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Abstract. For any northeast path ν, we define two bivariate polynomials associated
with the ν-associahedron: the F- and the H-triangle. We prove combinatorially that we
can obtain one from the other by an invertible transformation of variables. These poly-
nomials generalize the classical F- and H-triangles of F. Chapoton in type A. Our proof
is completely new and has the advantage of providing a combinatorial explanation of
the nature of the relation between the F- and H-triangle.
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1 Introduction

The ν-Tamari lattice is an intriguing object in combinatorics which was originally mo-
tivated by enumerative problems in the study of higher trivariate diagonal harmonics.
Nowadays, it has applications and connections to other areas, including polytope the-
ory, subword complexes, Hopf algebras, multivariate diagonal harmonics, and parabolic
Catalan combinatorics, as well as to the enumeration of various combinatorial objects
such as certain lattice walks in the quarter plane, non-crossing tree-like tableaux, and
non-separable planar maps, see [2, 3, 4, 12] and the references therein. The ν-Tamari
lattice depends on a fixed northeast path ν, and was defined in [12] as a certain rotation
order on the set of ν-paths, i.e. northeast paths weakly above ν. Alternatively, it can be
described in terms of certain binary trees, called ν-trees [4].

Motivated by an open problem of F. Bergeron about the geometry of m-Tamari lat-
tices, the first author, together with A. Padrol and C. Sarmiento [3], showed that the
ν-Tamari lattice Tam(ν) has a nice underlying geometric structure. They proved that its
Hasse diagram can be obtained as the edge graph of a polyhedral complex called the
ν-associahedron Asso(ν). This complex is dual to a certain triangulation of a certain poly-
tope, which they used to exhibit explicit geometric realizations of the ν-associahedron
using techniques from tropical geometry. The simplicial complex of faces of this trian-
gulation is the ν-Tamari complex TCν.
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If ν = (NE)n is the staircase path with 2n steps, the corresponding three objects are
the Tamari lattice, the associahedron and the cluster complex in linear type A from
the theory of cluster algebras, respectively. The (NE)n-paths are better known un-
der the name Dyck paths, and we will simply write Tam(n), Asso(n), TCn rather than
Tam

(
(NE)n), Asso((NE)n), TC(NE)n .

F. Chapoton has observed a remarkable enumerative connection between the cluster
complex TCn and the set of Dyck paths [6]. More precisely, he defined the following two
polynomials:

• the F-triangle Fn(x, y) is the bivariate generating function of the faces of TCn, where
the variable x accounts for so-called positive roots per face and y accounts for so-
called negative simple roots;

• the H-triangle Hn(x, y) is the bivariate generating function of Dyck paths, where
the variable x accounts for the valleys of this path and y accounts for the returns.

He then conjectured that these polynomials are related by the following invertible trans-
formation:

Fn(x, y) = xn−1Hn

(
x + 1

x
,

y + 1
x + 1

)
. (1.1)

This conjecture was generalized for Fuß–Catalan families by D. Armstrong [1], and was
proven in this general setting by M. Thiel [13, Theorem 2]. Thiel’s proof makes clever
use of a combinatorial bijection on so-called k-generalized nonnesting partitions which
leads to a differential equation involving the H-triangle. Using a differential equation by
C. Krattenthaler involving the F-triangle, he then proves (1.1) by induction.

Unfortunately, the combinatorial nature of the relation between the F- and the H-
triangle is obscured in Thiel’s proof. The main result of the present article is a combina-
torial proof of a generalization of (1.1) to ν-paths and the ν-associahedron.

Given any northeast path ν, we denote by deg(ν) the maximal number of valleys
that a northeast path weakly above ν can have. In other words, deg(ν) describes the
size of the largest staircase shape that fits above ν in the rectangle enclosing ν. The H-
triangle associated with ν is simply the bivariate generating function of ν-paths, denoted
by Hν(x, y), where the variable x accounts for valleys and the variable y accounts for
returns. The F-triangle is the bivariate generating function Fν(x, y) of the faces of Asso(ν),
where x and y account for a new pair of statistics that we introduce in this paper. Our
main result shows that these polynomials satisfy (1.1).

Theorem 1.1. For every northeast path ν, the following holds:

Fν(x, y) = xdeg(ν)Hν

(
x + 1

x
,

y + 1
x + 1

)
. (1.2)
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lν

Figure 1: (left) A northeast path ν = ENEENNEEN, its bounding rectangle (shaded
in gray), the associated Ferrers diagram (indicated by the dashed lines), the associated
set of lattice points (indicated by the black dots). (right) An example of a rotation of a
ν-path by the valley marked in red.

Our proof of Theorem 1.1 is completely combinatorial. It relies on the geometry of
the ν-associahedron and exploits a bijection of [4] which sends ν-paths to ν-trees.

If ν = Na1 Ea1 Na2 Ea2 · · ·Nar Ear for positive integers a1, a2, . . . , ar, then Theorem 1.1
sheds quite some light on the constructions from [11, Section 6] and [9, Section 5]. If
a2 = a3 = · · · = ar, then our F-triangle combinatorially realizes the case m = 1 of the
F-triangle computed abstractly in [8, Theorem 4.3].

We wish to remark that analogues of F- and H-triangles arising in different (geomet-
ric) contexts but satisfying (1.1), too, were for instance considered in [7, 10].

2 Basics

2.1 Northeast paths

A northeast path is a lattice path in N2 starting at the origin, and consisting of finitely
many steps of the form (0, 1) (north steps) and (1, 0) (east steps). We write such a path
as a word over the alphabet {N, E}, where each N represents a north step and each
E an east step. Throughout this paper, we let ν denote (a fixed) such northeast path.
Let Fν denote the Ferrers diagram that lies weakly above ν in the smallest rectangle
containing ν. Let Aν denote the set of lattice points inside Fν. See the left part of Figure 1
for an illustration.

2.2 The ν-Tamari lattice

Let us denote by Dν the set of all ν-paths, i.e. northeast paths that live entirely inside Fν

sharing start and end points with ν and lie weakly above ν. For µ ∈ Dν, a valley is a point
p ∈ Aν which lies on µ and is preceded by an east step and followed by a north step.
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Figure 2: The ν-Tamari lattice labeled by ν-paths for ν = EENEN. Each path is
additionally labeled by the term it contributes to Fν(x, y) (top expression in red) and
to Hν(x, y) (bottom expression in blue).

We denote by val(µ) the number of valleys of µ. A valley p of µ is a return, if p is also a
valley of ν. We denote by ret(µ) the number of returns of µ. The degree of ν is defined as

the maximum number of valleys that a ν-path can have: deg(ν) def
= max

{
val(µ) | µ ∈ Dν

}
.

If p is a valley of µ, then we denote by horizν(p) the maximal number of east steps
that we can append to p without going beyond ν. In other words, if p = (i, j), then we
look for the rightmost point in row j that lies on ν; say that this point is (k, j). Then

horizν(p) def
= k− i.

Let p′ denote the first point on µ after p with horizν(p′) = horizν(p). Let µ[p, p′]
denote the subpath of µ which lies between p and p′. The rotation of µ by p is the unique
northeast path which arises from µ by swapping the east step before p with µ[p, p′]. If µ′

is the path arising from µ in this manner, then we write µlν µ′. It is quickly verified that
lν is an acyclic binary relation on Dν, and we denote its reflexive and transitive closure
by ≤ν. See the right part of Figure 1 for an illustration.

The partially ordered set Tam(ν)
def
= (Dν,≤ν) is a lattice; the ν-Tamari lattice; see [12,

Theorem 1.1]. Figure 2 shows the ν-Tamari lattice for the path ν = EENEN, which has
degree 2.
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Figure 3: The rotation operation of a ν-tree by the ascent node q. The rectangle p�r is
highlighted.

2.3 The ν-Tamari lattice via trees

As shown in [4], we can alternatively define the ν-Tamari lattice in terms of a special
family of trees.

We say that two points p, q ∈ Aν are ν-incompatible if p is strictly southwest or strictly
northeast of q and the smallest rectangle containing p and q lies entirely in Fν. Otherwise,
p and q are ν-compatible; we write p ∼ν q in this case, and drop the reference to the path
if no confusion may arise. A ν-tree is a maximal collection of pairwise ν-compatible
elements of Aν. We denote by Tν the set of all ν-trees.

If T is a ν-tree, we can connect two distinct elements p, q ∈ T if p and q either lie in
the same row or in the same column, and there is no element of T on the line segment
connecting p and q. In particular, this allows us to visualize ν-trees as classical rooted
binary trees [4, Lemma 2.4]. Let T ∈ Tν and let p, q ∈ T be two elements which do not
lie in the same row or same column. Let p�r denote the smallest rectangle containing
p and r. We write pxr (resp. pqr) for the lower left corner (resp. upper right corner) of
p�r.

An element q ∈ T is an ascent of T if q = pxr for some elements p, r ∈ T. In such a
case, we choose p, r canonically so that no other elements besides q, p, r lie in p�r. Let

Asc(T) denote the set of ascents of T, and write asc(T) def
=
∣∣Asc(T)∣∣.

The rotation of T by the ascent q is T′ =
(
T \ {q}) ∪ {q′}, where q′ = pqr. Figure 3

illustrates this rotation operation. As proven in [4, Lemma 2.10], the rotation of a ν-tree
is also a ν-tree. By abuse of notation, we write T lν T′ if T′ is a rotation of T, and denote
by ≤ν the reflexive and transitive closure of lν. The partial order (Tν,≤ν) is a lattice,
which is isomorphic to the ν-Tamari lattice [4, Theorem 3.3].
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Figure 4: Illustrating the bijection from ν-paths to ν-trees.

2.4 The right flushing bijection

The isomorphism between the ν-Tamari lattice and the rotation lattice of ν-trees is given
by a simple bijection between the set of ν-paths and the set of ν-trees which we now
recall. Given a ν-path µ, let ai be the number of lattice points in µ at height i, for
i ≥ 0. There exists exactly one ν-tree T containing ai nodes at height i for each i ≥ 0.
Vice-versa, given a ν-tree with “height sequence” a0, a1, a2, . . . , there is a unique ν-path
with the same height sequence. We denote by Φ : Dν → Tν the map that sends µ to T.
This map is a bijection between the set of ν-paths and the set of ν-trees. Moreover, it
is an isomorphism between the ν-Tamari lattice and the rotation lattice of ν-trees [4,
Proposition 16]. The map Φ is called the right flushing bijection [4], and is illustrated in
Figure 4.

The reason why this is called “right flushing” is because it can be described as fol-
lows. Let µ be a ν-path with height sequence a0, a1, a2, . . . . We build the ν-tree T = Φ(µ)
with the same height sequence by recursively adding ai nodes at height i from bottom to
top, from right to left, avoiding forbidden positions. The forbidden positions are those
above a node that is not the left most node in a row. In Figure 4, the forbidden positions
are the ones that belong to the wiggly lines. Note that the order of the nodes per row is
reversed.

2.5 The ν-Tamari complex and the ν-associahedron

Generalizing the ν-trees mentioned above, we define a ν-face as a collection of pairwise
ν-compatible elements of Aν (not necessarily maximal as in the case of ν-trees). The
collection of ν-faces forms a simplicial complex, which we call the ν-Tamari complex and
denote by TCν. This complex was originally defined using a different language in [3],
and we use the terminology introduced in [4].

The ν-Tamari complex is the simplicial complex of faces of a triangulation of a poly-
tope studied in [3]. The dual of this triangulation is a polyhedral complex called the
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ν-associahedron Asso(ν), whose faces are in correspondence (via duality) with the inte-
rior faces of the triangulation. Such interior faces were classified in [3] as covering ν-faces,
which are defined as those ν-faces containing the top-left corner of Aν and at least one
point in each row and column in Fν [3, 4].

Under this correspondence, the ν-associahedron is defined as the polyhedral complex
whose cells are covering ν-faces ordered by reversed inclusion.

Asso(ν)
def
= {C | C is a covering ν-face}.

If ν is a northeast path from (0, 0) to (m, n), the dimension of a covering ν-face C is:

dim(C) def
= m + n + 1− |C|.

In particular, one can check that the number of elements of every ν-tree is constant, and
equal to m + n + 1. So, the ν-trees correspond to the zero-dimensional faces (vertices)
of the ν-associahedron. Every time we remove a node (when possible), we increase the
dimension of the resulting face by one.

An example of the ν-associahedron for ν = EENEN is illustrated in Figure 5. The
faces of this figure are labeled by covering ν-faces and the vertices by ν-trees. Its edge
graph coincides with the Hasse diagram of the ν-Tamari lattice in Figure 2. The advan-
tage of working with the ν-associahedron is that it captures the full geometric informa-
tion behind the ν-Tamari lattice.

3 The F- and the H-triangle associated with ν

Let C ∈ Asso(ν) be a covering ν-face. We say that p ∈ C is relevant if:

• it is in the first column,

• there is another point q 6= p in C that is in the same row, and

• its row contains a valley of ν.

We denote by Rel(C) the set of relevant nodes in C, and we let rel(C) def
=
∣∣Rel(C)∣∣.

The F-triangle of Asso(ν) is a generating function of the faces of Asso(ν) defined by:

Fν(x, y) def
= ∑

C∈Asso(ν)
xdeg(ν)−dim(C)−rel(C)yrel(C). (3.1)

In Figure 5, the positions of the relevant nodes are circled in red in order to easily
visualize the value of the statistic rel(C) on each face. The degree is deg(ν) = 2. In
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Figure 5: The ν-associahedron Asso(ν) for ν = EENEN, whose faces are labeled by
covering ν-faces. Each face is additionally labeled by the term it contributes to Fν(x, y).
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addition, each face is labeled by the term it contributes to the F-triangle. Adding up, we
obtain

FEENEN(x, y) = 5x2 + 3xy + y2 + 8x + 3y + 3.

The H-triangle of ν is the generating function elements of Dν in terms of the number
of valleys and returns:

Hν(x, y) def
= ∑

µ∈Dν

xval(µ)yret(µ). (3.2)

In Figure 2, we have labeled in each of the paths the valleys by a blue dot, and we have
circled the returns in red. Additionally, we have noted the term each path contributes to
HEENEN(x, y) in blue (bottom expression). Adding up, we obtain

HEENEN(x, y) = x2y2 + x2y + x2 + 2xy + 3x + 1.

4 Proof of the F = H correspondence

In this section, we prove Theorem 1.1. To illustrate this result, we reconsider our running
example for ν = EENEN. We have

x2HEENEN

(
x + 1

x
,

y + 1
x + 1

)
= (y + 1)2 + (x + 1)(y + 1) + (x + 1)2 + 2x(y + 1)

+ 3x(x + 1) + x2

= y2 + 2y + 1 + xy + x + y + 1 + x2 + 2x + 1 + 2xy

+ 2x + 3x2 + 3x + x2

= 5x2 + 3xy + y2 + 8x + 3y + 3
= FEENEN(x, y).

Now, in general, if we plug in the definition of Hν in (1.2), we obtain:

xdeg(ν)Hν

(
x + 1

x
,

y + 1
x + 1

)
= xdeg(ν) ∑

µ∈Dν

(
x + 1

x

)val(µ) (y + 1
x + 1

)ret(µ)

= ∑
µ∈Dν

xdeg(ν)−val(µ)(x + 1)val(µ)−ret(µ)(y + 1)ret(µ).

This is certainly a polynomial in x and y with nonnegative integer coefficients, be-
cause val(µ) ≥ ret(µ) and deg(ν) = max

{
val(µ) | µ ∈ Dν

}
. Theorem 1.1 is then equiva-

lent to the following proposition.

Proposition 4.1. For every northeast path ν, the following holds:

Fν(x, y) = ∑
µ∈Dν

xdeg(ν)−val(µ)(x + 1)val(µ)−ret(µ)(y + 1)ret(µ). (4.1)
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In order to prove this proposition we will transform this expression to another ex-
pression in terms of ν-trees, using the bijection from Section 2.4 (see Proposition 4.6).
The second ingredient in our proof will be to show that the term associated with a ν-
tree in this new expression is equal to the sum of terms contributed by a specific group
of faces in the definition of the F-triangle (see Proposition 4.5). In order to shape our
intuition, these groups can be visualized (as shadowed groups); as in Figure 5 for our
running example.

We start by explaining that the bijection Φ from ν-paths to ν-trees sends the valleys
and returns to ascents and relevant nodes. We omit the proof for space constraints.

Lemma 4.2. Let µ be a ν-path and T = Φ(µ) be its corresponding ν-tree. Then,

(i) val(µ) = asc(T), and

(ii) ret(µ) = rel(T).

Lemma 4.3. For a ν-tree T, the following holds:

(y + 1)rel(T) = ∑
A′⊆Rel(T)

yrel(T)−|A
′|, (4.2)

xdeg(ν)−asc(T)(x + 1)asc(T)−rel(T) = ∑
A′′⊆Asc(T)\Rel(T)

xdeg(ν)−rel(T)−|A
′′|. (4.3)

Proof. Since
∣∣Rel(T)∣∣ = rel(T), Equation (4.2) follows from the Binomial Theorem:

(y + 1)rel(T) =
rel(T)

∑
k=0

(
rel(T)

k

)
yrel(T)−k = ∑

A′⊆Rel(T)
yrel(T)−|A

′|

Since |Asc(T) \ Rel(T)| = asc(T)− rel(T), Equation (4.3) can be shown similarly:

xdeg(ν)−asc(T)(x + 1)asc(T)−rel(T) = xdeg(ν)−asc(T) ∑
A′′⊆Asc(T)\Rel(T)

xasc(T)−rel(T)−|A
′′|

= ∑
A′′⊆Asc(T)\Rel(T)

xdeg(ν)−rel(T)−|A
′′|.

Lemma 4.4 ([5, Lemma 5.4]). The sets Asso(ν) and
{
(T, A) | T ∈ Tν, A ⊆ Asc(T)

}
are in

bijection via the map (T, A) 7→ T \ A.

If C ∈ Asso(ν) is of the form C = T \ A, then we say that T is the bottom ν-tree of C.
This terminology is motivated as follows. Recall that Asso(ν) is a polyhedral complex, so
any face C ∈ Asso(ν) is itself a polytope. The edge graph of C corresponds to an interval
of Tam(ν) and as such inherits the orientation given by the partial order ≤ν. Then, T
is the minimal element of this interval. Moreover, every ascent p ∈ Asc(T) uniquely
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determines a ν-tree Tp with T lν Tp; therefore the maximal ν-tree in this interval is
T ∨∨p∈Asc(T) Tp (considered as a join in the lattice Tam(ν)).

We denote by AssoT(ν) the set of covering ν-faces whose bottom ν-tree is T. We define

FT
ν (x, y) def

= ∑
C∈AssoT(ν)

xdeg(ν)−dim(C)−rel(C)yrel(C). (4.4)

In our example in Figure 5, the sets AssoT(ν) are represented by the shadowed groups.
More precisely, the set AssoT(ν) consists of the faces belonging to the shadowed group
containing T. The polynomial FT

ν (x, y) is then the sum of the monomials in that shad-
owed group. For instance, if T0 is the bottom tree in Figure 5, then

FT0
ν (x, y) = y2 + y + y + 1 = (y + 1)2.

Compare the terms in Figure 5 with the red ones (top expression per path) in Figure 2.

Proposition 4.5. For every northeast path ν, the following holds:

FT
ν (x, y) = xdeg(ν)−asc(T)(x + 1)asc(T)−rel(T)(y + 1)rel(T). (4.5)

Proof. Let C ∈ AssoT(ν). Then C = T \ A for some subset A of ascents of T. This
subset can be written uniquely as a disjoint union A = A′ ] A′′, where A′ ⊆ Rel(T) and
A′′ ⊆ Asc(T) \ Rel(T). Then rel(C) = rel(T)− |A′|. Furthermore dim(C) = |A′|+ |A′′|,
and so deg(ν)− dim(C)− rel(C) = deg(ν)− rel(T)− |A′′|. Therefore,

FT
ν (x, y) = ∑

C∈AssoT(ν)

xdeg(ν)−dim(C)−rel(C)yrel(C)

= ∑
A=A′]A′′

xdeg(ν)−rel(T)−|A
′′|yrel(T)−|A

′|.

This is exactly the product of Equations (4.2) and (4.3), and the result follows.

Proposition 4.6. For every northeast path ν, the following holds:

Fν(x, y) = ∑
T∈Tν

xdeg(ν)−asc(T)(x + 1)asc(T)−rel(T)(y + 1)rel(T). (4.6)

Proof. Since Asso(ν) =
⊎

T∈Tν
AssoT(ν), it follows that

Fν(x, y) = ∑
T∈Tν

FT
ν (x, y).

The result then follows from Proposition 4.5

Proof of Proposition 4.1. Proposition 4.1 follows from Proposition 4.6 and Lemma 4.2, by
transforming the statistics under the right flushing bijection Φ.

Proof of Theorem 1.1. As we have already mentioned, Theorem 1.1 is equivalent to Propo-
sition 4.1, which we have just proven.
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