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Abstract. The Ehrhart quasipolynomial of a rational polytope P encodes the number of
integer lattice points in dilates of P, and the h∗-polynomial of P is the numerator of the
accompanying generating function. We provide two decomposition formulas for the
h∗-polynomial of a rational polytope. The first decomposition generalizes a theorem of
Betke and McMullen for lattice polytopes. We use our rational Betke–McMullen formula
to provide a novel proof of Stanley’s Monotonicity Theorem for the h∗-polynomial of a
rational polytope. The second decomposition generalizes a result of Stapledon, which
we use to provide rational extensions of the Stanley and Hibi inequalities satisfied by
the coefficients of the h∗-polynomial for lattice polytopes. Lastly, we apply our results
to rational polytopes containing the origin whose duals are lattice polytopes.
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1 Introduction

For a d-dimensional rational polytope P ⊂ Rd (i.e., the convex hull of finitely many points
in Qd) and a positive integer t, let LP(t) denote the number of integer lattice points in
tP. Ehrhart’s theorem [3] tells us that LP(t) is of the form vol(P) td + kd−1(t) td−1 + · · ·+
k1(t) t + k0(t), where k0(t), k1(t), . . . , kd−1(t) are periodic functions in t. We call LP(t) the
Ehrhart quasipolynomial of P, and Ehrhart proved that each period of k0(t), k1(t), . . . , kd−1(t)
divides the denominator q of P, which is the least common multiple of all its vertex
coordinate denominators. The Ehrhart series is the rational generating function

Ehr(P; z) := ∑
t≥0

L(P; t) zt =
h∗(P; z)

(1− zq)d+1 ,

where h∗(P; z) is a polynomial of degree less than q(d + 1), the h∗-polynomial of P.1

*andres.vindas@uky.edu. Andrés R. Vindas-Meléndez was partially supported by National Science
Foundation Graduate Research Fellowship DGE-1247392.

1Note that the h∗-polynomial depends not only on q (though that is implicitly determined by P), but
also on our choice of representing the rational function Ehr(P; z), which in our form will not be in lowest
terms.
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Our first main contributions are generalizations of two well-known decomposition
formulas of the h∗-polynomial for lattice polytopes due to Betke–McMullen [2] and
Stapledon [11]. (All undefined terms are specified in the sections below.)

Theorem 3.2. For a triangulation T with denominator q of a rational d-polytope P,

Ehr(P; z) = ∑Ω∈T B(Ω; z) h(Ω; zq)

(1− zq)d+1 .

Theorem 4.4. Consider a rational d-polytope P that contains an interior point a
` , where

a ∈ Zd and ` ∈ Z>0. Fix a boundary triangulation T of P with denominator q. Then

h∗(P; z) =
1− zq

1− z` ∑
Ω∈T

(
B(Ω; z) + B(Ω′; z)

)
h(Ω; zq) .

Our second main result is a generalization of inequalities provided by Hibi [5] and
Stanley [9] that are satisfied by the coefficients of the h∗-polynomial for lattice polytopes.

Theorem 4.7. Let P be a rational d-polytope with denominator q, let s := deg h∗(P; z).
The h∗-vector (h∗0 , . . . , h∗q(d+1)−1) of P satisfies the following inequalities:

h∗0 + · · ·+ h∗i+1 ≥ h∗q(d+1)−1 + · · ·+ h∗q(d+1)−1−i , i = 0, . . . ,
⌊

q(d + 1)− 1
2

⌋
− 1 , (1.1)

h∗s + · · ·+ h∗s−i ≥ h∗0 + · · ·+ h∗i , i = 0, . . . , q(d + 1)− 1 . (1.2)

Inequality (1.1) is a generalization of a theorem by Hibi [5] for lattice polytopes, and
(1.2) generalizes an inequality given by Stanley [9] for lattice polytopes, namely the case
when q = 1. Both inequalities follow from the a/b-decomposition of the h∗-polynomial for
rational polytopes given in Theorem 4.6 in Section 4, which in turn generalizes results
(and uses rational analogues of techniques) by Stapledon [11].

This paper is an extended abstract of [1] and some proofs are omitted. The paper is
structured as follows. In Section 2 we provide notation and background. In Section 3
we prove Theorem 3.2 and use this to give a novel proof of Stanley’s Monotonicity
Theorem. In Section 4 we prove Theorems 4.4 and 4.7. We conclude in Section 5 with
some applications.

2 Set-Up and Notation

A pointed simplicial cone is a set of the form

K(W) =

{
n

∑
i=1

λiwi : λi ≥ 0

}
,
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where W := {w1, . . . , wn} is a set of n linearly independent vectors in Rd. If we can
choose wi ∈ Zd then K(W) is a rational cone and we assume this throughout this paper.
Define the open parallelepiped associated with K(W) as

Box (W) :=

{
n

∑
i=1

λiwi : 0 < λi < 1

}
. (2.1)

Observe that we have the natural involution ι : Box (W) ∩Zd → Box (W) ∩Zd given by

ι

(
∑

i
λiwi

)
:= ∑

i
(1− λi)wi . (2.2)

We set Box ({0}) := {0}.
Let u : Rd → R denote the projection onto the last coordinate. We then define the box

polynomial as
B(W; z) := ∑

v∈Box(W)∩Zd

zu(v). (2.3)

If Box (W) ∩Zd = ∅, then we set B(W; z) = 0. We also define B(∅; z) = 1.

Lemma 2.1. B(W; z) = z∑i u(wi)B
(

W; 1
z

)
.

Next, we define the fundamental parallelepiped Π(W) to be a half-open variant of
Box (W), namely,

Π(W) :=

{
n

∑
i=1

λiwi : 0 ≤ λi < 1

}
.

We also want to cone over a polytope P. If P ⊂ Rd is a rational polytope with vertices
v1, . . . , vn ∈ Qd, we lift the vertices into Rd+1 by appending a 1 as the last coordinate.
Then

cone (P) =

{
n

∑
i=1

λi(vi, 1) : λi ≥ 0

}
⊂ Rd+1. (2.4)

We say a point is at height k in the cone if the point lies on cone (P)∩ {x : xd+1 = k}. Note
that qP is embedded in cone (P) as cone (P) ∩ {x : xd+1 = q}.

A triangulation T of a d-polytope P is a subdivision of P into simplices (of all dimen-
sions). If all the vertices of T are rational points, define the denominator of T to be the
least common multiple of all the vertex coordinate denominators of the faces of T. For
each ∆ ∈ T, we define the h-polynomial of ∆ with respect to T as

hT(∆; z) := (1− z)d−dim(∆) ∑
∆⊆Φ∈T

(
z

1− z

)dim(Φ)−dim(∆)

, (2.5)
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where the sum is over all simplices Φ ∈ T containing ∆. When T is clear from context,
we omit the subscript. Note that when T is a boundary triangulation of P, the definition
of the h-vector will be adjusted according to dimension, that is, d should be replaced by
d− 1 in (2.5).

For a d-simplex ∆ with denominator p, let W be the set of ray generators of cone (∆)
at height p, which are all integral. We then define the h∗-polynomial of ∆ as the generating
function of the last coordinate of integer points in Π(W) =: Π(∆), that is, h∗(∆; z) =

∑v∈Π(∆)∩Zd+1 zu(v). With this consideration, the Ehrhart series of ∆ can be expressed

as Ehr(∆; z) = h∗(∆;z)
(1−zp)d+1 . We adjust this definition when ∆ is a rational m-simplex of

a triangulation T with denominator q. Namely, we let W = {(r1, q), . . . , (rm+1, q)},
where the (ri, q) are integral ray generators of cone (∆) at height q. The corresponding
h∗-polynomial of ∆ is a function of q and the Ehrhart series of ∆ can be expressed as

Ehr(∆; z) =
h∗(∆; z)

(1− zq)m+1 .

We may think of h∗(∆; z) as computed via ∑v∈Π(W)∩Zd+1 zu(v).

3 Rational Betke–McMullen Decomposition

3.1 Decomposition à la Betke–McMullen

Let P be a rational d-polytope and T be a triangulation of P with denominator q. For
an m-simplex ∆ ∈ T, let W = {(r1, q), . . . , (rm+1, q)}, where the (ri, q) are the integral ray
generators of cone (∆) at height q as above. Further, set B(W; z) =: B(∆; z) and similarly
Box (W) =: Box (∆). We emphasize that the h∗-polynomial, fundamental parallelepiped,
and box polynomial of ∆ depend on the denominator q of T.

A point v ∈ cone (∆) can be uniquely expressed as v = ∑m+1
i=1 λi(ri, q) for λi ≥ 0.

Define
I(v) := {i ∈ [m + 1] : λi ∈ Z} and I(v) := [m + 1] \ I, (3.1)

where [m + 1] := {1, · · · , m + 1}.

Lemma 3.1. Fix a triangulation T with denominator q of a rational d-polytope P and let ∆ ∈ T.
Then for Ω := conv

{
ri
q : i ∈ I(v)

}
⊆ ∆, h∗(∆; z) = ∑Ω⊆∆ B(Ω; z).

Theorem 3.2. For a triangulation T with denominator q of a rational d-polytope P,

Ehr(P; z) = ∑Ω∈T B(Ω; z) h(Ω; zq)

(1− zq)d+1 .
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Proof. We write P as the disjoint union of all open nonempty simplices in T and use
Ehrhart–Macdonald reciprocity [3, 8]:

Ehr(P; z) = 1 + ∑
∆∈T\{∅}

Ehr(∆◦; z) = 1 + ∑
∆∈T\{∅}

(−1)dim(∆)+1Ehr
(

∆;
1
z

)

= 1 + ∑
∆∈T\{∅}

(−1)dim(∆)+1
h∗
(

∆; 1
z

)
(

1− 1
zq

)dim(∆)+1

= 1 + ∑
∆∈T\{∅}

(zq)dim(∆)+1(1− zq)d−dim(∆) h∗
(

∆; 1
z

)
(1− zq)d+1 .

Note that the Ehrhart series of each ∆ is being written as a rational function with
denominator (1− zq)d+1. Using Lemma 3.1,

Ehr(P; z) = 1 + ∑
∆∈T\∅

(zq)dim(∆)+1(1− zq)d−dim(∆) ∑Ω⊆∆ B
(

Ω; 1
z

)
(1− zq)d+1

=
∑∆∈T

[
(zq)dim(∆)+1(1− zq)d−dim(∆) ∑Ω⊆∆ B

(
Ω; 1

z

)]
(1− zq)d+1 .

By Lemma 2.1,

h∗(P; z) = ∑
∆∈T

[
(zq)dim(∆)+1(1− zq)d−dim(∆) ∑

Ω⊆∆
B
(

Ω;
1
z

)]

= ∑
∆∈T

[
(zq)dim(∆)+1(1− zq)d−dim(∆) ∑

Ω⊆∆
(zq)−dim(Ω)−1B(Ω; z)

]
= ∑

Ω∈T
∑

Ω⊆∆
(zq)dim(∆)−dim(Ω)(1− zq)d−dim(∆)B(Ω; z)

= ∑
Ω∈T

[
B(Ω; z)(1− zq)d−dim(Ω) ∑

Ω⊆∆

(
zq

1− zq

)dim(∆)−dim(Ω)
]

.

Using the definition of the h-polynomial, the theorem follows.

3.2 Rational h∗-Monotonicity

We now show how the following theorem follows from our rational Betke–McMullen
formula.
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Theorem 3.3 (Stanley Monotonicity [10]). Suppose that P ⊆ Q are rational polytopes with qP
and qQ integral (for minimal possible q ∈ Z>0). Define the h∗-polynomials via

Ehr(P; z) =
h∗(P; z)

(1− zq)dim(P)+1
and Ehr(Q; z) =

h∗(Q; z)

(1− zq)dim(Q)+1
.

Then h∗i (P; z) ≤ h∗i (Q; z) coefficient-wise.

The following lemma assumes familiarity with Cohen–Macaulay complexes and
related theory.

Lemma 3.4. Suppose that P is a polytope and T a triangulation of P. Let P ⊆ Q be a polytope
and T′ be a triangulation of Q such that T′ restricted to P is T. Further, if dim(P) < dim(Q),
assume that there exists a set of affinely independent vertices v1, . . . , vn of Q outside the affine
span of P such that (1) the join T ∗ conv {v1, . . . , vn} is a subcomplex of T′ and (2) dim(P ∗
conv {v1, . . . , vn}) = dim(Q). For every face Ω ∈ T, the coefficient-wise inequality hT(Ω; z) ≤
hT′(Ω, z) holds.

Proof of Theorem 3.3. Let P be a polytope contained in Q. Let T be a triangulation of P and
let T′ be a triangulation of Q such that T′ restricted to P is T, where if dim(P) < dim(Q)
the triangulation T′ satisfies the conditions given in Lemma 3.4. (Note that such a
triangulation T′ can always be obtained from T, e.g., by extending T using a placing
triangulation.) By Theorem 3.2, h∗(P; z) = ∑Ω∈T B(Ω; z) hT(Ω; zq). Since P is contained
in Q,

h∗(Q; z) = ∑
Ω∈T

B(Ω; z) hT′|P(Ω; zq) + ∑
Ω∈T′\T

B(Ω; z) hT′(Ω; zq).

By Lemma 3.4, the coefficients of ∑Ω∈T B(Ω; z)hT′(Ω; zq) dominate the coefficients of
∑Ω∈T B(Ω; z)hT(Ω; zq). This further implies that the coefficients of h∗(Q; z) dominate the
coefficients of h∗(P; z) since

∑
Ω∈T

B(Ω; z) hT(Ω; zq) ≤ ∑
Ω∈T

B(Ω; z) hT′(Ω; zq)

≤ ∑
Ω∈T

B(Ω; z) hT′|P(Ω; zq) + ∑
Ω∈T′\T

B(Ω; z) hT′(Ω; zq) .

4 h∗-Decompositions from Boundary Triangulations

4.1 Set-up

Throughout this section we will use the following set-up. Fix a boundary triangulation
T with denominator q of a rational d-polytope P. Take ` ∈ Z>0, such that `P contains a
lattice point a in its interior. Thus (a, `) ∈ cone (P)◦ ∩Zd+1 is a lattice point in the interior
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of the cone of P at height `, and cone ((a, `)) is the ray through the point (a, `). We cone
over each ∆ ∈ T and define W = {(r1, q), . . . , (rm+1, q)} where the (ri, q) are integral ray
generators of cone (∆) at height q. As before, we have the associated box polynomial
B(W; z) =: B(∆; z). Now, let W′ = W ∪ {(a, `)} be the set of generators from W together
with (a, `) and we set cone (∆′) to be the cone generated by W′, with associated box
polynomial B(W′; z) =: B(∆′; z).

Corollary 4.1. For each face ∆ of T,

B(∆; z) = zq(dim(∆)+1)B
(

∆; 1
z

)
and B(∆′; z) = zq(dim(∆)+1)+`B

(
∆′; 1

z

)
.

Observe that when ∆ = ∅ is the empty face, B(∅; z) = 1, but B(∅′; z) = B((a, `); z).
This differs from the scenario in [11] where Stapledon’s set-up determined that B(∅′, z) =
0. For a real number x, define bxc to be the greatest integer less than or equal to x.
Additionally, define the fractional part of x to be {x} = x− bxc.

4.2 Boundary Triangulations

For each v ∈ cone (P) we associate two faces ∆(v) and Ω(v) of T, as follows. The face
∆(v) is chosen to be the minimal face of T such that v ∈ cone (∆′(v)), and we define

Ω(v) := conv
{

ri

q
: i ∈ I(v)

}
⊆ ∆(v),

where I(v) is defined as in (3.1) and the (ri, q) are ray generators of cone (∆). In an effort
to make our statements and proofs less notation heavy, for the rest of this section we write
∆(v) = ∆ and Ω(v) = Ω with the understanding that both depend on v. Furthermore, for
v = ∑m+1

i=1 λi(ri, q) + λ(a, `) where λ, λi ≥ 0, define {v} := ∑i∈I(v){λi}(ri, q) + {λ}(a, `).

Lemma 4.2. Given v ∈ cone (P), construct ∆ = ∆(v) as described above, with cone (∆)
generated by (r1, q), . . . , (rm+1, q). Then v can be written uniquely as

{v}+ ∑
i∈I(v)

(ri, q) +
m+1

∑
i=1

µi(ri, q) + µ(a, `), (4.1)

where µ, µi ∈ Z≥0.

Corollary 4.3. Continuing the notation above,

u(v) = u({v}) + q(dim ∆(v)− dim Ω(v)) +
m+1

∑
i=1

q µi(v) + µ(v) ` . (4.2)
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The following theorem provides a decomposition of the h∗-polynomial of a rational
polytope in terms of box and h-polynomials. It is important to note again that the
h∗-polynomial depends on the denominator of the boundary triangulation.

Theorem 4.4. Consider a rational d-polytope P that contains an interior point a
` , where a ∈ Zd

and ` ∈ Z>0. Fix a boundary triangulation T of P with denominator q. Then

h∗(P; z) =
1− zq

1− z` ∑
Ω∈T

(
B(Ω; z) + B(Ω′; z)

)
h(Ω; zq).

Proof. By Corollary 4.3,

h∗(P; z)
(1− zq)d+1 = ∑

v∈cone(P)∩Zd+1

zu(v)

= ∑
v∈cone(P)∩Zd+1

zu({v})+q(dim ∆(v)−dim Ω(v))+∑
dim(∆)+1
i=1 qµi(v)+µ(v)`

= ∑
∆∈T

∑
Ω⊆∆

zq(dim ∆−dim Ω) ∑
v∈(Box(Ω)∪Box(Ω′))∩Zd+1

zu(v) ∑
µi,µ≥0

z∑
dim(∆)+1
i=1 qµi+µ`

= ∑
∆∈T

∑
Ω⊆∆

(B(Ω; z) + B(Ω′; z)) zq(dim ∆−dim Ω)

(1− zq)dim(∆)+1(1− z`)

=
1

1− z` ∑
Ω∈T

(
B(Ω; z) + B(Ω′; z)

)
∑

Ω⊆∆

(zq)dim(∆)−dim(Ω)

(1− zq)dim(∆)+1

=
1

(1− z`)(1− zq)d ∑
Ω∈T

(
B(Ω; z) + B(Ω′; z)

)
h(Ω; zq) .

4.3 Rational Stapledon Decomposition and Inequalities

Using Theorem 4.4, we can rewrite the h∗-polynomial of a rational polytope P as

h∗(P; z) =
1 + z + · · ·+ zq−1

1 + z + · · ·+ z`−1 ∑
Ω∈T

(
B(Ω; z) + B(Ω′; z)

)
h(Ω; zq) .

Next, we turn our attention to the polynomial

h∗(P; z) :=
(

1 + z + · · ·+ z`−1
)

h∗(P; z) . (4.3)

We know that h∗(P; z) is a polynomial of degree at most q(d + 1)− 1, thus h∗(P; z) has
degree at most q(d + 1) + `− 2. We set f to be the degree of h∗(P; z) and s to be the
degree of h∗(P; z). We can recover h∗(P; z) from h∗(P; z) for a chosen value of `; if we
write

h∗(P; z) = h∗0 + h∗1z + · · ·+ h∗f z f ,
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then
h∗i = h∗i + h∗i−1 + · · ·+ h∗i−l+1 i = 0, . . . , f , (4.4)

and we set h∗i = 0 when i > s or i < 0.

Proposition 4.5. Let P be a rational d-polytope with denominator q and Ehrhart series

Ehr(P; z) =
h∗(P; z)

(1− zq)d+1 .

Then deg h∗(P; z) = s if and only if (q(d + 1) − s)P is the smallest integer dilate of P that
contains an interior lattice point.

The following result provides a decomposition of the h∗-polynomial which we refer to
as an a/b-decomposition. It generalizes [11, Theorem 2.14] to the rational case.

Theorem 4.6. Let P be a rational d-polytope with denominator q, and let s := deg h∗(P; z).
Then h∗(P; z) has a unique decomposition

h∗(P; z) = a(z) + z`b(z) ,

where ` = q(d + 1)− s and a(z) and b(z) are polynomials with integer coefficients satisfying
a(z) = zq(d+1)−1a

(
1
z

)
and b(z) = zq(d+1)−1−`b

(
1
z

)
. Moreover, the coefficients of a(z) and

b(z) are nonnegative.

Proof. Let ai and bi denote the coefficients of zi in a(z) and b(z), respectively. Set

ai+1 = h∗0 + · · ·+ h∗i+1 − h∗q(d+1)−1 − · · · − h∗q(d+1)−1−i, (4.5)

and
bi = −h∗0 − · · · − h∗i + h∗s + · · ·+ h∗s−i. (4.6)

Using (4.4) and the fact that ` = q(d + 1)− s, we compute that

ai + bi−` = h∗0 + · · ·+ h∗i − h∗q(d+1)−1 − · · · − h∗q(d+1)−i − h∗0 − · · · − h∗i−` + h∗s
+ · · ·+ h∗s−i+` = h∗i−`+1 + · · ·+ h∗i = h∗i ,

ai − aq(d+1)−1−i = h∗0 + · · ·+ h∗i − h∗q(d+1)−1 − · · · − h∗q(d+1)−i − h∗0 − · · · − h∗q(d+1)−1−i

+ h∗q(d+1)−1 + · · ·+ h∗i+1 = 0 ,

bi − bq(d+1)−1−`−i = −h∗0 − · · · − h∗i + h∗s + · · ·+ h∗s−i + h∗0 + · · ·+ h∗i
− h∗s − · · · − h∗s−i−1 − h∗s − · · · − h∗i+1 = 0 ,

for i = 0, . . . , q(d + 1)− 1. Thus, we obtain the decomposition desired. The uniqueness
property follows (4.5) and (4.6).
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Let T be a regular boundary triangulation of P. By Theorem 4.4 and (4.3), we can set

a(z) = (1 + z + · · ·+ zq−1) ∑
Ω∈T

B(Ω; z) h(Ω; zq) , (4.7)

and
b(z) = z−`(1 + z + · · ·+ zq−1) ∑

Ω∈T
B(Ω′; z) h(Ω; zq) , (4.8)

so that h∗(P; z) = a(z) + z`b(z). By Proposition 4.5, the dilate kP contains no interior
lattice points for k = 1, . . . , `− 1, so if v ∈ Box (Ω′) ∩Zd+1 for Ω ∈ T, then u(v) ≥ `.
Hence, b(z) is a polynomial. We now need to verify that

a(z) = aq(d+1)−1a
(

1
z

)
and b(z) = zq(d+1)−1−`b

(
1
z

)
.

It is a well-known property of the h-vector in (2.5) that h(Ω, zq) = zq(d−1−dim(Ω))h(Ω; z−q).
Using the aforementioned and Corollary 4.1, we determine that

zq(d+1)−1a
(

1
z

)
= zq(d+1)−1

(
1 +

1
z
+ · · ·+ 1

zq−1

)
∑

Ω∈T
B
(

Ω;
1
z

)
h
(

Ω;
1
zq

)
= zqd(1 + z + · · ·+ zq−1) ∑

Ω∈T
z−q(dim(Ω)+1)B(Ω, z) z−q(d−1−dim Ω)h(Ω; zq)

= (1 + z + · · ·+ zq−1) ∑
Ω∈T

B(Ω, z) h(Ω; zq) = a(z)

and

zq(d+1)−1−`b
(

1
z

)
= zq(d+1)−1−`z`

(
1 +

1
z
+ · · ·+ 1

zq−1

)
∑

Ω∈T
B
(

Ω′;
1
z

)
h
(

Ω;
1
zq

)
= zqd(1 + z + · · ·+ zq−1) ∑

Ω∈T
z−q(dim Ω+1)−`B(Ω′; z) z−q(d−1−dim Ω)h(Ω; zq)

= z−`(1 + z + · · ·+ zq−1) ∑
Ω∈T

B(Ω′; z) h(Ω; zq) = b(z) .

Lastly, recall that the box polynomials and the h-polynomials are nonnegative, so a sum
of products of box polynomials and h-polynomials will also be nonnegative. Thus, the
result holds.

The next theorem follows as a corollary to Theorem 4.6 and gives inequalities satisfied
by the coefficients of the h∗-polynomial for rational polytopes.

Theorem 4.7. Let P be a rational d-polytope with denominator q, let s := deg h∗(P; z) and
` := q(d + 1)− s. The h∗-vector (h∗0 , . . . , h∗q(d+1)−1) of P satisfies the following inequalities:

h∗0 + · · ·+ h∗i+1 ≥ h∗q(d+1)−1 + · · ·+ h∗q(d+1)−1−i , i = 0, . . . ,
⌊

q(d + 1)− 1
2

⌋
− 1 , (4.9)

h∗s + · · ·+ h∗s−i ≥ h∗0 + · · ·+ h∗i , i = 0, . . . , q(d + 1)− 1 . (4.10)
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Proof. By (4.5) and (4.6) if follows that (4.9) and (4.10) hold if and only if a(z) and b(z)
are nonnegative, respectively, which in turn follows from Theorem 4.6.

5 Applications

5.1 Rational Reflexive Polytopes

A lattice polytope is reflexive if its dual is also a lattice polytope. Hibi [6] proved that
a lattice polytope P is the translate of a reflexive polytope if and only if Ehr

(
P; 1

z

)
=

(−1)d+1z Ehr(P; z) as rational functions, that is, h∗(z) is palindromic. More generally,
Fiset and Kaspryzk [4, Corollary 2.2] proved that a rational polytope P whose dual is a
lattice polytope has a palindromic h∗-polynomial. The following proposition provides an
alternate route to Fiset and Kaspryzk’s result.

Theorem 5.1. Let P be a rational polytope containing the origin. The dual of P is a lattice
polytope if and only if h∗(P; z) = h∗(z) = a(z), that is, b(z) = 0 in the a/b-decomposition of
h∗(P; z) from Theorem 4.4.

5.2 Reflexive Polytopes of Higher Index

Kasprzyk and Nill [7] introduced the following class of polytopes .

Definition 5.2. A lattice polytope P is a reflexive polytope of higher index L (also known as
an L-reflexive polytope), for some L ∈ Z>0, if the following conditions hold:

• P contains the origin in its interior;

• The vertices of P are primitive, i.e., the line segment joining each vertex to 0 contains
no other lattice points;

• For any facet F of P the local index LF equals L, i.e., the integral distance of 0 from
the affine hyperplane spanned by F equals L.

The 1-reflexive polytopes are the reflexive polytopes mentioned earlier in the section.
Kaspryzk and Nill proved that if P is a lattice polytope with primitive vertices containing
the origin in its interior then P is L-reflexive if and only if LP∗ is a lattice polytope having
only primitive vertices. In this case, LP∗ is also L-reflexive. They investigated L-reflexive
polygons. In particular, they show that there is no L-reflexive polygon of even index.
Furthermore, they provide a family of L-reflexive polygons arising for each odd index:

PL = conv {±(0, 1),±(L, 2),±(L, 1)} .
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We are interested in the dual of PL:

P∗L = conv
{
±
(

1
L , 0

)
,±( 2
L ,−1),±

(
1
L ,−1

)}
.

(
− 1
L , 0
)

(
1
L ,−1

) ( 2
L ,−1

)

(
1
L , 0
)

(
− 1
L , 1
)(

− 2
L , 1
)

0

Figure 1: The rational hexagon P∗L.

Applying Theorems 4.4 and 5.1 we conclude to following.

Proposition 5.3. For L = 2k + 1,

h∗(P∗L; z) = (1 + z + · · ·+ zL)

(
1 + 4zL + z2L + 4

(
L−1

∑
i=L−k

zi +
L+k

∑
i=L+1

zi

)
+ 2

L−1

∑
i=1

z2i

)
.
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