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Abstract. Foranyn > 0and 0 < m < n, let P, ,, be the poset of projective equivalence
classes of {—,0,+ }-vectors of length n with sign variation bounded by m, ordered
by reverse inclusion of the positions of zeros. Let A, ,, be the order complex of P, .
A previous result from the third author shows that A, ,, is Cohen-Macaulay over Q
whenever m is even or m = n — 1. Hence, it follows that the h-vector of A, ,, consists
of nonnegative entries. Our main result states that A, ,, is partitionable and we give
an interpretation of the h-vector when m is even or m = n — 1. When m = n —1 the
entries of the h-vector turn out to be the new Eulerian numbers of type D studied
by Borowiec and Mtotkowski (Electron. ]. Combin., 2016). We then combine our main
result with Klee’s generalized Dehn-Sommerville relations to give a geometric proof
of some facts about these Eulerian numbers of type D.

Résumé. Soitn > 0et0 < m < n, on dAlI'note par P, le poset des classes
d’ATquivalences projectives des vecteurs de {—,0,+} de longueur n avec une vari-
ations de signe bornAl's par m, ordonnAles par inclusion inverse de la position des
zAl'ros. Soit Ay, le complexe simplicial des chaAénes de Py m. Un rAlsultat prAl’cAl’—
dent du troisiAlme auteur, nous donnes que Ay, est Cohen-Macaulay sur Q si m
est pair ou m = n — 1. Dongc, le vecteur-h de A,, contient que des nombres posi-
tifs. Notre rAl'sultat principale est que le complexe simplicial des chaAdnes de ANy
est partitionnable et nous donnons une interpretation du vecteur-h lorsque m est pair
oum =n—1. Sim = n—1, les composants du vecteur-h sont les nouveaux nom-
bres Eulerian de type D Al'tudiAl par Borowiec et Miotkowski (Electron. J. Combin.,
2016). Finalement, nous obtenons une preuve gAlomAltrique d’un rAlsultat sur ces
nouveaux nombres Eulerian en utilisant notre rAl'sultat principale et les relations de
Dehn-Sommerville gAl'nAlralisAl's par Klee.
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1 Introduction

In this extended abstract we are interested in a special simplicial complex, A, ;, for n > 0
and 0 < m < n. This complex arose from the work of [10] dedicated to a generalization
of Postnikov’s totally nonnegative Grassmannian [11]. Topologically the complex A, ;,; is
a combinatorial manifold (with boundary) [10, Theorem 3.4] with geometric realization
homotopy equivalent to RIP" [10, Theorem 3.6]. It follows that A, is Cohen-Macaulay
over Q if and only if m is even or m = n — 1 [10, Corollary 3.7]. As seen in [12], when a
simplicial complex is Cohen-Macaulay its h-vector has nonnegative entries. This led us
to investigate the combinatorial properties of Ay, ;.

Let us start with the simple example where n = 3 and m = 2. As depicted in
Figure 1, we can represent RIP? as the upper half sphere in R? with the identification of
the antipodal points along the equator. We take a cell decomposition of RIP? according
to the signs of the coordinates. Since we work on projective space, this is well defined up
to a global sign, and we may choose the first nonzero coordinate to be positive. On RIP?,
we get the interior of four triangles (2-dimensional cells) that correspond to elements
with the following sign vectors: (+,+,+), (+,—,+), (+,+,—) and (+, —, —). The six
segments between those triangles (1-dimensional cells) correspond to the sign vectors:
(+,+,0), (+,—,0), (+,0,+), (+,0,—), (0,4, +) and (0, 4+, —). Finally, the three vertices
(0-dimensional cells) are given by the sign vectors: (+,0,0), (0,+,0) and (0,0,+). We
then consider the poset P53, of cells, ordered by X < Y if X is in the closure of Y. With
the sign vectors, this corresponds to replacing some entries of the sign vector of Y by
zeros to obtain the sign vector of X.

The simplicial complex A3, is the order complex of the poset P;,. Geometrically
that is the barycentric subdivision of the cells defining P;, (see Figure 1). If we look at
the barycentric subdivision of the closure of (+,+,+), then each face of the result can
be assigned a permutation very naturally. Notice that, given a face X, the coordinates
(x1,x2,x3) of any point in X will have the same relative ordering. The permutation ¢
assigned to X is such the o (i) is the position of the ith smallest coordinate, reading equal
coordinates from left to right. For example, (1,2,1) has permutation (1,3,2). In Figure 1
we give the permutation of the six facets and point toward the smallest face with the
same permutation. It turns out that all faces with the same permutation ¢ correspond
exactly to the interval of faces between the facet indexed by ¢ and the (unique) minimal
one. The full complex A3, has 24 facets that are in bijection with the signed permutations
of type D3 (as a subgroup of signed permutations of type B3). In this extended abstract
we will give a map such that each face of A3 is assigned a type D3 permutation inducing
a decomposition of the face poset of Az, into Boolean intervals.

More generally, we show that the simplicial complexes A, ,, are partitionable when
m is even or m = n — 1. This will give an interpretation for their h-vectors in terms of
descents in even signed permutations. For any n > 0 and 0 < m < n, the simplicial com-
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‘ ‘ (1,0,0)

Figure 1: On the left we have the cell decomposition of RIP? according the signs of
coordinates whose closure poset is P3,. There are 4 interior triangles, 6 segments and
3 vertices. In the center, we show the barycentric subdivision and obtain the simplicial
complex Az, with 24 triangles, 36 segments and 13 vertices. On the right we look at the
facet (+, +, +) of P3» and see that the facets of the barycentric subdivision are naturally
indexed by permutations giving rise to a decomposition into Boolean intervals.

plex Ay is the order complex of a poset P, ;. The elements of P, ,, are projective sign
vectors of length n with sign variation bounded by m. Our main result is Theorem 3.13
which states that A, ;, is partitionable and gives an interpretation of the h-vector when m
is even or m = n — 1. When m = n — 1 the entries of the h-vector turn out to be the new
Eulerian numbers of type D studied by Borowiec and Miotkowski [4]. In Corollary 3.15
we combine our main result with Klee’s generalized Dehn-Sommerville relations to give
a geometric proof of some facts about these Eulerian numbers of type D.

There are at least two ways to view the motivation of this extended abstract. The
tirst is that we want to further understand the complexes A, ,; by showing that they
are partitionable and determining their h-vectors. Given that A, is Cohen-Macaulay
if m is even or m = n — 1 it is natural to look for a partitioning since (even though it
has been disproven [6]) a long standing conjecture would suggest the complex may be
partitionable [12, Conjecture 2.7]. It is not possible to show the stronger result that A,
is shellable for m > 0 since the complex is a manifold (with boundary) that is neither
a ball nor a sphere [5, Proposition 1.2]. The second motivation is that our results give
a geometric model for the new type-D Eulerian numbers [4]. It is well-known that the
classical Eulerian numbers of type A as well as Eulerian numbers of other types show
up as the h-vector of the Coxeter complex (see e.g. Exercise 16 of Chapter 3 in [3]).

Lengthier proofs have been omitted in this extended abstract and, in some cases, we
give a proof idea instead. For full proofs and details, please refer to our upcoming article

2].
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2 Sign variation and descents

2.1 Sign variation posets and complexes

We will let V,, = {—,0, +}" denote the set of sign vectors of length n. Given a sign vector
w the sign variation of w is denoted var(w) and is the number of times w changes sign
where zeros are ignored. As an example we have that var((+,—,0,—,+)) = 2. The
weight of a sign vector w is denoted wt(w) and is defined to be the number of non-zero
entires of w.

For any w € V,, we have —w € V,,. We define an equivalence relation ~ on V;,, where
w ~ «"if and only if w = ' or w = —w’. We will let PV, = (V, \ {0}")/ ~ which is
the collection of nonzero sign vectors up to equivalence. Sign variation is well defined
on PV, since var(w) = var(—w).

We will let Py, ,, denote the poset whose underlying set is {w € PV, : var(w) < m}
with order relation «w’ < w if and only if +w’ can be obtained from w by replacing
some elements with 0. As examples (0,+,0,—) < (+,+,+, —) and also (0,+,0,—) <
(+,—,—,+) since (0,—,0,+) ~ (0,4,0, —). The poset P, ,, is ranked where the rank of
an element w is wt(w) — 1.

A simplicial complex is a collection of sets such that if - € A and T C ¢ then T € A.
Notice this means that @ € A for any simplicial complex A. An element ¢ € A is called
a face and the dimension of ¢ is dim o = |o| — 1. Faces which are maximal with respect to
inclusion are called facets. The order complex A(P) of a poset P is the simplicial complex
on vertex set P whose k-dimensional faces are the chains of consisting of k + 1 elements
in P. We then let A, ,, denote the order complex A(Py, ).

Example 2.1. Let n = 2 and m = 1. Then

Vo ={(++), (+, =), (+,0), (0, +), (0, =), (0,0), (=, +), (=, =), (=, 0)}.

By our equivalence relation we have
PV ={(+,+), (+,—), (+,0), (0, +)}.

Since we can change 0 to either a + or a —, then the Hasse diagram of the poset P, is
given on the left of Figure 2. Looking at chains in our poset P, ; we see that we have four
1 element chains and four 2 element chains. Therefore, our order complex A; ;1 has four
0-dimensional faces and four 1-dimensional faces. The Hasse diagram of the face poset
of Ay is shown on the right of Figure 2.

For a simplicial complex of dimension d, let f; denote the number of i-dimensional
faces. The f-vector of a simplicial complex A is then the f; arranged as a vector:

fA) = (f-1, fo,---, fa)
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(+,0) < (+,+)(+,0) < (+,—-)0,4) < (+,+)0,+) < (+,—
(+0) (++) (+-) (0+)
T

16}

)

(++) (+-)
(+0) (0+)

Figure 2: Hasse diagram of P, ; and the face poset F(A;1) of the order complex.

where f_; = 1. The h-vector of a simplicial complex A is defined using the f-vector. Let

=y (1 D

i=0

Then the h-vector of A is the vector:

W) = (ho, Ty, ..., hgsq) -

Looking at Example 2 we see that f(Ay1) = (1,4,4) and h(Az1) = (1,2,1).
The face poset of a simplicial complex A is denoted F(A) and consists of all faces of
A ordered by inclusion. Given a poset P and any two elements x,y € P with x < y we
have the (closed) interval
x,y)={ze€eP:x<z<y}

The collection of all subsets of a given set ordered by inclusion is known as a Boolean
poset. A simplicial complex A is said to be partitionable if its face poset can be written as
the disjoint union
F(A)= || [GrF]
FeFacets(A)

where Facets(A) is the set of facets (maximal faces) of A and each interval [Gr, F] is a
Boolean poset for some Gr. In general the h-vector of a simplicial complex may contain
negative entries. However, if A is partitionable with its face poset written as above, then
by a result of Stanley (see [12]):

hi = |{F : |Gr| = jand F € Facets(A)}|

Each A, is a combinatorial manifold (with boundary) [10, Theorem 3.4] with geo-
metric realization homotopy equivalent to RIP" [10, Theorem 3.6]. The geometric real-
ization of A, , 1 is the manifold RIP"~!. Tt follows that A, , is Cohen-Macaulay over
Q if and only if m is even or m = n — 1 [10, Corollary 3.7]. When a simplicial complex
is Cohen-Macaulay its h-vector has nonnegative entries. For a treatment of Cohen-
Macaulay simplicial complexes and their properties we refer the reader to [12].
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2.2 Signed permutations and descents

We will denote the set of permutations of [1] by S2 and usually think of permutations
in one-line notation. A signed permutation of [n] is a bijection 7t : [£n] — [£n] such that
mt(—i) = —7(i) for all i € [£n]. The set of signed permutations of [n] is denoted by S&.
Any signed permutation 7 can be represented by the sequence [7(1),7(2),...,7(n)]
which is known as window notation. We will often use i to denote —i for i € [n]. In
this way we can denote the signed permutation with window notation [-2,3,4, —1] by
2341. We will also denote a signed permutation by an ordered pairs (7, X) consisting of
a usual permutation 71 € S2 along with a set X C [n] recording the numbers of negative
entries in window notation, thus we can denote [—2,3,4, —1] by (2341, {1,2}).

We let SP denote the set of even signed permutations of [n] which means there is an
even number of negative entries in the window notation. Equivalently we can say

SP = {(m,X): meSA, X C[n],|X| =0mod 2}.

We then let S,?/m denote all elements of SZ with at most m negative entries in window
notation or equivalently

S ={(m,X): me Sk, |X| <m}.
For any sequence of integers w = (wo, w1, ..., w,) we say that i is a descent of w if
w; > wi,1. For any signed permutation 7t with window notation [7r(1), 7(2),..., 7(n)]
we let w(t) = (0, 71(1), 7(2),...,m(n)) and define
Des(7r) = {i:iis adescent of w(rr)} C{0,1,...n—1}
to be the descent set of 1. We also let des(7r) = | Des(7)|. Finally we let
D(n,k) = |{mr € SD : des(7) = k}|
which count the number of even signed permutations with a given number of descents.

Remark 2.2. The quantity D(n, k) was first studied by Borowiec and Mlotkowski [4].
There is a general notion of descent in any Coxeter group. The number D(n, k) com-
putes descents with respect to the Coxeter group generators of S restricted to elements
the subgroup SD. For the general theory of descents as well as other combinatorics in
Coxeter groups we refer the reader to [3].

3 The partitioning

Given w € PV, we will consider indices cyclically so that w; = w;, for any i. We say
that i € [n] is a cyclic sign flip of w € PV, if there exists a j such that w;_jw; < 0 while
w;_yw; =0 for all 1 < k < j. We define a function BAr : PV, — [n] by

BAr(w) = {i € [n] : i is a cyclic sign flip of w}
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for each w € PV,. For example, BAr((0,+,—,—,0,+,—)) = {2,3,6,7}. Here 2 €
Bar((0,+,—,—,0,+,—)) since wy = + and for j = 2, as we are looking at the indices
cyclically, wy = w7y = —. We have the following results which follow immediately from
the definition of BAR.

Lemma 3.1. For any w € PV, the size of BAR(w) is even.
Lemma 3.2. Ifw € PV, and i € BAR(w), then w; # 0.

Definition 3.3. We define a function ® : A, ,, — Sfl) for any 0 < m < n —1. Consider
any chain C : vV < w® < ... < w). To obtain ®(C) we start with the empty word,
setting w© = 0" Fors=1,2,...,r iterate the following process:

1. Set I;:={i € [n] : wfs) #* O,wl.(s_l) = 0}.

2. SetIy:={i:i€l,i¢Bar(w)yU{i:icI,icBar(w)}.

3. Let w/ be the word where the elements of I; are written in increasing order.

Finally set I, .1 := {i € [n] : wfr) = 0}. Let I, ;1 and w)_; be defined as above. Then we

obtain ®(C) by concatenating all the words in reverse order:
D(C) = wyqw; ... wWHW).

For 1 = ®(C) = w, W, ...wyw) and 0 <i <741 we let £(C,i) denote the number
of letters in the initial part of 7, i.e. £(C,i) = |Ujs;1j].

Example 3.4. Let n = 9 and m = 8. As a first example, take
Cl . (O/ +/ — 0/ O/ 0/ 0/ O/ +) < (O/ +/ — 0/ — +/ O/ 0/ +) < (0/ +/ VA +/ — +/ +)

Then
Bar(w®) = Bar((0, 4+, —, —, —, 4+, —, +,+)) = {3,6,7,8}.

For s = 1 we have:

1.  ={2,3,9}

2. 1 =1{2,39}

3. Therefore, w] = 329.
For s = 2 we have:

1. b, = {5,6}

2. I, = {5,6}

3. Therefore, wh = 65.
For s = 3 we have:

1. I; = {4,7,8}

2. Iy ={4,7,8}

3. Therefore, w} = 874.
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Finally Iy = {1}. Therefore w) = 1.
Concatenating these results gives:

D(Cy) = wywhwhw] = 187465329.
Then we have:
0(C1,4) =0, 0(C1,3) =1, £(C,2) =4, £(C1,1) =6, £(C1,0) =9 =n.
Similarly, if we take
C:(0,+,-,0,0,0,0,0,—) < (0,+,—,0,—,4+,0,0,—) < (0,+,—,—, — +,— +,—)

we have
BAR((O, +/ Y -I_/ — +/ _)) - {2, 3, 6, 7, 8,9}

and ®(C,) = 187465932.
Lemma 3.5. If 0 < m < n — 1 such that m is even, then ®(Ay ) C Srl?’m.

Proof. Let C : w) < w® < ... < wl) be any chain in A, . Also let k = var(w(")).
Now | BAR(w"))| = k if k is even and | Bar(w("))| = k + 1 if k is odd. Since k < m where
m is even it follows that | BAR(w"))| < m. Therefore, ®(A, ) C SP .- O
Lemma 3.6. For any n

{Facets of Ay -1} 2, sb

is a bijection and thus ®(A, ,—1) = SE . Moreover, for 0 < m < n — 1 such that m is even, then

{Facets of Apm} 2, Shw
is a bijection and @ (Apm) = SE,..
Proof idea: Any facet of A, ,_1 is a saturated chain
C:wV <« w® « ...«

with w)) € PV, for 1 < i < n. The bijection sends C to (77¢, Xc) where X¢ = Bar(w™)
and 7t¢c is the permutation whose ith entry is the unique index k such that w,(cnflﬂ) #*

0 but wlgn_l) = 0 while its nth entry is the unique index k such that wlgl) # 0. By
Lemma 3.1, (1tc, Xc) € SP. For (7, X) € SD, the inverse map returns the saturated
chain whose maximal element is the sign vector whose set of cyclic sign flips is equal
to X and where the ith sign vector is the i 4 1st sign vector, with the 77,,_;th component
changed to O (for i € [n — 1]). This bijection will restrict to a bijection between facets of
Ay,m and elements of S,L?, » Whenever m is even.

An example of this bijection can be seen in Example 3.7.
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Example 3.7. The bijection in the proof of Lemma 3.6 maps 23154, which is equivalent
to the pair (23154, {2,4}), to the chain

(01010/ +/0) < (0/0/0/ +/ +) < (+/0/0/ +/ +) < (+/0/ — +/ +) < (+/ T +/ +)

that is a facet of As5,. In more details, it maps the permutation 23154 to the Boolean
chain

(0,0,0,1,0) < (0,0,0,1,1) < (1,0,0,1,1) < (1,0,1,1,1) < (1,1,1,1,1).
Then the set {2,4} determines (uniquely, up to a global sign) the sign changes as
(+I A +I +)

For a chain C : wV < w® < ... < wW), let C; denote the subchain of C with w()
removed:
Ci : w(l) < e < w(i_l) < w(i‘H) < e <& w(k)

For I C [k] let C; be the subchain of C with w(?) removed for all i € I. The sign vectors we
can remove from a chain C, without changing the value of ®(C), are directly governed
by the descent set of the permutation to which it is associated. The reader is invited to
recall Definition 3.3 for the notation used in the following lemma.

Lemma 3.8. Let 0 < m < n — 1 such that either m is even or m = n — 1. Let

be a chain in Ay and let ®(C) = T = Wi W Wy_q - .. wWiw] € O(Ay,m) with descent set
Des().

Fori e [k—1], ®(C;) = m = ®(C) if and only if ¢(C,i) ¢ Des(m). Fori =k, ®(Cy) =
= ®(C) if and only if £(C,k) ¢ Des(rr) and Bar(w®)) = Bar(w*-1),

By repeated applications of the previous lemma we have the following.
Proposition 3.9. Let 0 < m < n — 1 such that either m is even or m = n — 1. For C € Ay
and I C [k|, then ®(C;) = ®(C) if and only if I N Des(P(C)) = @ and BAR(w;) = BAR(w)
where w and wy are the top sign vectors in Cr and C respectively.

For any 7w € S}, we let C™ denote the saturated chain which is in bijection with 7

from Lemma 3.6. Let C; denote the rank selected subchain of C™ restricted to the ranks
{n—i:iecDes(m)}.

Example 3.10. Considering 7t = 23154 we have
CT[ . (O, O, 0, +, 0) < (O, O, 0, +/ +) < (+/ 0/ O; +/ +) < (+/ O/ 7 +/ +) < (+/ T +/ +)

and
Cr:(0,0,0,+,0) < (+,0,0,4+,+) < (+,—, —, +,+)
since Des(7r) = {0,2,4}.
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Figure 3: An example of the partitioning on F(Az1).

Lemma 3.11. If 1 € ®(Ay) for 0 < m < n — 1 such that m is even or m = n — 1, then
&) = [Cr, C™] is a Boolean interval in F(Aym)

Proof idea: Suppose 7t is an element in S and let Des(7r) = {dy,d,...dy} be the
set of descents (in numerical order). Let C™ be the saturated chain which is in bijection
with 77 from Lemma 3.6. By Lemma 3.8, we can inductively remove sign vectors from
the saturated chain which do not change the permutation associated to it. Since the
order of the removals doesn’t alter our permutation, the ordering of these subchains
is isomorphic to the subsets of a set ordered by inclusion, in other words the Boolean
interval, with the bottom element being C;, the rank selected subchain of C™ restricted
to the ranks {n —i:i € Des(7)}.

Lemma 3.12. If 0 < m < n — 1 such that either m is even or m = n — 1, then O (m) N
O 1(mp) = @ for any 1y, 12 € D (D) with w11 # 0.

Proof. This comes directly from Lemma 3.11 together with the characterization of remov-
ing sign vectors from chains in Lemma 3.8. O]

Theorem 3.13. If 0 < m < n — 1 such that either m is even or m = n — 1, then Ay, is
partitionable with

]:(An,m) = |_| [Cmcn]
€D (Aum)

and thus
hi(Aum) = [{m € ®(Apm) : des() = j}|

foreach 0 <j <n.

Proof. By Lemma 3.11 and Lemma 3.12 it follows that A, ,, is partitionable whenever m
is even or m = n — 1. The h-vector equality follows from the partitionability. O
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Remark 3.14. One interesting question that we leave open is the study of the flag-h
vector of Ay, ,. Since Py, is a graded poset we have a flag-h vector and the content of
Theorem 3.13 can be modified to describe the flag-h vector. Given a flag-h vector, there
is a natural quasisymmetric function assigned to it (see [1, 7]). It would be interesting to
study this function, but our initial computation shows that it is not symmetric. One may
need to use different notions of quasisymmetric as in [8], but we leave this question to
the interested reader.

In Figure 3 we give an example of the partitioning given in Theorem 3.13. Above
each facet we write the signed permutation given in the bijection from Lemma 3.6.

Next we give an application of Theorem 3.13 that uses Klee’s generalization of the
Dehn-Sommerville relations [9] which states that

. (d 1
hay =i = (=07 (§) (- 13®) - ) @1
where h = (hg, hy, ..., hy) is the h-vector of a (d — 1)-dimensional simplicial complex A
which is a (homology) manifold.
Corollary 3.15. If n is even, then D(n,j) = D(n,n —j) forall 0 < j < n. If n is odd, then
D(n,j) = D(n,n—j) + (=1)/() forall 0 < j < n.

Proof. By Theorem 3.13 we see that h;(A,,—1) = D(n,j). The geometric realization of
Ay ;-1 is the manifold RP"!. It is known that

—1 n=0mod 2;
H(Bunr) = {O n =1mod 2.
Thus by applying (3.1) we find that for n even
D(n,j) = hi(Dpn-1) = hu_j(BDyn-1) = D(n,n —j)
and for n odd

D0,J) = 11} = b (Bnn0) + (<11 () = Dl =) + (<11 ().

foreach 0 <j <n. O

Remark 3.16. The content of Corollary 3.15 was previously known as it follows from [4,
Proposition 4.1] and [4, Proposition 4.3].
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