
Séminaire Lotharingien de Combinatoire 85B (2021) Proceedings of the 33rd Conference on Formal Power
Article #39, 12 pp. Series and Algebraic Combinatorics (Ramat Gan)

Double Grothendieck polynomials and colored
lattice models

Valentin Buciumas∗1 and Travis Scrimshaw†1

1School of Mathematics and Physics, The University of Queensland, St. Lucia, QLD 4072,
Australia

Abstract. We construct an integrable colored vertex model whose partition function
is a double Grothendieck polynomial and relate it to bumpless pipe dreams. This
gives a new proof of recent results of Weigandt. For vexillary permutations, we
then construct a new model that we call the semidual version model. We use our
semidual model and the five-vertex model of Motegi and Sakai to give a new proof
that double Grothendieck polynomials for vexillary permutations are equal to flagged
factorial Grothendieck polynomials. We then obtain a new proof that the stable
limit is a factorial Grothendieck polynomial as defined by McNamara. The states of
our semidual model naturally correspond to families of nonintersecting lattice paths,
where we can then use the Lindström–Gessel–Viennot lemma to give a determinant
formula for double Schubert polynomials corresponding to vexillary permutations.
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1 Introduction

The Yang–Baxter equation, also known as the star–triangle equation, has been the
cornerstone of many aspects of modern mathematical physics. It plays an central role
in (quantum) integrable systems, which naturally arise across a broad spectrum of
mathematics and physics. Applications include explaining combinatorial phenomena
and properties, describing probabilistic models and studying Whittaker functions, such
as in [5, 3, 8, 2, 9, 15, 22, 19, 26]. In many of the papers cited, one equates an
object of interest (like a Hall–Littlewood polynomial or a Whittaker function) with
the partition function of a solvable lattice model. This naturally implies interesting
properties such as branching rules, Cauchy-type identities, exchange relations, and
combinatorial descriptions.

Our work is motivated by the geometry of Schubert varieties. Consider the general
linear group G = GL(Cn) and the subgroups of lower triangular matrices B and diagonal
matrices T. A complete flag is an element in the (complete/full) flag variety G/B and
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corresponds to a sequence of subspaces {0} = V0 ⊆ · · · ⊆ Vn = Cn such that dim Vi = i.
A Schubert cell is a (left) B-orbit in G/B, and a Schubert variety is the Zariski closure of
a Schubert cell. The Schubert varieties are indexed by permutations and have many nice
properties, such as Bruhat order corresponding to inclusion and forming a basis for the
(T-)equivariant (connective) K-theory ring of the flag variety Kβ

T(G/B).
In this paper, we connect the equivariant K-theory ring Kβ

T(G/B) with solvable lattice
models. To do this, we use the double (β-)Grothendieck polynomials Gw, where w is a
permutation, as representatives for the Schubert varieties in Kβ

T(G/B) [9, 18]. Our main
result (Theorem 3.3) is a colored lattice model whose partition function is (up to a trivial
factor of the parameter β) Gw. We construct our model as a translation of the bumpless
pipe dreams with a fixed key given in [25], where resolving multiple crossings of two
strands precisely corresponds to the colorization performed in [5, 8]. Thus, we encode
the permutation into the model by using the coloring. Our proof is showing the Yang–
Baxter equation implies the partition function satisfies the same functional equations
defining double Grothendieck polynomials (up to a β factor). Therefore, we have a
new proof of [25, Thm. 1.1], which gives a formula for Gw as a sum over bumpless
pipe dreams with key w proven using a combination of algebraic and combinatorial
techniques. Our model is the colored version of the six-vertex model that Lascoux used
in [17] to describe Gw using alternating sign matrices. By specializing β = 0, we recover
the formula for double Schubert polynomials from [16]. Our results can be considered
as the flag variety version of [8, 22] on the Grassmannian, the set of k-dimensional planes
in Cn.

In the second part of our paper, we consider the analog of Gw(x, y; β) for the
equivariant K-theory of the Grassmannian, which are the factorial Grothendieck
polynomials. The stable limit of double Grothendieck polynomials decompose into
finitely many factorial Grothendieck polynomials [6, 20]. When w is vexillary (it avoids
the pattern 2143), the stable limit of Gw is a single factorial Grothendieck polynomial.
Factorial Grothendieck polynomials are given as the sum over set-valued tableaux [20].

We look at what happens to our colored model restricted to vexillary permutations.
To do this, we first construct a variation of the uncolored version of our model by
swapping 0 ↔ 1 on the horizontal lines, which we call the semidual model. To encode
the permutation w, we modify the semidual model to not be on a rectangular grid,
but instead on a grid given by a partition Λw that depends on w. By a key property
of vexillary permutations, the partition function is the same as our original colored
model and the semidual model becomes a five-vertex model. Hence we can change
the weights of one of the vertices by removing a β factor and maintain integrability,
and the resulting vertices become those of [22] (up to a gauge transformation). The
fact that the shape of the semidual model is Λw corresponds to imposing a flagging
on set-valued tableaux under the natural bijection between (marked) states of the [22]
model given in [21, Sec. 4.2]. Therefore we obtain a new proof that double Grothendieck
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polynomials are sums over flagged set-valued tableaux [11] (Theorem 4.4), which was
proven using Gröbner geometry. Furthermore, by taking the stable limit, we recover [20]
(Theorem 2.1), which was proven by examining the underlying combinatorics. By taking
appropriate specializations, we obtain new proofs of results from [6, 22, 26].

A state of the semidual model correponds to a family of nonintersecting lattice paths,
which we then apply the Lindström–Gessel–Viennot lemma to. Yet, we can only obtain
a determinant formula for flagged (factorial) Schur functions (Theorem 4.6). We were
unable to extend this to the determinant formula for Gw from [1, 19]. Additionally, our
NILPs are distinct from those in [13] referenced in [25, Sec. 7.3] and those in [12] and [14].

This extended abstract is organized as follows. In Section 2, we provide the necessary
background on double Grothendieck polynomials. In Section 3, we give our integrable
colored lattice model whose partition function is a double Grothendieck polynomial and
connect it to bumpless pipe dreams. In Section 4, we give our semidual model and relate
it to (flagged) set-valued tableaux. This is the extended abstract version of [7].

After [7] was written, we were made aware of [4], where a different lattice model
interpretation for double Grothendieck polynomials by using regular pipe dreams. The
Boltzmann weights for the states (and the L-matrices) are different as there is no weight
preserving bijection between the two (cf. [25, Ex. 6.3]). Their applications are distinct
from ours except for Corollary 3.4, which we realized we could prove after seeing [4].

2 Background

Fix a positive integer n. Let x = (x1, . . . , xn) (resp. y = (y1, . . .)) be a finite (resp. infinite)
sequence of indeterminates. For (α1, . . . , αn) ∈ Zn of length n, denote xα := xα1

1 · · · x
αn
n .

Let λ = (λ1, λ2, . . . , λn) be a partition, a sequence of weakly decreasing nonnegative
integers (of length n). Let `(λ) = max{k | λk > 0} denote the length of λ. The Young
diagram (in English convention) of λ is a drawing consisting of stacks of boxes with
row i having λi boxes pushed into the upper-left corner. The 01-sequence of λ is given
by reading the boundary of λ, starting at the bottom, with horizontal steps being 0 and
vertical steps being 1 (we ignore all trailing 0s in the 01-sequence). For example, the
01-sequence of λ = (5, 2, 2, 1, 0, 0) for n = 6 is 11010110001.

Let Sn be the symmetric group on n elements with si = (i i + 1). For w ∈ Sn, let `(w)
denote the length of w. Let w0 denote the longest element in Sn. The diagram of w is

D(w) := {(p, q) ∈ {1, . . . , n} × {1, . . . , n} | w(p) > q and w−1(q) > p},

(the boxes not in the Rothe diagram of w). Let w′ = 1k × w denote the permutation

w′(i) :=

{
i if i ≤ k,
w(i− k) + k if i > k.
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Let ≤ denote the (strong) Bruhat order on Sn. Define wx := (xw(1), . . . , xw(n)). A
permutation w is vexillary if it avoids the pattern 2143; that is to say there does not
exists 1 ≤ i < j < k < ` ≤ n such that wj < wi < w` < wk.

We can compute λw by ordering the sequence whose i-th value is the number of boxes
in row i of D(w). We call λw the partition associated to w. Next, let Λw denote the smallest
partition whose Young diagram contains the boxes D(w). Following [11, Sec. 5.2], define
Fw = (Fi)

`(λw)
i=1 with Fi the row index of the southeastern box of Λw that lies on the same

diagonal as the last box (i, λi) in row i of λ = λw. We call Fw the flagging associated to w.
Define x⊕ y := x + y + βxy. Let f ∈ Z[x]. The K-theoretic divided difference operator is

di f :=
(1 + βxi+1) f − (1 + βxi)si f

xi − xi+1
.

These are normally denoted by πi in the literature. We also require the Demazure–Lascoux
operator vi f := di(xi f ) and the Demazure–Lascoux atom operator vi := vi − 1. For any
operator Di = ∂i, di, πi, vi, vi, define Dw := Di1 · · ·Dik for any reduced expression w =
si1 · · · sik , which is well-defined as these operators all satisfy the braid relations.

Following [9], the double Grothendieck polynomial is defined recursively by

Gw0(x, y; β) := ∏
i+j≤n

xi ⊕ yj, Gw(x, y; β) := diGwsi(x, y; β), for `(wsi) = `(w) + 1.

Let SVTλ denote the set of set-valued tableaux of shape λ, fillings of the boxes of λ with
non-empty (finite) subsets of {1, 2, . . . , n} that satisfy locally

A B
C

, max A ≤ min B, max A < min C.

For F = {Fi ∈ Z}`(λ)i=1 , let SVTλ,F ⊆ SVTλ be the subset of flagged set-valued tableaux,
where every value in the i-th row of T is at most Fi.

Following [11], define the flagged factorial Grothendieck polynomial as

Gλ,F(x|y; β) := ∑
T∈SVTλ,F

β|T|−|λ| ∏
A∈T

∏
i∈A

xi ⊕ yi+c(A),

where c(A) = c− r is the content of the box A (which we have equated with its entry) in
row r and column c. A determinant formula for Gλ,F(x, y; β) was given in [19].

Theorem 2.1 ([11, Thm. 5.8]). For a vexillary permutation w, Gw(x, y; β) = Gλw,Fw(x|y; β).

3 Double Grothendieck polynomial colored model

We now give our main result: an integrable colored vertex model whose partition
function is Gw(x, y; β) and relate it to the bumpless pipe dream formula from [25].
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Figure 1: The Boltzmann weights with c > c′ and d being any color for the model Gw.

Fix colors c = (c1 > c2 > · · · > cn) and a permutation w ∈ Sn. Let wc =
(cw(1), cw(2), . . . , cw(n)) be the natural action of w on the colors. The (lattice) model is
given by a rectangular grid of n horizontal and vertical lines with each crossing a vertex
and the lines between two vertices (resp. from one vertex) are edges (resp. half edges). The
boundary conditions are the top and left half edges are labeled by 0, the right half edges
are labeled by wc from top-to-bottom, and the bottom half edges begin c from left-to-
right. A state is a labeling of the edges by {0} t c, and we call a state admissible if each
vertex is one of those in Figure 1. For examples of admissible states, see Figure 3.

We assign a non-zero (Boltzmann) weight with spectral parameter x to each of the
vertices in Figure 1, the set of which is called an L-matrix. The (Boltzmann) weight wt(S) of
a state S is the product of all of the Boltzmann weights of all vertices. Let Gw denote the
set of all possible admissible states for this model, which we call the double Grothendieck
model. The partition function is Z(Gw; x, y; β) := ∑S∈Gw wt(S).

Proposition 3.1. The colored vertex model Gw with R-matrix given by Figure 2 is integrable: it
satisfies the RLL form of the Yang–Baxter equation, where the partition function of the following
two models are equal for any boundary conditions a, b, c, d, e, f ∈ {0, c1, c2, . . . , cn}:

a

b

c

d

e

f

xi

xj

xi, xj

a

b

c

d

e

f

xj

xi

xi, xj (3.1)

The Yang–Baxter relation only involves at most 3 colors, so Proposition 3.1 is an
identity of 24 × 24 matrices as colors are conserved under the R-matrix and L-matrix.
Thus Proposition 3.1 can be shown by direct computation using, e.g., SageMath [23].
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Figure 2: The colored R-matrix with c > c′ and d being any color for the double
Grothendieck model. Note that the weights are not symmetric with respect to color.

Following [5, 8], we use the Yang–Baxter equation and the train argument to construct
a functional equation for the partition function of our model Gw. The proof is standard
and is the same as the one given in, e.g., [8, Lemma 3.3]; pictorially it is the equality of:

· · ·

· · ·xi

xi+1

xi

xi+1

xi , xi+1

di

di+1

0

0

0

0 · · ·

· · · di

di+1xi+1

xi

xi+1

xi

xi , xi+1

Lemma 3.2. Let w ∈ Sn, and consider any si such that wsi > w. Then we have

βZ(Gw; x, y; β) =
(1 + βxi+1) · Z(Gwsi ; x, y; β)− (1 + βxi) · Z(Gwsi ; six, y; β)

xi − xi+1
.

Theorem 3.3. We have Z(Gw; x, y; β) = β`(w)Gw(x, y; β).

The authors thank Anatol Kirillov for noting the following well-known symmetry can
be seen from [9] or from Gw(x, y; β) as a sum over usual pipe dreams (or RC-graphs) [9,
10]. A colored lattice model proof was first given in [4, Prop. 9.1].

Corollary 3.4. We have Z(Sw; x, y; β) = Z(Sw−1 ; y, x; β) and Gw(x, y; β) = Gw−1(y, x; β).

In [25, Eq. (3.7)], each uncolored vertex corresponds to one of the tiles that defines a
bumpless pipe dream. The key ∂P of a bumpless pipe dream P is given by the Demazure
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Figure 3: The unique state for the colored model Gw0 (left), a state in Gs1s3 (center),
and a state in Gs2s3s2 (right) with n = 4 and c1 > c2 > c3 > c4.

product of the simple transpositions (where instead s2
i = si). Indeed, color each line of

P starting from the bottom as c1, . . . , cn from left-to-right where each color must cross
(i.e, the vertex a†

2 or with the colors swapped). Moving from the bottom-left to the top-
right along diagonals, when we replace a color flipped a†

2 with a2 (see also [25, Eq. (2.4),
Lemma 2.1]). Thus states of Gw are bumpless pipe dreams with key w after forgetting
the colors, and we obtain a new proof of [25, Thm. 1.1].

4 The semidual vertex model

In this section, we modify our model and remove the colors in the case w is a vexillary
permutation. We draw the states using tiles. Thus the L-matrix given in Figure 1
becomes

, , , , , , .

By [25, Lemma 7.2], a bumpless pipe dream state has no a2 vertex if and only if w is
vexillary. Thus we set the corresponding Boltzmann weight to 0. We can forget the colors
when drawing the lattice models, but it does not quite equate the colored model with the
uncolored model as we still need to keep track of which strands cross to encode w. This
is important as the model needs to remain colored in order to get the correct partition
function corresponding to w. Let G denote the corresponding uncolored model.

We define the semidual model D to be the colored lattice model on an n × n grid
using the L-matrix given in Figure 4 and boundary conditions as follows. The left (resp.
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Figure 4: Boltzmann weights of the semidual model.

bottom) boundary condition is the colors cn > · · · > c1 from top-to-bottom (resp. left-to-
right); the top and right boundary edges are all 0. Since no colors cross, we forget the
coloring, but unlike before, we obtain an equivalent model with no dependency on w.

Proposition 4.1. There exists a bijection Φ : G→ D given by

7→ , 7→ , 7→ , 7→ , 7→ , 7→ .

We note that the map in Proposition 4.1 is defined by interchanging 0 ↔ 1 on the
horizontal (auxiliary space) component between the models.

Example 4.2. We apply the bijection defined in Proposition 4.1 to Figure 3 (right):

7−→ .

Now we want to reintroduce the vexillary permutation w into these uncolored
models. If we restrict our model to Λw (as opposed to an n× n grid), we can use [25,
Lemma 7.2] (see also [11, Cor. 3.3]) to see that there are no vertices of type a2 nor a†

2

in Gw. Therefore we have an uncolored five-vertex model whose partition function is
β`(w)Gw(x, y; β). Equivalently for the corresponding semidual model on Λw there are
no vertical lines, and the states can be thought of as a family of nonintersecting lattice
paths. (These are also the tiles in [26, Eq. (7)] rotated 180 degrees and reflected across
the vertical axis with z 7→ 1− (x⊕ y) at β = −1.) In terms of the partition function, all
this does is remove the β`(w) as only the weight of vertex b2 changes by removing the β,
of which there are precisely `(w) such vertices.

Proposition 4.3. The model Dw is integrable with β`(w)Z(Dw; x, y; β) = Z(Gw; x, y; β).
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Let Fw := (Fi)
k
i=1 denote the heights of the right endpoints of the paths in Λw that

end on the right boundary. So the tile immediately to the right of such a boundary point
is a not in Λw. Any other path that does not has such a right endpoint must simply
move diagonally. The sequence Fw is exactly to the flagging associated to w.

Now if we rotate the semidual model Dw by 180 degrees and extend from the
endpoints in the (rotated) shape Λw by diagonal lines (which go to the northwest), we
obtain precisely a state in the uncolored model Sλw (see also [22]). Thus we can apply the
natural bijection Θ between marked states, where we allow only tiles to be marked,
and set-valued tableaux via marked Gelfand–Tsetlin patterns from [8, Sec. 2.3]. However,
the flagging Fw imposes a restriction on the possible states and set-valued tableaux. It is
straightforward to see that this precisely corresponds to restricting to the set of flagged
set-valued tableau SVTλw,Fw . Hence, we have a new proof of Theorem 2.1.

As in [11, Cor. 5.9], this gives an integrable systems proof of [6, Thm 3.1]. The
bijection Θ is also the same as the bijection from pipe dreams to SVTλw,Fw given in [11,
Prop. 5.3], which is different from the formula in [9] (see, e.g., [11, Ex. 5.10]).

We give new a proof of [20, Thm. 8.7] and [22, 26] by taking the stable limit of the
semidual model D1k×w as k→ ∞ and restricting to a finite number of variables.

Theorem 4.4 ([22, 26]). The partition function of the stable limit model equals Gλw(x|y; β).

Example 4.5. We consider λ = (1) and n = 2. We consider w = [2, 1] and 12 × w:

, , , ,

where we have drawn the Gw states on the left and the semidual states on the right.

We also note that the symmetry used in [25, Lemma 8.1] is precisely the natural
symmetry from reflecting the semidual model along the y = x line. Furthermore, the
bijection in [25, Lemma 8.2] comes from the reflected elementary excitations/emissions,
where we instead consider the paths in Λw (which in this case equals λw) as being fixed.

Another benefit of the semidual model is being able to interpret a state as a family of
nonintersecting lattice paths (NILPs). The Lindström–Gessel–Viennot (LGV) lemma posits
that the sum of the weights over all NILPs in a edge-weighted directed graph can be
given as a determinant of the matrix

[
pab
]n

a,b=1, where pa,b is the sum over each path
from the a-th starting point to the b-th ending point and taking the product of the edge
weights. Thus, we want to construct a weight preserving bijection from a marked state
of the semidual model into a NILP to express the partition function as a determinant.
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We use the following local translation from tiles to a directed graph:

,

with a non-trivial edge weight on only the second horizontal step in each tile that
depends on the position of the tile. We call the blue and gold edges Schubert edges
and the red edges K-theory edges. All edges have weight 1 except for the Schubert edges
in gold, which have weight w(i, j) that we will give later. We can restrict to the paths
that are not simply diagonals (i.e., have at least one horizontal step).

We first consider what happens when we apply the LGV lemma naïvely using the
tiles. In this case, we see that we must have β = 0, and so we take w(i, j) = xi ⊕ yj,
remove the K-theory edges, and only consider unmarked states. Let hb denote the height
of the b-th endpoint and λ = λw. One can see that pab = G(λb+a−b)(xa, . . . , xhb

|y; 0). Thus,
we have the following expression for double Schubert polynomials by the LGV lemma.

Theorem 4.6. If w is vexillary, then Z(Dw; x, y; 0) = det
[
pab
]n

a,b=1 = Gw(x, y; 0).

Our formula at y = 0 likely differs from [24] by some sequence of row operations.

Example 4.7. Consider the permutation w = s2s3s2 (for an example of a state in Dw, see
Example 4.2). We compute λw = (2, 1) and Fw = (2, 3). Applying Theorem 4.6,

Z(Dw; x, y; 0) = det


G(2)(x1, x2|y; 0) 1 0 0

G(3)(x2|y; 0) G(1)(x2, x3|y; 0) 0 0
0 G(2)(x3|y; 0) 1 0
0 0 G(1)(x4|y; 0) 1


= det

[
G(2)(x1, x2|y; 0) 1

∏3
j=1 x2 ⊕ yj x2 ⊕ y1 + x3 ⊕ y2

]
,

where G(2)(x1, x2|y; 0) = (x1 ⊕ y1)(x1 ⊕ y2) + (x1 ⊕ y1)(x2 ⊕ y3) + (x2 ⊕ y2)(x2 ⊕ y3).
Note that going from the 4× 4 determinant to the 2× 2 determinant comes from the fact
that two of the paths contain no horizontal steps. Hence, we have

Z(Dw; x, y; 0) = (x1 ⊕ y1)(x1 ⊕ y2)(x2 ⊕ y1) + (x1 ⊕ y1)(x2 ⊕ y3)(x2 ⊕ y1)

+ (x1 ⊕ y1)(x1 ⊕ y2)(x3 ⊕ y2) + (x1 ⊕ y1)(x2 ⊕ y3)(x3 ⊕ y2)

+ (x2 ⊕ y2)(x2 ⊕ y3)(x3 ⊕ y2) = Gλw,Fw(x1, x2|y; 0),

with corresponding flagged set-valued tableaux (β = 0 gives semistandard tableaux)

1 1
2

, 1 2
2

, 1 1
3

, 1 2
3

, 2 2
3

.
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If we compare this with the formula from [24, Thm. 1.3], we have

Gλw,Fw(x|0; 0) = det
[

x2
1 + x1x2 + x2

2 1
x3

1 + x2
1x2 + x1x2

2 + x3
2 x1 + x2 + x3

]
,

= x2
1x2 + x1x2

2 + x2
1x3 + x1x2x3 + x2

2x3.

Note that subtracting x1 times the first row from the second in the above matrix is
precisely the 2× 2 determinant used to compute Z(Dw; x, 0; 0).

If instead we want generic β, then we take w(i, j) = β(xi ⊕ yj) to get a relation with
the L-matrix from Figure 4. However, it is impossible for the NILPs to agree if marking
a tile corresponds to traveling along the K-theory edge as we can now also use .
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