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Abstract. We construct a family of Sn modules indexed by c ∈ {1, . . . , n} with
the property that upon restriction to Sn−1 they recover the classical parking function
representation of Haiman. The construction of these modules relies on an Sn-action on
a set that is closely related to the set of parking functions. We compute the characters
of these modules and use the resulting description to classify them up to isomorphism.
In particular, we show that the number of isomorphism classes is equal to the number
of divisors d of n satisfying d 6= 2 (mod 4). In the cases c = n and c = 1, we compute
the number of orbits. Based on empirical evidence, we conjecture that when c = 1,
our representation is h-positive and is in fact the (ungraded) extension of the parking
function representation constructed by Berget and Rhoades.
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1 Introduction

Parking functions were introduced by Konheim and Weiss [10] in their investigation
of hashing functions in computer science. Since then, they, along with their various
generalizations, have attracted plenty of attention and have proven to be a fertile source
of interesting mathematics. This is reflected by their appearances in diverse areas such
as hyperplane arrangements [3], representation theory [2], polytopes [18], the sandpile
model [5], and Macdonald polynomials [9]. The last of these areas provides the context
for our work and we detail our motivation next.

An integer sequence (x1, . . . , xn) is a parking function if its weakly increasing rear-
rangement (z1, . . . , zn) satisfies 0 ≤ zi ≤ i − 1 for i = 1, . . . , n. This definition implies
that rearranging the entries in one parking function results in another. Haiman [9] was
the first to study the Sn action on the set of parking functions of length n. We denote
the resulting Sn-representation by ρn. Two decades later, Berget-Rhoades [4] studied
the following seemingly unrelated representation σn of Sn. Let Kn denote the complete
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graph with vertex set [n] := {1, . . . , n}. Given a subgraph G ⊆ Kn, we attach to it the
polynomial p(G) := ∏ij∈E(G)(xi − xj) ∈ C[x1, . . . , xn]. Here E(G) refers to the set of
edges of G and we record those by listing the smaller number first. Define Vn to be the
C-linear span of p(G) over all G for which the complement G is a connected graph. We
remark here that Vn first appears in the work of Postnikov and Shapiro [14], where the
graphs G with the property that G is connected are called slim graphs. The natural action
of Sn on C[x1, . . . , xn] that permutes variables gives an action on Vn because relabeling
vertices preserves connectedness. Amongst various other interesting things, Berget and
Rhoades [4, Theorem 2] establish the remarkable fact that the restriction of σn to Sn−1
is isomorphic to ρn−1. The question of extending symmetric group representations in
general has also received attention; see [13, 19].

The primary goal of this extended abstract is to construct a family of permutation
representations P̂Fn,c of Sn with easy-to-compute characters, which all also restrict to
ρn−1. Interestingly, the modular behavior of the sum of elements in a parking function
(closely related to the area statistic on parking functions) plays a key role in our analysis,
and our arguments rely on some subtle number-theoretic considerations. The authors in
fact believe that the representation P̂Fn,1 is isomorphic to the (ungraded) Berget-Rhoades
representation mentioned above; see Conjecture 3.3.

The full version of this paper is [12].

2 Background

For any undefined terminology in the context of symmetric functions, we refer the
reader to [17]. For n ≥ 1, we denote by Zn the set of integers modulo n. Typically,
representatives from residue classes modulo n will be implicitly assumed to belong to
{0, . . . , n− 1}. Throughout, Sn denotes the symmetric group consisting of permutations
of [n]. We use both the cycle notation and the one-line notation for permutations de-
pending on our needs. If we use the latter, then we let πi denote the image of i under
the permutation π for a positive integer i.

2.1 Symmetric functions

A partition λ = (λ1, . . . , λ`) is a weakly decreasing sequence of positive integers. The
λi’s’ are the parts of λ, their sum its size, and their number its length, which is denoted
by `(λ). If λ has size n, then we denote this by λ ` n. Furthermore, letting mi denote
the multiplicity of the part i in λ for i ≥ 1, we set zλ := ∏i≥1 imi mi!. The cycle type of a
permutation π is a partition that we denote λ(π).

We consider the following distinguished bases for the ring of symmetric functions
Λ: the power sum symmetric functions {pλ : λ ` n}, the complete homogeneous symmetric
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functions {hλ : λ ` n}, and the Schur symmetric functions {sλ : λ ` n}.
The representation theory of the symmetric group is intimately tied to Λ and the

connection is made explicit by the Frobenius characteristic. Given a representation ρ of Sn,
denote the corresponding character by χρ. Then

Frob(ρ) =
1
n! ∑

π∈Sn

χρ(π)pλ(π) = ∑
λ`n

χρ(λ)
pλ

zλ
.

Under Frob, the irreducible representation of Sn corresponding to the partition µ ` n
gets mapped to the Schur function sµ. We proceed to define parking functions and an
associated representation whose study has substantially motivated algebraic combina-
torics in the last two decades.

2.2 Parking functions

As mentioned earlier, an integer sequence (x1, . . . , xn) is a parking function if its weakly
increasing rearrangement (z1, . . . , zn) satisfies 0 ≤ zi ≤ i− 1 for i = 1, . . . , n. We denote
by PFn the set of all parking functions of length n. For example, one can check that

PF3 ={000, 001, 010, 100, 002, 020, 200, 011, 101, 110, 012, 021, 102, 120, 201, 210}.

In the preceding example, we have omitted commas and parentheses in writing our
parking functions for the sake of clarity, and we will do this throughout without explicit
mention.

It is well known that |PFn | = (n+ 1)n−1. One way to see this is through the following
result present in [6] (where it is attributed to H. O. Pollak) that will also be crucial in the
sequel.

Theorem 2.1 (Pollak). The map PFn → Zn−1
n+1, given by

(x1, . . . , xn) 7→ (x2 − x1, . . . , xn − xn−1),

where subtraction is performed modulo n + 1, is a bijection.

Note that in particular Theorem 2.1 says that for an arbitrary sequence (α1, . . . , αn−1) ∈
Zn−1

n+1, exactly one of the sequences (y, y + α1, y + α1 + α2, . . . , y + α1 + · · ·+ αn−1), y ∈
Zn+1, is in PFn.

Recall the natural action ρn of Sn on PFn defined by

π · (x1, . . . , xn) = (xπ1 , . . . , xπn).

For a partition λ = (λ1, . . . λ`) ` n, the number of fixed points of the action of the
permutation with cycle decomposition (1, . . . , λ1)(λ1 + 1, . . . , λ1 + λ2) · · · is equal to the
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number of sequences (α1, . . . , αn−1) ∈ Zn−1
n+1 satisfying αi = 0 for i ∈ [n− 1] \ {λ1, λ1 +

λ2, . . . , λ1 + · · ·+ λ`−1}. It follows that the character χρn of ρn satisfies

χρn(π) = (n + 1)`−1,

where ` := `(λ(π)).

3 Main results

For n ∈N and 1 ≤ c ≤ n, define the set

P̂Fn,c = {(x1, . . . , xn) ∈ Zn
n : (x1, . . . , xn−1) ∈ PFn−1, xn = c− ∑

1≤i≤n−1
xi (mod n)}.

In other words, given a parking function (x1, . . . , xn−1), xn is uniquely determined by
the constraint ∑n

i=1 xi = c (mod n). For example, the reader may check that

P̂F3,1 = {001, 010, 100}, P̂F3,2 = {002, 011, 101}, P̂F3,3 = {000, 012, 102}.

It is obvious that, for every 1 ≤ c ≤ n, the projection (x1, . . . , xn) 7→ (x1, . . . , xn−1)
is a bijection P̂Fn,c → PFn−1. In particular, we have |P̂Fn,c| = nn−2. Again, we can
construct an action τn,c of Sn on P̂Fn,c. Take π ∈ Sn and (x1, . . . , xn) ∈ P̂Fn,c. Note that
(xπ1 , . . . , xπn−1) is not necessarily in PFn−1, and therefore (xπ1 , . . . , xπn) is not necessarily
in P̂Fn,c. However, by Pollak’s theorem, exactly one of the sequences (y + xπ1 , . . . , y +

xπn−1) is in PFn−1, and therefore (y + xπ1 , . . . , y + xπn) ∈ P̂Fn,c. This element is the action
of π on (x1, . . . , xn). For example, consider the action of π = 1432 ∈ S4 on 0003 ∈ P̂F4,3.
Naïvely permuting elements of the sequence 0003 according to π leads to 0300. Note
that 030 /∈ PF3, but adding 1 to each coordinate gives 101 ∈ PF3. Thus 1432 · 0003 = 1011.

The following is our first main result.

Theorem 3.1. The map τn,c is an action of Sn on P̂Fn,c whose restriction to Sn−1 is isomorphic to
ρn−1. Furthermore, the character χn,c := χτn,c can be computed as follows. Choose a permutation
π ∈ Sn with cycle type λ = (λ1, . . . , λ`), and write d := GCD(λ1, . . . , λ`). Then

χn,c(π) =


d2n`−2

2 d even, n
d odd, and d|2c

d2n`−2 d even, n
d even, and d|c

d2n`−2 d odd and d|c
0 otherwise.

As a corollary, we completely classify the representations τn,c up to isomorphism,
and show in particular that the number of non-isomorphic representations is equal to
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the number of divisors of n that are not 2 (mod 4). We refer the reader to Section 4 for
further details, in particular to Theorem 4.3 and Corollary 4.4.

Subsequently we focus on the cases where c equals n (equivalently, 0) and 1. In both
cases we compute the multiplicity of the trivial representation in P̂Fn,c, or equivalently,
the number of orbits under τn,c. As our second main result, we state below the character
in the case c = 1 as well as the number of orbits.

Theorem 3.2. The character χn,1 can be computed as follows. Choose a permutation π ∈ Sn
with cycle type λ = (λ1, . . . , λ`), and write d := GCD(λ1, . . . , λ`). Then

χn,1(π) =


n`−2 d = 1
2n`−2 d = 2, n = 2 (mod 4)
0 otherwise.

.

As a consequence, the number of orbits of the action τn,1 is given by

on,1 =
1
n2 ∑

d|n
(−1)n+dµ(n/d)

(
2d− 1

d

)
,

where µ is the classical Möbius function.

Note that the sequence (on,1)n∈N starts with 1, 1, 1, 2, 5, 13, 35, 100, 300 (see [16, A131868]).
The computation of χn,1 obviously follows from 3.1. The proof of the formula for the
number of orbits can be found in the full version of the paper [12].

Recall from the introduction that understanding the Berget-Rhoades extension was
our main motivation. In this context, we offer the following conjecture to close this
section.

Conjecture 3.3. The representation τn,1 is isomorphic to σn. Furthermore, Frob(τn,1) expands
positively in the basis of homogeneous symmetric functions, i.e., it is h-positive.

It is worth noting that from the original definition of σn in terms of slim graphs, it is not
straightforward to compute its character. In this regard, assuming the validity of Con-
jecture 3.3, one could say that τn,1 is the computationally more amenable representation.
See also the first final remark.

4 Characters and classification of the P̂Fn,c

Before providing a proof to our main result stated earlier, we state a lemma that will be
useful in compute the character χn,c of the Sn action on P̂Fn,c.

Lemma 4.1. For a1, . . . , ak, c ∈ Z, m ∈N the number of tuples (x1, . . . , xk) ∈ {0, . . . , m− 1}k

that satisfy
a1x1 + · · ·+ akxk = c (mod m)

is equal to dmk−1 if d|c, and 0 otherwise. Here d = GCD(a1, . . . , ak, m).
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4.1 Proof of Theorem 3.1

Since the maps (x1, . . . , xn) 7→ (xπ1 , . . . , xπn) and (x1, . . . , xn) 7→ (y + x1, . . . , y + xn)
commute, we conclude that τn,c is an action. It is also clear that the restriction of τn to
Sn−1 is ρn−1. It remains to compute the character χn,c.

Without loss of generality, assume that π = (1, . . . , λ1)(λ1 + 1, . . . , λ1 + λ2) · · · , and
set d := GCD(λ). Also, following [17, Equation 7.103], define

b(λ′) :=
`

∑
i=1

(
λi

2

)
(4.1)

where λ′ denotes the transpose of λ. As λ is fixed, we set b := b(λ′) for convenience. We
want to count the number of fixed points of π.

Suppose that π · (x1, . . . , xn) = (x1, . . . , xn). We have

π · (x1, . . . , xn) = (x2 + y, . . . , xλ1 + y, x1 + y, xλ1+2 + y, . . . , xλ1+λ2 + y, xλ1+1 + y, . . .)

for some y ∈ Zn, so x1 = x2 + y, x2 = x3 + y, . . . , xλ1−1 = xλ1 + y, xλ1 = x1 + y, xλ1+1 =
xλ1+2 + y, xλ1+2 = xλ1+3 + y, . . . xλ1+λ2−1 = xλ1+λ2 + y, xλ1+λ2 = xλ1+1 + y etc.

The equalities immediately imply that λi · y = 0 (mod n), and consequently d · y =
0 (mod n). In other words, y = k · n

d for some k ∈ Z, 0 ≤ k < d. Furthermore, the sum of
the coordinates of π · (x1, . . . , xn) is, modulo n, equal to c, and therefore

λ1x1 +

(
λ1

2

)
y + λ2xλ1+1 +

(
λ2

2

)
y + · · ·+ λ`xλ1+···+λ`−1+1 +

(
λ`

2

)
y = c (mod n). (4.2)

Set f1 := x1, f2 := xλ1+1, . . . , f` = xλ1+···+λ`−1+1. Then counting fixed points of π is
tantamount to counting tuples ( f1, . . . , fl) ∈ Z`

n (up to translation by (1, . . . , 1) ∈ Z`
n)

that satisfy

`

∑
i=1

λi fi + yb = c (mod n). (4.3)

Assume first that d is odd. Then d|λi implies d|(λi
2 ), and therefore d|b. It follows that

yb =
b
d
· k · n = 0 (mod n),

which in turn implies that (4.3) reduces to

`

∑
i=1

λi fi = c (mod n). (4.4)
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Using Lemma 4.1 and recalling that we have d choices for y, we infer that there are d2n`−2

(we have power of `− 2 instead of `− 1 because we look at tuples up to translation by
(1, . . . , 1), i.e. we can fix one of fi’s to be, say, 0) elements in P̂Fn,c fixed by π if d|c, and
0 otherwise.

Now assume that d (and consequently n) is even. Then d
2 |

λi
2 and d

2 |(
λi
2 ), thereby

implying d|2b. It follows that

yb =
2b
d
· k · n

2
. (4.5)

We are naturally led to consider two scenarios based on the parity of 2b/d. First note
that n/d = λ1/d + · · ·+ λ`/d is odd if and only if the number of odd numbers among
λ1/d, . . . , λ`/d is odd. On the other hand 2b/d = λ1(λ1 − 1)/d + · · · + λ`(λ` − 1)/d,
and λ1 − 1, . . . , λ` − 1 are all odd, so 2b/d is also odd if and only if the number of odd
numbers among λ1/d, . . . , λ`/d is odd. In other words, 2b/d and n/d have the same
parity.

Suppose that 2b/d and n/d are even. In view of the equality in (4.5), we may rewrite
(4.3) as

`

∑
i=1

λi fi = c (mod n). (4.6)

Like before, we infer that d2n`−2 elements in P̂Fn,c are fixed by π if d|c, and 0 otherwise.
Finally consider the case where 2b/d and n/d are odd. We need to count solutions to

`

∑
i=1

λi fi = c +
kn
2

(mod n). (4.7)

Note crucially that since n
d is odd, it cannot be that d divides both c and c + n

2 . From

the odd k ∈ {0, . . . , d− 1}, we get a contribution of d2n`−2

2 if d|(c + n
2 ), and 0 otherwise.

From the even k ∈ {0, . . . , d− 1}, we get a contribution of d2n`−2

2 if d|c, and 0 otherwise.
We leave it to the reader to check that in the case under consideration we have

d|c or d|(c + n
2
)⇔ d|2c. (4.8)

This concludes our proof.

4.2 Number of non-isomorphic P̂Fn,c

Given a positive integer n, let v2(n) denote the 2-adic valuation of n, i.e., the highest
power of 2 that divides n. Define Dn to be the following subset of the set of divisors of
n:

Dn := {k|n : n/k = n (mod 2)}. (4.9)
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For instance, we have D12 = {1, 2, 3, 6}. We will show that Dn indexes the isomorphism
classes of the representations τn,c. Prior to that we establish a straightforward lemma on
the cardinality of Dn.

Lemma 4.2. The cardinality of Dn equals the number of divisors of n that are not 2 modulo 4.

Proof. Let d(n) denote the number of divisors of n. Then |Dn| equals d(n) if v2(n) = 0,
and v2(n) · d

(
n

2v2(n)

)
otherwise. It is easily checked the number of divisors of n that are

not 2 modulo 4 satisfies the same recursion: such a divisor d must satisfy v2(d) 6= 1.

For k ∈ Dn, consider the set

Cn,k := {m ∈ [n] : GCD(n, m) ∈ {k, 2k} if
n
k
= 2 (mod 4) and GCD(n, m) = k otherwise}.

(4.10)

As an example, consider n = 12, in which case we have

C12,1 = {1, 5, 7, 11}, C12,2 = {2, 4, 8, 10}, C12,3 = {3, 9}, C12,6 = {6, 12}.

Note that the sets C12,1, C12,2, C12,3, and C12,6 form a partition of [12]. In fact the following
more general statement is established in [12, Lemma 4.3]. We have

ä
k∈Dn

Cn,k = [n], (4.11)

where ä denotes disjoint union. We are now ready for the classification.

Theorem 4.3. For k ∈ Dn, the representations τn,c are isomorphic for all c ∈ Cn,k. Furthermore,
for distinct k, k′ ∈ Dn, we have that τn,c and τn,c′ are non-isomorphic for every c ∈ Cn,k and
c′ ∈ Cn,k′ .

As an immediate consequence of Theorem 4.3, we have:

Corollary 4.4. There are |Dn| many non-isomorphic representations among the τn,c.

In view of Lemma 4.2, we have that |Dn| is given by [16, A320111]. Observe also the
curious fact that the sequence {|Dn|}n≥1 gives a multiplicative arithmetic function.

Example 4.5. Consider n = 6. Then D6 = {1, 3}. Here are the power sum expansions
for the two non-isomorphic representations amongst the τ6,c for c ∈ [6]:

Frob(τ6,1) =
9
5

p16 +
9
2

p214 +
9
4

p2212 +
1
4

p222 + 2p313 + p321 +
3
4

p412 +
1
4

p42 +
1
5

p51,

Frob(τ6,3) =
9
5

p16 +
9
2

p214 +
9
4

p2212 +
1
4

p222 + 2p313 + p321

+
1
2

p33 +
3
4

p412 +
1
4

p42 +
1
5

p51 +
1
2

p6.



Some natural extensions of the parking space 9

5 Final remarks

Further work with Sulzgruber

Berget and Rhoades asked whether the permutation representation obtained by the ac-
tion of Sn−1 on parking functions of length n − 1 can be extended to a permutation
action of Sn. In joint work with Robin Sulzgruber [11], we answer this question in the
affirmative. We realize our module in two different ways. The first description involves
binary Lyndon words and the second involves the action of the symmetric group on the
lattice points of the trimmed standard permutahedron. Note that this proves the second
part of Conjecture 3.3.

A generalization to certain families of rational parking functions

We can broaden the scope of our results by applying our techniques to a subclass of the
set of rational parking functions. These functions are a generalization of usual parking
functions and their study is an active field of research in recent years [1, 8].

Consider coprime positive integers a and b. Define an (a, b)-parking function to be a
sequence (x1, . . . , xa) of nonnegative integers with the property that the weakly increas-
ing arrangement (z1, . . . , za) satisfies zi ≤ (i−1)b

a . We denote the set of (a, b)-parking
functions by PFa,b. It is clear that the set PFn,n+1 is the set PFn from before.

We denote the natural action of Sa on PFa,b by ρa,b. A generalization of Pollak’s
proof implies that the map from PFa,b → Za−1

b given by mapping (x1, . . . , xa) 7→ (x2 −
x1, . . . , xa − xa−1), where subtraction is performed modulo b, is a bijection. This implies
that |PFa,b | = ba−1.

Mimicking our ideas from before, we construct a new set that is equinumerous with
PFa,b. For c ∈ [b], define the set

P̂Fa,b,c := {(x1, . . . , xa+1) : (x1, . . . , xa) ∈ PFa,b, ∑
1≤i≤a+1

xi = c (mod b)}.

As usual, we take xa+1 to lie in {0, . . . , b− 1}. Clearly, we have |P̂Fa,b,c| = ba−1.
In order to mimic our action from Section 3, we need to impose the constraint that

b|(a + 1). Henceforth, assume that this is indeed the case. This given, we can construct
an action τa,b,c of the symmetric group Sa+1 on P̂Fa,b,c. Take π ∈ Sa+1 and (x1, . . . , xa+1) ∈
P̂Fa,b,c. Like before, (xπ1 , . . . , xπa) is not necessarily in PFa,b, and therefore (xπ1 , . . . , xπa+1)

is not necessarily in P̂Fa,b,c. However, by the generalized Pollak’s theorem, exactly one of
the sequences (y + xπ1 , . . . , y + xπa) is in PFa,b, and therefore (y + xπ1 , . . . , y + xπa+1) ∈
P̂Fa,b,c. This element is the action of π on (x1, . . . , xa+1). The careful reader should note
that we made use of the fact b|(a + 1) in obtaining an action.

Rather than repeating the analysis from before, we simply state our result for c = 1.
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Theorem 5.1. Take a = kb − 1 for b, k ∈ N. The map τa,b,1 is an action of Sa+1 on P̂Fa,b,1
whose restriction to Sa is isomorphic to ρa,b. Furthermore, the character χτa,b,1 can be com-
puted as follows. Choose a permutation π ∈ Sa+1 with cycle type (λ1, . . . , λ`), and set d :=
GCD(λ1, . . . , λ`, b). Then

χτa,b,1(π) =


b`−2 d = 1
2b`−2 d = 2, b = 2 (mod 4), k odd
0 otherwise

.

Letting oa,b,1 denote this number of orbits under τa,b,1, we have the following equality:

oa,b,1 =
1
b2 ∑

d|b
(−1)k(b+d)µ(b/d)

(
(k + 1)d− 1

kd

)
.

A plausible approach to establishing Conjecture 3.3

One way to prove the conjecture would be to find an explicit action-preserving map
between P̂Fn,1 and a particular basis of the space Vn. The following table shows the
construction (for a representative of each orbit) for n = 3, 4, 5. Consider the case n = 3
for instance. By its definition, V3 would be spanned by elements of {1, x1 − x2, x2 −
x3, x1 − x3}, and one can extract a basis from this, say {1, x1 − x2, x2 − x3}. In fact, one
can read from the table the following S3-invariant basis of V3:

{1− 2x1 + x2 + x3, 1− 2x2 + x1 + x3, 1− 2x3 + x1 + x2}.

The map

100 7→ 1− 2x1 + x2 + x3, 010 7→ 1− 2x2 + x1 + x3, 001 7→ 1− 2x3 + x1 + x2

commutes with the action. We were not able to find an appropriate basis for n ≥ 6, but
we did check the conjecture (via character computations) for n = 6 as well. Note further
that Vn is naturally graded by the number of edges of a slim graph. We do not see a
compatible grading in our P̂Fn.

3 001 1− 2x3 + x1 + x2
4 0003 1− 3x4 + x1 + x2 + x3

0012 (x4 − x1)(x4 − x2)(1− 2x3 + x1 + x2)
5 00001 1− 4x5 + x1 + x2 + x3 + x4

00033 (−3x4 + x1 + x2 + x3)(−3x5 + x1 + x2 + x3)
01113 (x1 − x2)(x1 − x3)(x1 − x4)
00114 (x5 − x3)(x5 − x4)(−2x3 + x1 + x2)(−2x4 + x1 + x2)
00123 (x5 − x1)(x5 − x2)(x5 − x3)(x4 − x1)(x4 − x2)(1− 2x3 + x1 + x2)
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The number of orbits

Our last remark concerns the number of orbits on,1 (respectively oa,b,1) under the ac-
tion τn,1 (respectively τa,b,1). Observe that the integrality of these quantities is not obvi-
ous from their explicit formula, and hence the action appears to be encoding a subtle
number-theoretic fact. According to [16, A131868], non,1 is equal to the number of n-
element subsets of {1, . . . , 2n− 1} that sum to 1 modulo n and we establish this in [11,
Corollary 2.4]. The numbers oa,b,1 show up in a topological setting as Betti numbers
as described in [15, Section 5]. Again the counting problem considered in the afore-
mentioned article is different from ours. Finally, note that certain special cases of the
oa,b,1 equal the extremal BPS invariants of twist knots [7, Proposition 1.2]. We intend to
explore these intriguing connections further.
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