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Abstract. We study two combinatorially striking triangulations of a family of flow
polytopes indexed by lattice paths ν which we call the ν-caracol flow polytopes. The
first triangulation gives a geometric realization of the ν-Tamari complex introduced
by Ceballos, Padrol and Sarmiento, whose dual graph is the Hasse diagram of the
ν-Tamari lattice introduced by Préville-Ratelle and Viennot. The dual graph of the
second triangulation is the Hasse diagram of the principal order ideal determined by
ν in Young’s lattice. We use the latter triangulation to show that the h∗-vector of the
ν-caracol flow polytope is given by the ν-Narayana numbers, extending the result of
Mészáros when ν is a staircase lattice path.
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1 Introduction

Flow polytopes are a family of beautiful mathematical objects. They appear in optimiza-
tion theory as the feasible sets in maximum flow problems and they also appear in other
areas of mathematics including representation theory and algebraic combinatorics. In
this extended abstract, G = (V, E) denotes a connected directed graph G = (V, E) with
vertex set V = {1, 2, . . . , n + 1} and edge multiset E with m edges, with n, m ∈ Z+. We
assume that any edge (i, j) ∈ E is directed from i to j whenever i < j and hence G is
acyclic. At each vertex i ∈ V we assign a net flow ai ∈ Z satisfying the balance condition
∑n+1

i=1 ai = 0, and hence an+1 = −∑n
i=1 ai. For a = (a1, . . . , an,−∑n

i=1 ai) ∈ Zn+1, an a-flow
on G is a tuple (xe)e∈E ∈ Rm

≥0 such that

∑
e∈out(j)

xe − ∑
e∈in(j)

xe = aj
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where in(j) and out(j) respectively denote the set of incoming and outgoing edges at j,
for j = 1, . . . , n. In what follows, by a graph G we mean a connected directed acyclic
graph whose sets out(1), in(n + 1), and in(j) and out(j) for j = 2, . . . , n, are not empty.
The flow polytope of G with net flow a is the set FG(a) of a-flows on G. In this article we
only consider flow polytopes with unitary flow a = e1 − en+1, and we will abbreviate
the flow polytope of G with unitary flow as FG. In this case, the only integral points of
FG are its vertices, which correspond to the unitary flows along maximal directed paths
of G from vertex 1 to n + 1. Such maximal paths are called routes (see Figure 4).

A d-simplex is the convex hull of d + 1 points in general position in Rk with k ≥ d. We
say that a d-simplex is a lattice simplex if all its vertices are in Zk and there are no points
of Zk in its interior. We assume all simplices are lattice simplices. A (lattice) triangulation
of a d-polytope P is a collection T of d-simplices each of whose vertices are in P ∩Zd,
such that the union of the simplices in T is P , and any pair of simplices intersect in a
(possibly empty) common face. Since the volume of a d-simplex in Rd is 1

d! , unimodular
triangulations are useful devices to determine the volume of a polytope reducing the
calculation to an enumeration problem. The normalized volume of a d-polytope is defined
then as the number of simplices in a unimodular triangulation.

Baldoni and Vergne [2] gave a set of formulas to determine the volume of FG(a).
These formulas are known as the Lidskii formulas. Mészáros and Morales [10] described
a triangulation approach due to Postnikov and Stanley (unpublished), providing an al-
ternative proof of the Lidskii formulas. Together with Striker [11], they combine this
strategy with the notion of a framing (see Section 3) on a graph introduced by Danilov,
Karzanov and Koshevoy in [8]. Different framings of a given graph give different trian-
gulations, giving rise to interesting combinatorial structures on the triangulations. We
illustrate this by studying two particular framings on a family of graphs which we call
the ν-caracol graphs car(ν) (see Definition 2.1). These are indexed by lattice paths ν in Z2,
and generalize work in [5].

The combinatorial structure of a triangulation T of FG associated to a framing of
G is encoded in its dual graph. This is a graph on the set of simplices in T with edges
between simplices sharing a common facet. In Sections 4 and 5 we discuss two different
framings on car(ν) which we call the length and the planar framings. The triangulations
arising from these framings have surprising connections to two combinatorial objects
that appear in the recent literature:

1. The ν-Tamari lattice Tam(ν) introduced by Préville-Ratelle and Viennot [12].

2. The principal order ideals I(ν) in Young’s lattice Y.

Our main results are the following:

Theorem 1.1. The normalized volume of the flow polytope Fcar(ν) is given by the number of
ν-Dyck paths, that is, the ν-Catalan number Cat(ν).
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Theorem 1.2. The length-framed triangulation of Fcar(ν) is a regular unimodular triangulation
whose dual graph is the Hasse diagram of the ν-Tamari lattice Tam(ν).

Theorem 1.3. The planar-framed triangulation of Fcar(ν) is a regular unimodular triangulation
whose dual graph is the Hasse diagram of the principal order ideal I(ν) ⊆ Y in Young’s lattice.

Theorem 1.4. The h∗-polynomial of Fcar(ν) is the ν-Narayana polynomial.

To describe the combinatorial structure of the triangulations in Theorems 1.2 and 1.3
we use two different ν-Catalan objects. The first is the family of (I, J)-trees introduced by
Ceballos, Padrol and Sarmiento in [7] (see Section 4). The second is the family of ν-Dyck
paths studied in [12] (see Section 5). We summarize how the combinatorial information
in the two triangulations can be read from the corresponding ν-Catalan objects.

Triangulation Vertices Simplices Adjacency Dual
graph

Length-framed Arcs of (I, J)-
trees

(I, J)-trees Two (I, J)-trees that mm
differ by one arc

Hasse diag.
of Tam(ν).

Planar-framed Lattice points
above ν

ν-Dyck
paths

Two ν-Dyck paths that
differ by a pair EN to NE.

Hasse diag.
of I(ν).

This extended abstract is organized as follows. In Section 2 we introduce the ν-caracol
graph car(ν) and its associated flow polytope Fcar(ν). In Section 3 we describe the context
on framed triangulations as presented in [11]. In Section 4 we define the length framing
of car(ν). We prove Theorem 1.2 and as consequence we conclude that the associated
triangulation is a geometric realization of the ν-Tamari complex. In Section 5 we define
the planar framing of car(ν) and prove Theorem 1.3. As an application, in Section 6
we use the dual graph of the planar-framed triangulation of Fcar(ν) to obtain the h∗-
polynomial, which proves Theorem 1.4. This result also gives a new proof that the
h-vector of the ν-Tamari complex is given by the ν-Narayana numbers.

2 The family of ν-caracol flow polytopes

In [5], the second and fourth authors studied the flow polytope of the caracol graph,
whose normalized volume is the number of Dyck paths from (0, 0) to (n, n), a Catalan
number. We now extend this construction.

Let a, b be nonnegative integers, and let ν be a lattice path from (0, 0) to (b, a), consist-
ing of a sequence of a north steps N = (0, 1) and b east steps E = (1, 0). A ν-Dyck path
is a lattice path from (0, 0) to (b, a) that lies weakly above ν. When a and b are coprime
positive integers and ν is the lattice path that borders the squares which intersect the
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line y = a
b x, this is the special case of the rational (a, b)-Dyck path studied by Armstrong,

Loehr and Warrington in [1] who showed that the number of rational (a, b)-Dyck paths
is the (a, b)-Catalan number Cat(a, b) = 1

a+b (
a+b

a ). When (a, b) = (n, n + 1), this is the
case of the classical Catalan number Cat(n) = 1

2n+1(
2n+1

n ) = 1
n+1(

2n
n ). For general ν,

the number Cat(ν) of ν-Dyck paths can be calculated by a determinantal formula, but
no closed-form positive formula is known. For more on ν-Dyck paths, see for example
Ceballos and González D’León [6], or Préville-Ratelle and Viennot [12].

Definition 2.1. Let a, b be nonnegative integers, and let ν be a lattice path from (0, 0) to
(b, a) where ν = NEν1 NEν2 · · ·NEνa . The ν-caracol graph car(ν) is the graph on the vertex
set [a+ 3], together with νi copies of the edge (1, i + 2) for i = 1, . . . , a, the edges (i, a+ 3)
for i = 2, . . . , a + 1, and the edges (i, i + 1) for i = 1, . . . , a + 2.

Note that in this construction, the graph car(ν) has n + 1 := a + 3 vertices, and
the in-degree ini of the vertex i in car(ν) is in2 = 1, ini = νi−2 + 1 for i = 3, . . . , n and
inn+1 = n− 1. The number of edges m of car(ν) is computed by summing the in-degrees
of its vertices, so that m = ∑n+1

i=2 ini = 1 + ∑a
i=1(νi + 1) + (a + 1) = 2a + b + 2. We can

conclude from this that dimFcar(ν) = m− n = a + b.

(0, 0)

(7, 5)
ν5 = 1

ν4 = 3

ν3 = 0

ν2 = 1

ν1 = 2 1 2 3 4 5 6 7 8

Figure 1: A lattice path ν = NE2NE1NE0NE3NE1 and its ν-caracol graph car(ν).

Mészáros and Morales [10, Corollary 6.17] have previously considered the flow poly-
tope Fcar(ν) (denoted Π∗a(ν) in their work), where they observed that its normalized
volume is the number of lattice points in the Pitman–Stanley polytope Πa(ν) = {y ∈
Ra | ∑k

i=1 yi ≤ ∑k
i=1 νi}, which is equal to the number of ν-Dyck paths. We obtain a

proof of this result by giving a combinatorial interpretation to the vector partitions enu-
merated by the Kostant partition function in the Lidskii volume formula. This method
was first considered in [5]. We refer the reader to the full article [3] for the details of the
proof.

Theorem 1.1. The normalized volume of the flow polytope Fcar(ν) is given by the number of
ν-Dyck paths, that is, the ν-Catalan number Cat(ν).

See Sections 4 and 5 for two geometric proofs of this result.
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3 Framed triangulations of a flow polytope

We now describe the family of triangulations defined by Danilov, Karzanov, and Ko-
shevoy [8], interpreted as special cases of the Postnikov–Stanley triangulations described
by Mészáros, Morales and Striker in [11].

We call inner vertices the vertices {2, . . . , n} of a graph G on n+ 1 vertices. A framing at
the inner vertex i is a pair of linear orders (≺in(i),≺out(i)) on the incoming and outgoing
edges at i. A framed graph, denoted (G,≺), is a graph with a framing at every inner
vertex. In Sections 4 and 5, we will consider two specific framings of the caracol graphs
car(ν), which lead to combinatorially interesting triangulations of Fcar(ν). An example
of these two framings at a vertex is given in Figure 2.

1 2 3 4 5 6 7 8
4

1
2
3

1
2

1 2 3 4 5 6 7 8
4

1
2
3

1
2

Figure 2: Length (left) and planar (right) framings at the vertex 6 of G = car(ν). The
embedding of the graph on the right highlights the planarity of G.

For an inner vertex i of a graph G, let In(i) and Out(i) respectively denote the set
of maximal paths ending at i and the set of maximal paths beginning at i. For a route
R containing an inner vertex i, let Ri (respectively iR) denote the maximal subpath of
R ending (respectively beginning) at i. Define linear orders ≺In(i) and ≺Out(i) on In(i)
and Out(i) as follows. Given paths R, Q ∈ In(i), let j ≤ i be the smallest vertex after
which Ri and Qi coincide. Let eR be the edge of R entering j and let eQ be the edge of
Q entering j. Then R ≺In(i) Q if and only if eR ≺in(j) eQ. Similarly for R, Q ∈ Out(i), let
j ≥ i be the largest vertex before which iR and iQ coincide. Then R ≺Out(i) Q if and only
if eR ≺out(j) eQ.

Two routes R and Q containing an inner vertex i are coherent at i if Ri and Qi are
ordered the same as iR and iQ. Routes R and Q are coherent if they are coherent at each
common inner vertex. A set of mutually coherent routes is a clique. For a maximal clique
C, let ∆C denote the convex hull of the vertices of FG corresponding to the unitary flows
along the routes in C.

Proposition 3.1 (Danilov et al. [8]). Let (G,≺) be a framed graph. Then

{∆C | C is a maximal clique of (G,≺)}

is the set of the top dimensional simplices in a regular unimodular triangulation of FG.
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4 The length-framed triangulation and the ν-Tamari lattice

We show that the flow polytope Fcar(ν) has a regular unimodular triangulation whose
dual graph structure is given by the Hasse diagram of the ν-Tamari lattice.

4.1 The ν-Tamari lattice

The ν-Tamari lattice was introduced by Préville-Ratelle and Viennot [12, Theorem 1] as a
partial order on the set of ν-Dyck paths. Ceballos, Padrol and Sarmiento [7] showed that
the ν-Tamari lattice Tam(ν) is the one-skeleton of a polyhedral complex known as the
ν-associahedron Kν, which generalizes the classical associahedron. In their article, they
gave a description of the faces of Kν in terms of covering (I, J̄)-forests. In [4], the first
and fourth authors gave additional combinatorial interpretations of the face poset of Kν

in terms of ν-Schröder paths and ν-Schröder trees.
Let I t J be a partition of [N] such that 1 ∈ I and N ∈ J. An (I, J)-forest is a subgraph

of the complete bipartite graph K|I|,|J| that is increasing, that is, each arc (i, j) satisfies

i < j, and non-crossing, so that the graph does not contain arcs (i, j) and (i′, j′) with
i < i′ < j < j′. An (I, J)-tree is a maximal (I, J)-forest. To a pair (I, J) we can associate
a unique lattice path ν as follows. Assign to the elements in I and J the labels E and N
respectively. Reading the labels of the nodes k = 2, . . . , N − 1 in increasing order yields
a lattice path ν from (0, 0) to (|I| − 1, |J| − 1). See Figure 3 for an example. Conversely, a
lattice path ν determines a unique pair (I, J), and hence a unique set of (I, J)-trees. Let
Tν denote the set of (I, J)-trees determined by ν.

1 3 5 6 8 92 4 7 10

E N E N E E N E E N
(0, 0)

(5, 3)

Figure 3: An (I, J)-tree with I = {1, 3, 5, 6, 8, 9} and J = {2, 4, 7, 10} (left), and the
corresponding lattice path ν = NENE2NE2 (right).

Proposition 4.1 (Ceballos et al. [7]). The Hasse diagram of the ν-Tamari lattice is the graph
whose vertices are the (I, J)-trees determined by ν, with edges between (I, J)-trees that differ by
exactly one arc.

See Figure 6 for an illustration of the ν-Tamari lattice for ν = NENE2NE2 with
vertices indexed by (I, J)-trees.
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4.2 The length-framed triangulation

In this section we study the length-framed triangulation of Fcar(ν). To define the fram-
ing we need to be able to distinguish between the multiedges. To that end, we label
multiedges between two vertices from top to bottom in the embedding with increasing
natural numbers.

Definition 4.2. Let G be a graph on the vertex set {1, . . . , n + 1}. Define the length of a
directed edge (i, j) to be j− i. Given an inner vertex i ∈ [2, n] of G, the length framing
for G at i is the pair of linear orders (≺in(i),≺out(i)) where longer edges precede shorter
edges and multiedges with smaller labels precede ones with larger labels. Figure 2 gives
an example of the length framing of car(ν) with ν = NE2NENNE3NE.

Recall that the vertices (unitary flows) of Fcar(ν) are determined by routes in car(ν).
These are completely characterized by two edges: the initial edge that is of the form
(1, j + 1) with label i, and the terminal edge that is of the form (` + 1, n + 1) (which
always has label i = 1) with 1 ≤ j ≤ ` < n. We denote such a route by Rj,i,`.

Lemma 4.3. The set of routes Rν in the ν-caracol graph car(ν) is in bijection with the set Aν of
possible arcs in the (I, J)-trees in Tν.

Outline of proof. We define a map ϕ : Rν → Aν. The elements in the sets I and J respec-
tively correspond to the N and E steps in the path ν = EνN, as in Figure 3. Describing
the bijection in terms of the N and E steps is easier than using the elements of I and J,
so we add indices to the N and E steps in order to distinguish between them. First index
the j-th N step in ν by j, then index each E with a pair (j, i) where j is index of the next
Nj in ν, and i is the number of steps taken to reach Nj. Now, arcs in the (I, J)-trees in
Tν can be expressed as pairs of the form (Ej,i, N`). Recall that the routes in car(ν) are of
the form Rj,i,`. We define the map by ϕ(Rj,i,`) = (Ej,i, N`). Figure 4 shows an example of
this correspondence between routes and arcs. We refer the reader to the full article [3]
for the proof that ϕ is a bijection.

1 2 3 4 5

6 7 8 9

E1,1 E2,1 E3,2 E3,1 E4,2 E4,1N1 N2 N3 N4

1

2

3
4

5 6 7
8

9

Figure 4: A maximal clique of routes (left) representing a simplex in the length-framed
triangulation of Fcar(ν) for ν = NENE2NE2. The bijection ϕ of Lemma 4.3 sends this
clique to the (I, J)-tree on the right.
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Lemma 4.4. Let≺ denote the length framing, and let ϕ be the bijection in Lemma 4.3. Two routes
Rj,i,` and Rj′,i′,`′ in the framed graph (car(ν),≺) are coherent if and only if ϕ(Rj,i,`) = (Ej,i, N`)
and ϕ(Rj′,i′,`′) = (Ej′,i′ , N`′) are non-crossing arcs in Aν.

Outline of proof. We can assume without loss of generality that ` < `′ (if ` = `′, the arcs
are non-crossing and the routes are coherent). There are two ways in which the arcs
ϕ(Rj,i,`) and ϕ(Rj′,i′,`′) can cross: (1) when j < j′, or (2) when j = j′ with i′ < i. In both
cases Rj,i,` and Rj′,i′,`′ are incoherent at the vertex j′. Conversely, if Rj,i,` and Rj′,i′,`′ are
incoherent, they must be incoherent at a minimal vertex j′. Thus either j < j′ or j = j′

with i′ < i, which are precisely the ways in which ϕ(Rj,i,`) and ϕ(Rj′,i′,`′) can cross.

Theorem 1.2. The length-framed triangulation of Fcar(ν) is a regular unimodular triangulation
whose dual graph is the Hasse diagram of the ν-Tamari lattice Tam(ν).

Proof. By Lemma 4.4, the bijection ϕ in Lemma 4.3 extends to a bijection Φ from the
set of maximal cliques of routes in the length-framed car(ν) to the set Tν of (I, J)-trees
determined by ν. Two simplices in a DKK triangulation of a flow polytope are adjacent
if and only if they differ by a single vertex, that is, if the corresponding maximal cliques
differ by a single route. Under the bijection Φ, two simplices are adjacent if and only if
their corresponding (I, J)-trees differ by a single arc, which is precisely the description
of the cover relations in the ν-Tamari lattice.

Example 4.5. Let ν = NENE2NE2. The bijection Φ between cliques of routes of car(ν)
and (I, J)-trees is shown in Figure 4. The dual graph of the length-framed triangulation
of Fcar(ν) is shown in Figure 6 (left).

In [7] Ceballos, Padrol and Sarmiento introduced the (I, J)-Tamari complex AI,J as the
flag simplicial complex on {(i, j) ∈ I × J | i < j} whose minimal non-faces are the pairs
{(i, j), (i′, j′)} with i < i′ < j < j′, that is, the complex on collections of non-crossing arcs
of (I, J)-trees. The following is then a corollary of Theorem 1.2.

Corollary 4.6. Let ν be the lattice path in the grid (0, 0) to (b, a) associated to the pair (I, J).
The length-framed triangulation of Fcar(ν) is a geometric realization of the (I, J)-Tamari complex
of dimension a + b in R2a+b+2.

Remark 4.7. A simple projection of the coordinates along the edges of the form (i, i + 1)
produces a lower dimensional geometric realization of the (I, J)-Tamari complex in Ra+b.
This geometric realization is integrally equivalent to the first of three realizations given
in [7, Theorem 1.1].
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5 The planar-framed triangulation and Young’s lattice

We show that the flow polytope Fcar(ν) has a regular unimodular triangulation whose
dual graph structure is given by the Hasse diagram of the principal order ideal I(ν) in
Young’s lattice.

5.1 Principal order ideals in Young’s lattice

Recall that Young’s lattice Y is the poset on integer partitions λ with cover relations λ � λ′

if λ is obtained from λ′ by removing one corner box of λ′. Note that a lattice path ν in
the rectangular grid defined by (0, 0) to (b, a) defines a partition λ(ν) = (λ1, . . . , λa)
by letting λk = b − ∑a

i=a−k+1 νi for k = 1, . . . , a. The Young diagram for λ(ν) may be
visualized as the region within the rectangle from (0, 0) to (b, a) which lies NW of ν, see
Figure 6 for an example. An order ideal of a poset P is a subset I ⊆ P with the property
that if x ∈ I and y ≤ x, then y ∈ I. An ideal is said to be principal if it has a single
maximal element x ∈ P, and such an ideal will be denoted by I(x).

If µ is a ν-Dyck path, then it lies weakly above the path ν and so µ can be identified
with a partition λ(µ) that is contained in λ(ν). Thus there is a one-to-one correspondence
between the set of ν-Dyck paths with the set of elements in the order ideal I(ν) :=
I(λ(µ)) in Y. Under this correspondence, in terms of ν-Dyck paths, a path π covers a
path µ if and only if π can be obtained from µ by replacing a consecutive NE pair by a
EN pair. See Figure 6 for an example of I(ν) with ν = NENE2NE2.

5.2 The planar-framed triangulation

Definition 5.1. Let G be a planar graph that affords a planar embedding in the plane
such that if vertex i is at the coordinates (xi, yi), then xi < xj for all i < j. This leads to
natural orderings (≺in(i),≺out(i)) at every inner vertex i of G as follows: with respect to
the planar embedding of G, the incoming edges at the vertex i are ordered in increasing
order from the top to the bottom, and the same for the outgoing edges from the vertex
i. This is the planar framing for G. Figure 2 gives an example of the planar framing of
car(ν) with ν = NE2NENNE3NE.

Lemma 5.2. Let ν be a lattice path from (0, 0) to (b, a). The set of routes Rν in the ν-caracol
graph car(ν) is in bijection with the set of lattice points Lν in the rectangle defined by (0, 0) and
(b, a) that lie weakly above the lattice path ν.

Outline of proof. We fix an embedding of car(ν) in the plane so that the path (1, . . . , n+ 1)
lies on the x-axis. Define a map ψ : Rν → Lν by ψ(R) = (j, `) where j is the number of
bounded faces of car(ν) that lie below R and above the x-axis, and ` is the number of
bounded faces that lie below R and the x-axis. See Figure 5 for an example. We refer the
reader to the full article [3] for the proof that ψ is a bijection.



10 von Bell, González D’León, Mayorga Cetina, Yip

1 2 3 4 5

6 7 8 9

1

2

3
4 5

6 7 8 9

Figure 5: A maximal clique of routes (left) representing a simplex in the planar-framed
triangulation of Fcar(ν) for ν = NENE2NE2. The bijection ψ of Lemma 5.2 sends this
clique to the ν-Dyck path on the right.

Given two lattice points (x1, y1) and (x2, y2), we say that they are incompatible if y1 <
y2 and x1 > x2. They are compatible otherwise. Maximal sets of compatible lattice points
lying above ν determine a ν-Dyck path.

Lemma 5.3. Let ≺ denote the planar framing, and let ψ be the bijection in Lemma 5.2. Two
routes R1 and R2 in the framed graph (car(ν),≺) are coherent if and only if ψ(R1) and ψ(R2)
are compatible.

Proof. A result of Mészáros, Morales and Striker [11, Lemma 6.5] states that two routes
in a planar framing of a graph G are coherent if and only if they are non-crossing in G.
If R1 and R2 are two coherent routes in car(ν) such that `1 < `2, then the fact that R1
and R2 are non-crossing implies that j1 ≤ j2.

Theorem 1.3. The planar-framed triangulation of Fcar(ν) is a regular unimodular triangulation
whose dual graph is the Hasse diagram of the principal order ideal I(ν) ⊆ Y in Young’s lattice.

Outline of proof. By Lemma 5.3, the bijection ψ in Lemma 5.2 extends to a bijection Ψ from
maximal cliques of routes in the planar-framed car(ν) to maximal set of compatible lat-
tice points lying above ν, which are ν-Dyck paths. Two simplices in a DKK triangulation
of a flow polytope are adjacent if and only if they differ by a single vertex. Under the
bijection Ψ, two simplices are adjacent if and only if their corresponding ν-Dyck paths
differ by the transposition of a consecutive NE pair, which is precisely the description of
the cover relation in I(ν).

Example 5.4. Let ν = NENE2NE2. The bijection Ψ between cliques of routes of car(ν)
and ν-Dyck paths is shown in Figure 5. The dual graph of the planar-framed triangula-
tion of Fcar(ν) is shown in Figure 6 (right).

A special case when the dual graphs of the length-framed and planar-framed trian-
gulations of Fcar(ν) are the same is given by the following proposition.

Proposition 5.5. When ν = EaNb, so that the set of ν-Dyck paths is the set of all lattice
paths from (0, 0) to (b, a), the length-framed triangulation and the planar-framed triangulation
of Fcar(ν) have the same dual structure.
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Figure 6: The ν-Tamari lattice indexed by (I, J)-trees (left) and the order ideal I(ν) ⊆ Y
indexed by ν-Dyck paths (right) for ν = NENE2NE2. These are the dual graphs of the
length-framed and planar-framed triangulations of Fcar(ν).

6 The h∗-vector of the ν-caracol flow polytope

It is well-known that the h∗-vector of an integral polytope equals the h-vector of any
of its shellable regular unimodular triangulations (see [3] for these definitions), so we
compute the h-vector of the planar-framed triangulation of Fcar(ν), extending a result of
Mészáros [9, Theorem 4.4] in the classical case.

Let ν be a lattice path from (0, 0) to (b, a). For i = 0, . . . , a, the ν-Narayana number
Narν(i) is the number of ν-Dyck paths with i valleys, where a valley is a consecutive EN
pair. The ν-Narayana polynomial is Nν(x) = ∑i≥0 Narν(i)xi.

Theorem 1.4. The h∗-polynomial of Fcar(ν) is the ν-Narayana polynomial.

Outline of proof. Any linear extension of the order ideal I(ν) gives a shelling order of the
planar-framed triangulation of Fcar(ν). The h-vectors of shellable simplicial complexes
have non-negative entries which can be computed from the shelling order on its facets
as follows. For a fixed shelling order F1, ..., Fs, the restriction of the facet Fj is defined as
Rj := {v a vertex in Fj : Fj\v ⊆ Fi for some i < j}. Then the i-th entry of the h-vector is

hi = |{j : |Rj| = i, 1 ≤ j ≤ s}| = |{paths in I(ν) that cover exactly i paths}|
= |{ν-Dyck paths with exactly i valleys}| = Narν(i).

A different proof of Theorem 1.4 can be obtained by computing the h-vector of the
length-framed triangulation of Fcar(ν), which by Corollary 4.6 is combinatorially equiv-
alent to the (I, J)-Tamari complex with the pair (I, J) associated to ν, which we also call
the (I, J)-Tamari complex. In [7, Lemma 4.5] a shelling order on facets of this complex was
used to show that the h-vector of the (I, J)-Tamari complex is given by the ν-Narayana
numbers. Since any shellable regular unimodular triangulation can be used to calcu-
late the h∗-vector of Fcar(ν), Theorem 1.4 provides a new proof that the h-vector of the
(I, J)-Tamari complex is given by the ν-Narayana numbers.
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