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Abstract. The limit weak order on an affine Weyl group was introduced by Lam and
Pylyavskyy [Transform. Groups 18 (2013), 179–231] in their study of total positivity for
loop groups [Adv. Math. 230 (2012), 1222–1271]. They showed that in the case of the
affine symmetric group the minimal elements of this poset coincide with the infinite
fully commutative reduced words and with infinite powers of Coxeter elements. We
answer several open problems raised there by classifying minimal elements in all affine
types and relating these elements to the classes of fully commutative and Coxeter
elements3.
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1 Introduction

An infinite word si1si2 · · · in the simple generators of an infinite Coxeter group W̃ (see
Section 2.1 for background) is called an infinite reduced word if all of its finite prefixes
si1 · · · sik are reduced words in W̃; we will identify such a word with its sequence i =
i1i2 · · · of indices. Associated to i is an inversion set Inv(i), a subset of the set of reflections
of W̃, which induces an equivalence relation on the set of infinite reduced words: [i] = [j]
if and only if Inv(i) = Inv(j). An equivalence class of infinite reduced words is called a
limit element of W̃.

The limit weak order for W̃, introduced by Lam and Pylyavskyy [4] is the partial order
(W̃ ,≤) on the set of limit elements with order given by containment of inversion sets.
In [4] this order (conjecturally) encodes the containment relations between certain strata
in the totally positive space studied there, while Lam and Thomas show in [5] that W̃
encodes the closure relations among components of the Tits boundary of W̃. In both
instances, understanding the minimal elements in the limit weak order is of significant
interest. In the case when W̃ is the affine symmetric group, Lam and Pylyavskyy show
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that the minimal elements coincide with two other important classes of elements: fully
commutative limit elements and infinite powers of Coxeter elements.

Theorem 1.1 (Lam and Pylyavskyy [4]). Let W̃ be the affine symmetric group, then the fol-
lowing are equivalent for an infinite reduced word i:

1. [i] is minimal in W̃ ,

2. [i] is fully commutative,

3. [i] = [c∞] for a Coxeter element c of W̃.

As natural extensions of Theorem 1.1, Lam and Pylyavskyy posed the following open
problems:

Problem 1 (Lam and Pylyavskyy [4]). Describe, in terms of infinite reduced words, the
minimal elements in limit weak order for all affine Weyl groups.

Problem 2 (Lam and Pylyavskyy [4]). Are all minimal elements in limit weak order fully
commutative?

In this extended abstract we describe a complete resolution of Problems 1 and 2 and
give further extensions of Theorem 1.1:

• In Section 2 we cover needed background material.

• In Section 3 we note that, when W̃ is an affine Weyl group with corresponding
finite Weyl group W, the minimal elements of W̃ coincide with infinite powers
of translations by multiples of W-conjugates of fundamental coweights. We give
a general, type-uniform procedure for generating infinite reduced words corre-
sponding to these elements; computations in Appendix A using this procedure
resolve Problem 1.

• Although none of the three equivalences in Theorem 1.1 continues to hold in gen-
eral affine Weyl groups, we show that infinite fully commutative elements and
infinite powers of Coxeter elements are still minimal in W̃ . Therefore it makes
sense to ask for which fundamental coweights ω∨i the corresponding infinite trans-
lation element is fully commutative or is a power of a Coxeter element; the answer
is depicted in Figure 1.

• In fact we show in Section 4 that, except in type A, there is a unique ω∨i corre-
sponding to the Coxeter elements, and we give a simple rule for identifying the
corresponding node in the Dynkin diagram.
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• Finally, in Section 5 we show that the fundamental coweights whose infinite trans-
lation elements are fully commutative are exactly the minuscule and cominuscule
weights. In particular, Problem 2 has a negative answer except in type A. This also
allows us to completely classify fully commutative infinite reduced words in affine
Weyl groups.
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· · ·Ãn

1 2 3 n−1 n

0
· · ·B̃n

· · ·
0 1 2 3 n−1 n

C̃n

· · ·
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F̃4
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Figure 1: The Dynkin diagrams for the affine Weyl groups. In each case the affine
node is labelled 0, the Coxeter nodes are boxed, and the fully commutative nodes are
unfilled.

2 Background

2.1 Coxeter groups

We refer the reader to Björner–Brenti [1] for basics on Coxeter groups. Let W be a
Coxeter group with simple reflections S = {s1, · · · , sn}. Any element c ∈W which is the
product of the n simple reflections in some order is called a Coxeter element.

Given w ∈W, an expression
w = si1 · · · si`

of minimal length is called a reduced word for w, and in this case ` = `(w) is called the
length of w. The (right) weak order ≤R on W is the partial order with cover relations
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w lR wsi whenever `(wsi) = `(w) + 1.
A well known theorem of Tits [8] states that all reduced words for w are connected

via the defining relations sisjsi · · · = sjsisj · · · with mij ∈ {2, 3, . . .} factors on each side
(called a commutation move if mij = 2 and a braid move if mij ≥ 3). If no reduced word for
w admits the application of a braid move then w is called fully commutative [7]. We say
an infinite reduced word i = i1i2 · · · is fully commutative if all elements w = si1 · · · sik
are fully commutative for k = 1, 2, . . ..

For J ⊆ S, the parabolic subgroup WJ is the subgroup of W generated by J, viewed as
a Coxeter group with simple reflections J. Each left coset wWJ of WJ in W contains a
unique element wJ of minimal length, and the set {wJ | w ∈ W} of these minimal coset
representatives is called the parabolic quotient W J . Letting wJ ∈WJ be the unique element
such that wJwJ = w, we have `(wJ) + `(wJ) = `(w). If W J is finite it contains a unique
element wJ

0 of maximum length.

2.2 Affine Weyl groups

We refer the reader to Bourbaki [2] for more details on affine Weyl groups. For the re-
mainder of the extended abstract, we let W̃ denote an affine Weyl group with associated
irreducible finite Weyl group W. We number the simple reflections so that W has simple
reflections S = {s1, . . . , sn} while W̃ has S̃ = {s0} t S. We write Ji for S \ {si}.

We let Φ denote the finite root system associated to W, Φ+ denote a choice of positive
roots, and ∆ = {α1, . . . , αn} denote the corresponding set of simple roots. We write ξ

for the highest root of Φ+ and make the notational convention that α0 = −ξ. Write
∆̃ = {α0, . . . , αn}.

We write V for the Euclidean space containing Φ and 〈, 〉 for the inner product. The
group W̃ acts faithfully on V by affine linear transformations, and the action of W ⊂ W̃
is linear and preserves the inner product.

The fundamental coweights ω∨1 , . . . , ω∨n are determined by the formula 〈αi, ω∨j 〉 = δij.
For i = 1, . . . , n the simple coroot α∨i is defined by α∨i = 2

〈αi,αi〉
αi. The coroot lattice is Q∨ =⊕n

i=1 Zα∨i . For i = 1, . . . , n we let ki denote the smallest positive integer (necessarily
finite) such that kiω

∨
i ∈ Q∨. For each λ ∈ Q∨ there is a unique element tλ in W̃ which

acts on V via translation by λ. This realizes W̃ as the semidirect product W n Q∨ where
wtλw−1 = twλ for w ∈W.

For w ∈ W̃ the inversion set is defined to be

Inv(w) = {αi1 , si1αi2 , si1si2αi3 , · · · , si1 · · · sik−1αik}

where w = si1 · · · sik is any reduced word for w (it is an important fact that the inversion
set does not depend on the reduced word chosen). It is clear from the definition that
if w ≤R w′ then Inv(w) ⊆ Inv(w′); in fact, the converse holds as well: weak order is
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equivalent to containment of inversion sets. If i = i1i2 · · · is an infinite reduced word,
then the prefixes w(k) = si1 · · · sik ∈ W̃ clearly satisfy w(k) ≤R w(k′) whenever k ≤ k′. The
inversion set of i is defined to be the increasing union

Inv(i) =
∞⋃

k=1

Inv(w(k)).

The limit weak order W̃ on the limit elements [i] is determined by containment of these
inversion sets.

Associated to W̃ is an affine hyperplane arrangement H in V, with hyperplanes
Hα,k = {x ∈ V | 〈x, α〉 = k} for α ∈ Φ+, k ∈ Z. The connected components of the
complement of H are called alcoves, and W̃ acts simply transitively on the set of alcoves.
Fixing the fundamental alcove Aid to be that bounded by Hαi,0 for i = 1, . . . , n and Hα0,−1,
this action determines a labelling of the alcoves Aw by elements w ∈ W̃. The inversions
of w are in natural bijection with the hyperplanes Hα,k separating Aw from Aid.

The Dynkin diagram of (W̃, S̃) is a directed graph with nodes ∆̃ such that there are
−2〈αi, αj〉/〈αj, αj〉 directed edges from αi to αj, for i 6= j. Finite and affine Weyl groups
are completely classified by their Dynkin diagrams. The irreducible affine groups consist
of four infinite families Ãn(n ≥ 1), B̃n(n ≥ 2), C̃n(n ≥ 2), D̃n(n ≥ 4) and the exceptional
types Ẽ6, Ẽ7, Ẽ8, F̃4, and G̃2. See the corresponding Dynkin diagrams in Figure 1.

3 Words for infinite translation elements

3.1 Translations by fundamental coweights

The following proposition, implicit in [4] and [5], describes the minimal elements of
W̃ geometrically: they are the infinite translations in the directions of the rays of the
corresponding reflection arrangement.

Proposition 3.1. The minimal elements of W̃ are precisely

{[t∞
wkiω

∨
i
] | 1 ≤ i ≤ n, w ∈W Ji}

where Ji = {sj | j 6= i}.

In Section 3.2 we give a method for constructing infinite reduced words for these and
other infinite translation elements. Understanding these reduced words is necessary
for resolving Problems 1 and 2 and understanding the limit Coxeter elements, for the
characterization of minimal elements in Proposition 3.1 is not immediately applicable to
any of these problems.
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3.2 Explicit reduced words

In this section, we explain how to write down explicit infinite reduced words that cor-
respond to open faces of the reflection arrangement of W. The content of this section
generalizes that of Section 4.7 of [4], which is specific to type A. Our formulation and
arguments are type-uniform and the proof ideas will be different from that of [4].

Recall that the set of simple roots for W is ∆ = {α1, . . . , αn} while the set of simple
roots for W̃ is ∆̃ = {α0, . . . , αn}, where α0 = −ξ with ξ being the highest root of W.

Let λ 6= 0 ∈ Q∨. We now explicitly write down an infinite reduced word i = si1si2 · · ·
such that [i] = [t∞

λ ]. The construction is inductive. Let λ(0) = λ. For j ≥ 1, we choose
ij ∈ {0, 1, . . . , n} such that 〈λ(j−1), αij〉 < 0 and then let λ(j) = sij λ

(j−1).
Notice that if 〈λ, αk〉 ≥ 0 for all k = 0, . . . , n, then we must have 〈λ, αk〉 = 0 for

all k = 0, . . . , n since −α0 = ξ is a positive linear combination of α1, . . . , αn. And since
α1, . . . , αn spans, the equalities imply λ = 0. Therefore, as long as λ 6= 0, none of its Weyl
group translates will be 0 so the above procedure will continue indefinitely.

Proposition 3.2. Let λ 6= 0 ∈ Q∨ and construct the infinite word i as above. Then i is reduced
and [i] = [t∞

λ ].

Proof sketch. Recall that the fundamental alcove of the affine hyperplane arrangement of
W̃ is given by

Aid = {x ∈ V | 〈x, αi〉 > 0 for i = 1, . . . , n and 〈x, α0〉 > −1}.
For any αi such that 〈λ, αi〉 < 0, we can choose µ ∈ Aid close to the hyperplane Hαi,k
(k = 0 if i = 1, . . . , n and k = −1 if i = 0 where we identify Hα0,−1 with Hξ,1) that bounds
Aid such that moving in the direction of λ from µ intersects Hαi,k first, among all n + 1
hyperplanes that bound Aid. Conversely, if 〈λ, αi〉 ≥ 0, then from any µ ∈ Aid and
moving in the direction of λ, we are only getting further away from Hαi,k and can never
encounter this hyperplane.

After such an αi1 is chosen with 〈λ, αi1〉 < 0, we move into the alcove Asi1
, which

is the alcove reflected across the hyperplane Hαi1
,k from the fundamental alcove, and is

also the alcove that can be reached from some point in Aid by moving in the direction of
λ. Reflecting by si1 , choosing αi2 such that 〈si1λ, αi2〉 < 0 is exactly the same as choosing
an alcove Asi2 si1

which can be reached from some point µ ∈ Asi1
by translating in the

direction of λ.
Continue this procedure described above, the alcove path described by i is a sequence

of alcoves starting at Aid such that the next one can be obtained by moving from some
point inside the previous alcove in direction λ. As a result, we see that no hyperplanes
can be crossed twice by this alcove path i and that the hyperplanes crossed are exactly
those crossed by t∞

λ . Therefore, i is reduced and [i] = [t∞
λ ].

Remark 3.3. Notice that if after some number of iterations we have λ(k) = λ, the con-
struction will repeat itself, so in this case [t∞

λ ] = [(si1 · · · sik)
∞].
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4 Limit Coxeter elements

Proposition 4.1. Let W̃ be an affine Weyl group other than the affine symmetric group, and let
c, c′ be any two Coxeter elements for W̃, then c and c′ are W-conjugate.

Proof. It is well-known (and easy to verify) that the distinct Coxeter elements c for any
Coxeter group correspond naturally to the acyclic orientations O of the edges of the
Dynkin diagram, with a directed edge from αi to an adjacent node αj indicating that si
precedes sj in the product defining c.

Let c, c′ be two Coxeter elements of W̃ with corresponding orientations O,O′. Con-
jugating c by si corresponds to reversing the orientation of all edges incident to the node
αi. Since the Dynkin diagram is a tree, it is not hard to see that we may move from
O to O′ by a sequence of such moves, so c, c′ are W̃-conjugate. To see that they are in
fact W-conjugate, note that reversing orientations at a single node αi has the same effect
as reversing at every node except αi. Therefore we can connect c and c′ without ever
conjugating by s0.

It is a theorem of Speyer [6] that infinite powers of Coxeter elements c in W̃ are always
reduced. Since W is finite, this implies that some power of c lies in Q∨.

Corollary 4.2. If W̃ is an affine Weyl group other than the affine symmetric group and if we
have [c∞] = [t∞

wkiω
∨
i
] for some Coxeter element c for W̃ and some w ∈W, then for every Coxeter

element c′ we have
[(c′)∞] = [t∞

ukiω
∨
i
]

for some u ∈W.

Proof. We must have ca = tb
wkiω

∨
i

for some positive integers a, b. Let v ∈ W be such that

vcv−1 = c′ (guaranteed to exist by Proposition 4.1), then we have

(c′)a = (vcv−1)a = vcav−1 = vtb
wkiω

∨
i

v−1 = vtwbkiω
∨
i

v−1 = tb
vwkiω

∨
i

.

Thus we can take u = vw.

In light of Corollary 4.2, we say αi is a Coxeter node for W̃ if [c∞] = [t∞
wkiω

∨
i
] for some

w ∈ W and some Coxeter element c. By Corollary 4.2 (except when W̃ is the affine
symmetric group, where all nodes are Coxeter nodes by Theorem 1.1) the Coxeter node
is unique if it exists.

In the classification of irreducible finite root systems a standard reduction uses the
fact that (except in type A) every Dynkin diagram contains either a unique node αi
adjacent to three other nodes or a unique multiple edge. This multiple edge, if it exists,
connects two nodes whose corresponding simple roots have different lengths; call the
longer one αi. In either case, we say αi is the heavy node.
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Theorem 4.3. Let W̃ be an affine Weyl group other than the affine symmetric group. Then the
Coxeter node exists and is equal to the heavy node.

The proof of Theorem 4.3 is too long to include here, but it makes use of the technique
introduced in Proposition 3.2.

5 Infinite fully commutative elements

5.1 Fully commutative nodes

Given infinite reduced words i and j, we say there is a braid limit from i to j (written
i → j) if there is a (possibly infinite) sequence of braid and commutation moves taking
i to j. Note that i → j does not imply j → i since an infinite sequence of moves might
irreversibly send a letter of i "to infinity" (see Example 3 of [4]).

The following proposition is a generalization of Lemma 4.6 from [4].

Proposition 5.1. Let i and j be infinite reduced words. Then [j] ≤ [i] if and only if i→ j.

We omit the proof of Proposition 5.1 since the arguments in [4] carry over to all types.

Corollary 5.2. If i is a fully commutative infinite reduced word, then [i] is a minimal element
in W̃ .

Proof. Since i is fully commutative, any braid limit i→ j uses only commutation moves.
Since i is reduced, and since all parabolic subgroups of W̃ are finite, no single letter of i
can move off to infinity, as it would eventually encounter another letter of the same kind.
This implies that [i] = [j], since any finite sequence of these moves does not change the
inversion set. Therefore, by Proposition 5.1, there does not exist [j] strictly smaller than
[i] in W̃ .

Lemma 5.3. Let λ ∈ Q∨. Then [t∞
λ ] is fully commutative if and only if [t∞

wλ] is fully commutative
for any w ∈W.

Proof. We first investigate relations between explicit words of t∞
kiω
∨
i

and t∞
wkiω

∨
i

. Recall

that Ji = {sj | j 6= i, 0} and let w = wJi wJi be the parabolic decomposition. Since wJi fixes
ω∨i , wkiω

∨
i = wJi kiω

∨
i . The inversion set Inv(wJi) ⊆ {α ∈ Φ+ | αi ≤ α} is contained in

the set of all positive roots of W supported on αi. The corresponding hyperplanes of
Inv(wJi) must all be crossed if we move in the direction of ω∨i . Thus, we have Inv(wJi) ⊂
Inv(t−kiω

∨
i
). As tkiω

∨
i
= t−1

−kiω
∨
i

, we can then recognize (wJi)−1 as a prefix for tkiω
∨
i

and

write u = wJi tkiω
∨
i

. In this way, we can choose reduced words for (wJi)−1 and u so that
tkiω

∨
i
= (wJi)−1u and twkiω

∨
i
= twJi kiω

∨
i
= wJi tkiω

∨
i
(wJi)−1 = u(wJi)−1. Therefore, both
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t∞
kiω
∨
i

and t∞
wkiω

∨
i

are consecutive subwords of each other. Thus one is fully commutative
if and only if the other is.

For the purpose of this lemma, we can without loss of generality assume that [t∞
λ ] is

fully commutative. By Corollary 5.2 and Proposition 3.1, we have that λ = ukiω
∨
i for

some u ∈ W and fundamental weight ω∨i . By our argument above, [t∞
wλ] = [t∞

wuω∨i
] is

fully commutative as well.

Building up from Corollary 5.2, Proposition 3.1 and Lemma 5.3, we see that an infinite
fully commutative reduced word [i] must be [t∞

wkiωi
] for some w ∈W and some particular

fundamental weight ωi.

Definition 5.4. We say that a node αi of the Dynkin diagram of W is fully commutative if
[t∞

kiω
∨
i
] (or equivalently, [t∞

wkiω
∨
i
] for any w ∈W) is fully commutative.

A weight λ is minuscule if all weights in the associated irreducible representation of
the corresponding simple Lie algebra lie in the W-orbit of λ, and cominuscule if λ∨ is a
minuscule weight for the dual root system. The classification of minuscule weights is
well known (see, e.g. [2]). We say that a node of the Dynkin diagram is minuscule if the
corresponding fundamental weight is minuscule or cominuscule.

The following is our main result of the section, completely answering Problem 2.

Theorem 5.5. Let W̃ be any affine Weyl group, then the fully commutative nodes are exactly the
minuscule nodes.

Proof sketch. If a node αi is fully commutative, then tkiω
∨
i

is fully commutative and so wJi
0

must be fully commutative as well, since (wJi
0 )
−1 ≤R tkiω

∨
i

(see the proof of Lemma 5.3).
By Theorem 6.1 of [7], this implies that αi is a minuscule node.

For the converse, it is possible to apply Proposition 3.2 to verify that the infinite trans-
lation elements corresponding to any minuscule node are indeed fully commutative.

5.2 Direct classification of fully commutative infinite reduced words

Corollary 5.2, Proposition 3.1, Proposition 3.2 and Lemma 5.3 together allow us to explic-
itly produce all fully commutative infinite reduced words. In this section we sketch an
alternative, more direct, "density" approach to the same problem of classifying infinite
fully commutative words.

Let W̃ be an affine Weyl group not of type A and let v be a node of the Dynkin
diagram such that v connects to its neighbors by simple edges (i.e. (svsi)

3 = id if v is
adjacent to i, and v connects to each connected component of S̃ \ {sv} in one of the three
ways shown in Figure 2). We call them type Am branch, type Bm branch and type Dm
branch respectively and say that such v is a branch node. In type B̃3, C̃3, F̃4, G̃2, such a
branch node v does not exist, but computation by hand is possible.
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v 1 m−1 m
· · ·

v 1 m−1 m
· · ·

v 1 m−2

m−1

m
· · ·

Figure 2: A type Am branch, type Bm branch and type Dm branch connected to v.

Let J1, . . . , Jb be the connected components of S̃ \ {sv} and let i be a fully commutative
reduced word. By identifying the positions of sv in i, we can write

i = (w(0)
J1

w(0)
J2
· · ·w(0)

Jb
)sv(w

(1)
J1
· · ·w(1)

Jb
)sv · · · sv(w

(p)
J1
· · ·w(p)

Jb
)sv · · ·

where w(p)
Jk
∈ WJk . Note that w(p)

J commutes with w(p′)
J′ for J 6= J′. Also note that each

w(p)
Jk

is not well-defined for a class [i]. Regardless, for J ∈ {J1, . . . , Jb} and p ≥ 0, let

d([i], J)p =


0, if commutation moves can be applied so that w(p)

J = id

2, if commutation moves can be applied so that w(p)
J′ = id for all J′ 6= J

1, otherwise

.

The following lemma says that we need a total “density" of at least 2 from J1, . . . , Jb.

Lemma 5.6. For every p ≥ 1, d([i], J1)p + · · ·+ d([i], Jb)p ≥ 2.

The following main technical lemma of the section provides an upper bound of the
"density" of the branches.

Lemma 5.7. With the above notation,

lim sup
N→∞

1
N

N

∑
p=1

dp([i], J) ≤
{

m
m+1 , if J is a type Am branch
1, if J is a type Bm or Dm branch

.

Moreover, we can determine explicit words for each w(p)
J (for p� 0) when equality is achieved.

Surprisingly, for affine types the bounds from Lemma 5.6 and Lemma 5.7 coincide
exactly. For example, in type Ẽ7, we choose v = 3 and obtain three branches of type A1,
A3 and A3 respectively. The bounds in Lemma 5.7 are 1/2, 3/4 and 3/4 which sum up
to 2. Write down the explicit words provided by Lemma 5.7 when equality is achieved
and with simple analysis of how different branches interact (see Table 1), we obtain all
fully commutative infinite reduced words in Ẽ7: w(s3s7s5s4s3s2s6s5s4s3s7s1s2s3s0s1s2s4)

∞.

A Computations for minimal elements

We provide a list of all minimal elements of W̃ in Table 2, computed using Proposi-
tion 3.2, answering Problem 1. We omit the cases Ẽ7 and Ẽ8 for the sake of space.
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p + 1 p + 2 p + 3 p + 4 · · ·
w(·)

J1
, J1 = {s7} s7 id s7 id s7

w(·)
J2

, J2 = {s0, s1, s2} s1s2 s0s1s2 id s2 s1s2

w(·)
J3

, J3 = {s4, s5, s6} id s4 s5s4 s6s5s4 id

Table 1: Fully commutative infinite words for Ẽ7.

Type Coweight Reduced Word Note

B̃n ω∨k , 1≤k≤n−1 w(s0s1s2 · · · sn−1snsn−1 · · · sk+1)
∞ ω∨n−1 Coxeter

ω∨n w(s0s2s3 · · · sns1s2 · · · sn)∞ fully commutative

C̃n ω∨k , 1≤k≤n w(s0s1s2 · · · snsn−1 · · · sk)
∞ ω∨n Coxeter; ω∨1 , ω∨n f.c.

D̃n ω∨k , 1≤k≤n−2 w(s0s1 · · · snsn−2sn−3 · · · sk+1)
∞ ω∨n−2 Coxeter; ω∨1 f.c.

ω∨n−1 w(s0s2s3 · · · sn−2sns1s2 · · · sn−2sn−1)
∞ fully commutative

ω∨n w(s0s2s3 · · · sn−1s1s2 · · · sn−2sn)∞ fully commutative

G̃2 ω∨1 w(s0s1s2)
∞ Coxeter

ω∨2 w(s0s1s2s1s2)
∞

F̃4 ω∨1 w(s0s1s2s3s4s2s3s2)
∞

ω∨2 w(s0s1s2s3s4)
∞ Coxeter

ω∨3 w(s0s1s2s3s4s2s3)
∞

ω∨4 w(s0s1s2s3s4s1s2s3)
∞

Ẽ6 ω∨1 w(s0s6s3s4s5s2s3s4s6s3s2s1)
∞ fully commutative

ω∨2 w(s0s6s3s4s5s2s3s4s1)
∞

ω∨3 w(s0s1s2s3s4s5s6)
∞ Coxeter

ω∨4 w(s0s6s3s2s1s4s3s2s5)
∞

ω∨5 w(s0s6s3s2s1s4s3s2s6s3s4s5)
∞ fully commutative

ω∨6 w(s0s6s3s4s5s2s3s4s1s2s3)
∞

Table 2: A list of minimal elements of W̃ , associated to fundamental coweights as in
Proposition 3.1. In each case w ranges over W Jk for the words corresponding to ω∨k .
We indicate the Coxeter and fully commutative nodes (see Theorems 4.3 and 5.5).
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