ldots, f \tag{4.4}
\end{equation*}
$$

and we set $h_{i}^{*}=0$ when $i>s$ or $i<0$.
Proposition 4.5. Let P be a rational d-polytope with denominator q and Ehrhart series

$$
\operatorname{Ehr}(P ; z)=\frac{h^{*}(P ; z)}{\left(1-z^{q}\right)^{d+1}}
$$

Then $\operatorname{deg} h^{*}(P ; z)=s$ if and only if $(q(d+1)-s) P$ is the smallest integer dilate of P that contains an interior lattice point.

The following result provides a decomposition of the $\overline{h^{*}}$-polynomial which we refer to as an a / b-decomposition. It generalizes [11, Theorem 2.14] to the rational case.

Theorem 4.6. Let P be a rational d-polytope with denominator q, and let $s:=\operatorname{deg} h^{*}(P ; z)$. Then $\overline{h^{*}}(P ; z)$ has a unique decomposition

$$
\overline{h^{*}}(P ; z)=a(z)+z^{\ell} b(z)
$$

where $\ell=q(d+1)-s$ and $a(z)$ and $b(z)$ are polynomials with integer coefficients satisfying $a(z)=z^{q(d+1)-1} a\left(\frac{1}{z}\right)$ and $b(z)=z^{q(d+1)-1-\ell} b\left(\frac{1}{z}\right)$. Moreover, the coefficients of $a(z)$ and $b(z)$ are nonnegative.

Proof. Let a_{i} and b_{i} denote the coefficients of z^{i} in $a(z)$ and $b(z)$, respectively. Set

$$
\begin{equation*}
a_{i+1}=h_{0}^{*}+\cdots+h_{i+1}^{*}-h_{q(d+1)-1}^{*}-\cdots-h_{q(d+1)-1-i}^{*} \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{i}=-h_{0}^{*}-\cdots-h_{i}^{*}+h_{s}^{*}+\cdots+h_{s-i}^{*} \tag{4.6}
\end{equation*}
$$

Using (4.4) and the fact that $\ell=q(d+1)-s$, we compute that

$$
\begin{aligned}
a_{i}+b_{i-\ell}= & h_{0}^{*}+\cdots+h_{i}^{*}-h_{q(d+1)-1}^{*}-\cdots-h_{q(d+1)-i}^{*}-h_{0}^{*}-\cdots-h_{i-\ell}^{*}+h_{s}^{*} \\
+ & \cdots+h_{s-i+\ell}^{*}=h_{i-\ell+1}^{*}+\cdots+h_{i}^{*}=\overline{h_{i}^{*}}, \\
a_{i}-a_{q(d+1)-1-i}= & h_{0}^{*}+\cdots+h_{i}^{*}-h_{q(d+1)-1}^{*}-\cdots-h_{q(d+1)-i}^{*}-h_{0}^{*}-\cdots-h_{q(d+1)-1-i}^{*} \\
& \quad+h_{q(d+1)-1}^{*}+\cdots+h_{i+1}^{*}=0, \\
b_{i}-b_{q(d+1)-1-\ell-i}= & -h_{0}^{*}-\cdots-h_{i}^{*}+h_{s}^{*}+\cdots+h_{s-i}^{*}+h_{0}^{*}+\cdots+h_{i}^{*} \\
- & h_{s}^{*}-\cdots-h_{s-i-1}^{*}-h_{s}^{*}-\cdots-h_{i+1}^{*}=0,
\end{aligned}
$$

for $i=0, \ldots, q(d+1)-1$. Thus, we obtain the decomposition desired. The uniqueness property follows (4.5) and (4.6).

Let T be a regular boundary triangulation of P. By Theorem 4.4 and (4.3), we can set

$$
\begin{equation*}
a(z)=\left(1+z+\cdots+z^{q-1}\right) \sum_{\Omega \in T} B(\Omega ; z) h\left(\Omega ; z^{q}\right) \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
b(z)=z^{-\ell}\left(1+z+\cdots+z^{q-1}\right) \sum_{\Omega \in T} B\left(\Omega^{\prime} ; z\right) h\left(\Omega ; z^{q}\right), \tag{4.8}
\end{equation*}
$$

so that $\overline{h^{*}}(P ; z)=a(z)+z^{\ell} b(z)$. By Proposition 4.5, the dilate $k P$ contains no interior lattice points for $k=1, \ldots, \ell-1$, so if $\mathbf{v} \in \operatorname{Box}\left(\Omega^{\prime}\right) \cap \mathbb{Z}^{d+1}$ for $\Omega \in T$, then $u(\mathbf{v}) \geq \ell$. Hence, $b(z)$ is a polynomial. We now need to verify that

$$
a(z)=a^{q(d+1)-1} a\left(\frac{1}{z}\right) \quad \text { and } \quad b(z)=z^{q(d+1)-1-\ell} b\left(\frac{1}{z}\right) .
$$

It is a well-known property of the h-vector in (2.5) that $h\left(\Omega, z^{q}\right)=z^{q(d-1-\operatorname{dim}(\Omega))} h\left(\Omega ; z^{-q}\right)$.
Using the aforementioned and Corollary 4.1, we determine that

$$
\begin{aligned}
z^{q(d+1)-1} a\left(\frac{1}{z}\right) & =z^{q(d+1)-1}\left(1+\frac{1}{z}+\cdots+\frac{1}{z^{q-1}}\right) \sum_{\Omega \in T} B\left(\Omega ; \frac{1}{z}\right) h\left(\Omega ; \frac{1}{z^{q}}\right) \\
& =z^{q d}\left(1+z+\cdots+z^{q-1}\right) \sum_{\Omega \in T} z^{-q(\operatorname{dim}(\Omega)+1)} B(\Omega, z) z^{-q(d-1-\operatorname{dim} \Omega)} h\left(\Omega ; z^{q}\right) \\
& =\left(1+z+\cdots+z^{q-1}\right) \sum_{\Omega \in T} B(\Omega, z) h\left(\Omega ; z^{q}\right)=a(z)
\end{aligned}
$$

and

$$
\begin{aligned}
z^{q(d+1)-1-\ell} b\left(\frac{1}{z}\right) & =z^{q(d+1)-1-\ell} z^{\ell}\left(1+\frac{1}{z}+\cdots+\frac{1}{z^{q-1}}\right) \sum_{\Omega \in T} B\left(\Omega^{\prime} ; \frac{1}{z}\right) h\left(\Omega ; \frac{1}{z^{q}}\right) \\
& =z^{q d}\left(1+z+\cdots+z^{q-1}\right) \sum_{\Omega \in T} z^{-q(\operatorname{dim} \Omega+1)-\ell} B\left(\Omega^{\prime} ; z\right) z^{-q(d-1-\operatorname{dim} \Omega)} h\left(\Omega ; z^{q}\right) \\
& =z^{-\ell}\left(1+z+\cdots+z^{q-1}\right) \sum_{\Omega \in T} B\left(\Omega^{\prime} ; z\right) h\left(\Omega ; z^{q}\right)=b(z) .
\end{aligned}
$$

Lastly, recall that the box polynomials and the h-polynomials are nonnegative, so a sum of products of box polynomials and h-polynomials will also be nonnegative. Thus, the result holds.

The next theorem follows as a corollary to Theorem 4.6 and gives inequalities satisfied by the coefficients of the h^{*}-polynomial for rational polytopes.
Theorem 4.7. Let P be a rational d-polytope with denominator q, let $s:=\operatorname{deg} h^{*}(P ; z)$ and $\ell:=q(d+1)-s$. The h^{*}-vector $\left(h_{0}^{*}, \ldots, h_{q(d+1)-1}^{*}\right)$ of P satisfies the following inequalities:

$$
\begin{array}{rlrl}
h_{0}^{*}+\cdots+h_{i+1}^{*} & \geq h_{q(d+1)-1}^{*}+\cdots+h_{q(d+1)-1-i}^{*}, & & i=0, \ldots,\left\lfloor\frac{q(d+1)-1}{2}\right\rfloor-1 \\
h_{s}^{*}+\cdots+h_{s-i}^{*} \geq h_{0}^{*}+\cdots+h_{i}^{*}, & & i=0, \ldots, q(d+1)-1 \tag{4.10}
\end{array}
$$

Proof. By (4.5) and (4.6) if follows that (4.9) and (4.10) hold if and only if $a(z)$ and $b(z)$ are nonnegative, respectively, which in turn follows from Theorem 4.6.

5 Applications

5.1 Rational Reflexive Polytopes

A lattice polytope is reflexive if its dual is also a lattice polytope. Hibi [6] proved that a lattice polytope P is the translate of a reflexive polytope if and only if $\operatorname{Ehr}\left(P ; \frac{1}{z}\right)=$ $(-1)^{d+1} z \operatorname{Ehr}(P ; z)$ as rational functions, that is, $h^{*}(z)$ is palindromic. More generally, Fiset and Kaspryzk [4, Corollary 2.2] proved that a rational polytope P whose dual is a lattice polytope has a palindromic h^{*}-polynomial. The following proposition provides an alternate route to Fiset and Kaspryzk's result.

Theorem 5.1. Let P be a rational polytope containing the origin. The dual of P is a lattice polytope if and only if $\overline{h^{*}}(P ; z)=h^{*}(z)=a(z)$, that is, $b(z)=0$ in the a / b-decomposition of $\overline{h^{*}}(P ; z)$ from Theorem 4.4.

5.2 Reflexive Polytopes of Higher Index

Kasprzyk and Nill [7] introduced the following class of polytopes .
Definition 5.2. A lattice polytope P is a reflexive polytope of higher index \mathcal{L} (also known as an \mathcal{L}-reflexive polytope), for some $\mathcal{L} \in \mathbb{Z}_{>0}$, if the following conditions hold:

- P contains the origin in its interior;
- The vertices of P are primitive, i.e., the line segment joining each vertex to $\mathbf{0}$ contains no other lattice points;
- For any facet F of P the local index \mathcal{L}_{F} equals \mathcal{L}, i.e., the integral distance of $\mathbf{0}$ from the affine hyperplane spanned by F equals \mathcal{L}.

The 1-reflexive polytopes are the reflexive polytopes mentioned earlier in the section. Kaspryzk and Nill proved that if P is a lattice polytope with primitive vertices containing the origin in its interior then P is \mathcal{L}-reflexive if and only if $\mathcal{L} P^{*}$ is a lattice polytope having only primitive vertices. In this case, $\mathcal{L} P^{*}$ is also \mathcal{L}-reflexive. They investigated \mathcal{L}-reflexive polygons. In particular, they show that there is no \mathcal{L}-reflexive polygon of even index. Furthermore, they provide a family of \mathcal{L}-reflexive polygons arising for each odd index:

$$
P_{\mathcal{L}}=\operatorname{conv}\{ \pm(0,1), \pm(\mathcal{L}, 2), \pm(\mathcal{L}, 1)\}
$$

We are interested in the dual of $P_{\mathcal{L}}$:

$$
P_{\mathcal{L}}^{*}=\operatorname{conv}\left\{ \pm\left(\frac{1}{\mathcal{L}^{\prime}}, 0\right), \pm\left(\frac{2}{\mathcal{L}^{\prime}},-1\right), \pm\left(\frac{1}{\mathcal{L}^{\prime}},-1\right)\right\}
$$

Figure 1: The rational hexagon $P_{\mathcal{L}}^{*}$.
Applying Theorems 4.4 and 5.1 we conclude to following.
Proposition 5.3. For $\mathcal{L}=2 k+1$,

$$
h^{*}\left(P_{\mathcal{L}}^{*} ; z\right)=\left(1+z+\cdots+z^{\mathcal{L}}\right)\left(1+4 z^{\mathcal{L}}+z^{2 \mathcal{L}}+4\left(\sum_{i=\mathcal{L}-k}^{\mathcal{L}-1} z^{i}+\sum_{i=\mathcal{L}+1}^{\mathcal{L}+k} z^{i}\right)+2 \sum_{i=1}^{\mathcal{L}-1} z^{2 i}\right) .
$$

Acknowledgements

The authors thank Steven Klee, José Samper, and Liam Solus for fruitful correspondence.

References

[1] M. Beck, B. Braun, and A. R. Vindas-Meléndez. "Decompositions of the h^{*}-Polynomial for Rational Polytopes". arXiv:2006.10076.
[2] U. Betke and P. McMullen. "Lattice points in lattice polytopes". Monatsh. Math. 99.4 (1985), pp. 253-265. DoI.
[3] E. Ehrhart. "Sur les polyèdres rationnels homothétiques à n dimensions". C. R. Acad. Sci. Paris 254 (1962), pp. 616-618.
[4] M. H. J. Fiset and A. M. Kasprzyk. "A note on palindromic δ-vectors for certain rational polytopes". Electron. J. Combin. 15.1 (2008), Note 18, 4.
[5] T. Hibi. "Some results on Ehrhart polynomials of convex polytopes". Discrete Math. 83.1 (1990), pp. 119-121. DoI.
[6] T. Hibi. "Dual polytopes of rational convex polytopes". Combinatorica 12.2 (1992), pp. 237240. doi.
[7] A. M. Kasprzyk and B. Nill. "Reflexive polytopes of higher index and the number 12". Electron. J. Combin. 19.3 (2012), Paper 9, 18.
[8] I. G. Macdonald. "Polynomials associated with finite cell-complexes". J. London Math. Soc. (2) 4 (1971), pp. 181-192. Doi.
[9] R. P. Stanley. "On the Hilbert function of a graded Cohen-Macaulay domain". J. Pure Appl. Algebra 73.3 (1991), pp. 307-314. Doi.
[10] R. P. Stanley. "A monotonicity property of h-vectors and h^{*}-vectors". European J. Combin. 14.3 (1993), pp. 251-258. Doi.
[11] A. Stapledon. "Inequalities and Ehrhart δ-vectors". Trans. Amer. Math. Soc. 361.10 (2009), pp. 5615-5626. Doi.

[^0]: *andres.vindas@uky.edu. Andrés R. Vindas-Meléndez was partially supported by National Science Foundation Graduate Research Fellowship DGE-1247392.
 ${ }^{1}$ Note that the h^{*}-polynomial depends not only on q (though that is implicitly determined by P), but also on our choice of representing the rational function $\operatorname{Ehr}(P ; z)$, which in our form will not be in lowest terms.

