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When are multidegrees positive?
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Abstract. Let k be an arbitrary field, P = P
m1
k ×k · · · ×k P

mp
k be a multiprojective

space over k, and X ⊆ P be a closed subscheme of P. We provide necessary and
sufficient conditions for the positivity of the multidegrees of X. As a consequence of
our methods, we show that when X is irreducible, the support of multidegrees forms a
discrete algebraic polymatroid. In algebraic terms, we characterize the positivity of the
mixed multiplicities of a standard multigraded algebra over an Artinian local ring, and
we apply this to the positivity of mixed multiplicities of ideals. Furthermore, we use
our results to recover several results in the literature in the context of combinatorial
algebraic geometry.

Keywords: positivity, multidegrees, mixed multiplicities, multiprojective scheme, pro-
jections, polymatroids, Hilbert polynomial

1 Introduction

Let k be an arbitrary field, P = P
m1
k ×k · · · ×k P

mp
k be a multiprojective space over k, and

X ⊆ P be a closed subscheme of P. The multidegrees of X are fundamental invariants
that describe algebraic and geometric properties of X. For each n = (n1, . . . , np) ∈ Np

with n1 + · · · + np = dim(X) one can define the multidegree of X of type n with respect
to P, denoted by degn

P(X), in different ways. In classical geometrical terms, when k is
algebraically closed, degn

P(X) equals the number of points (counting multiplicity) in the
intersection of X with the product L1 ×k · · · ×k Lp ⊂ P, where Li ⊂ P

mi
k is a general

linear subspace of dimension mi − ni for each 1 ≤ i ≤ p.
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The study of multidegrees goes back to pioneering work by van der Waerden [39].
From a more algebraic point of view, multidegrees receive the name of mixed multiplic-
ities. More recent papers where the notion of multidegree (or mixed multiplicity) is
studied are, e.g., [1, 19, 15, 37, 6, 25, 22, 24, 7].

The main goal of this paper is to answer the following fundamental question consid-
ered by Trung [37] and by Huh [17] in the case p = 2.

• For n ∈Np with n1 + · · ·+ np = dim(X), when do we have that degn
P(X) > 0?

Our main result says that the positivity of degn
P(X) is determined by the dimensions of

the images of the natural projections from P restricted to the irreducible components of
X. First, we set a basic notation: for each J = {j1, . . . , jk} ⊆ {1, . . . , p}, let ΠJ be the
natural projection

ΠJ : P = P
m1
k ×k · · · ×k P

mp
k → P

mj1
k ×k · · · ×k P

mjk
k .

The following is the main theorem of this article. Here, we give necessary and sufficient
conditions for the positivity of multidegrees.

Theorem 1.1. Let k be an arbitrary field, P = P
m1
k ×k · · · ×k P

mp
k be a multiprojective space

over k, and X ⊆ P be a closed subscheme of P. Let n = (n1, . . . , np) ∈ Np be such that
n1 + · · ·+ np = dim(X). Then, degn

P(X) > 0 if and only if there is an irreducible component
Y ⊆ X of X that satisfies the following two conditions:

1. dim(Y) = dim(X).

2. For each J = {j1, . . . , jk} ⊆ {1, . . . , p} the inequality

nj1 + · · ·+ njk ≤ dim
(
ΠJ(Y)

)
holds.

When k is the field of complex numbers this theorem is essentially covered by the
geometric results in [20, Theorems 2.14, 2.19], however their methods do not extend to
arbitrary fields. Here we follow an algebraic approach that allows us to prove the result
for all fields, and hence a general version for algebras over Artinian local rings. The
main idea in the proof of Theorem 1.1 is the study of the dimensions of the images of
the natural projections after cutting by a general hyperplane.

We note that if p = 2 and X is arithmetically Cohen–Macaulay, the conclusion of
Theorem 1.1 in the irreducible case also holds for X (see [37, Corollary 2.8]). We show
that this is not necessarily true for p > 2.

If X is irreducible, then the function r : 2{1,...,p} → Z defined by r(J) := dim
(
ΠJ(X)

)
is a submodular function, i.e., r(J1 ∩ J2) + r(J1 ∪ J2) ≤ r(J1) + r(J2) for any two subsets
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J1, J2 ⊆ {1, . . . , p}. By the Submodular Theorem (see, e.g., [4, Theorem 3.11] or [27, Ap-
pendix B]) and the inequalities of Theorem 1.1, the points n ∈Np for which degn

P(X) > 0
are the lattice points of a generalized permutohedron. Defined by A. Postnikov in [31] gen-
eralized permutohedra are polytopes obtained by deforming usual permutohedra. In
recent years this family of polytopes has been studied in relation to other fields such as
probability, combinatorics, and representation theory (see [27, 28, 30]).

In a more algebraic flavor, we state the translation of Theorem 1.1 to the mixed mul-
tiplicities of a standard multigraded algebra over an Artinian local ring.

Let A be an Artinian local ring and R be a finitely generated standard Np-graded
A-algebra and let PR(t) = PR(t1, . . . , tp) ∈ Q[t] = Q[t1, . . . , tp] be the Hilbert polynomial
of R (see, e.g., [15, Theorem 4.1], [6, Theorem 3.4]). Then, the degree of PR is equal to
the dimension of R and

PR(ν) = dimk ([R]ν)

for all ν ∈Np such that ν� 0. Furthermore, if we write

PR(t) = ∑
n1,...,np≥0

e(n1, . . . , np)

(
t1 + n1

n1

)
· · ·
(

tp + np

np

)
, (1.1)

then 0 ≤ e(n1, . . . , nr) ∈ Z for all n1 + · · ·+ np = r.
Let n = (n1, . . . , np) ∈ Np with |n| = r. Then e(n, R) := e(n1, . . . , np) is the mixed

multiplicity of R of type n.

Theorem 1.2. Let A be an Artinian local ring and R be a finitely generated standard Np-
graded A-algebra. For each 1 ≤ j ≤ p, let mj ⊂ R be the ideal generated by the elements of
degree ej, where ej ∈ Np denotes the j-th elementary vector. Let N = m1 ∩ · · · ∩ mp ⊂ R.
Let n = (n1, . . . , np) ∈ Np be such that n1 + · · · + np = dim (R/ (0 :R N∞)) − p. Then,
e(n; R) > 0 if and only if there is a minimal prime ideal P ∈ Min (0 :R N∞) of (0 :R N∞) that
satisfies the following two conditions:

1. dim (R/P) = dim (R/ (0 :R N∞)).

2. For each J = {j1, . . . , jk} ⊆ {1, . . . , p} the inequality

nj1 + · · ·+ njk ≤ dim

(
R

P+ ∑j 6∈Jmj

)
− k

holds.

For a given finite set of ideals in a Noetherian local ring, such that one of them is zero-
dimensional, we can define their mixed multiplicities by considering a certain associated
standard multigraded algebra (see [38] for more information). These multiplicities have a
long history of interconnecting problems from commutative algebra, algebraic geometry,
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and combinatorics, with applications to the topics of Milnor numbers, mixed volumes,
and integral dependence (see, e.g., [17, 18, 38, 36]). As a direct consequence of Theorem
1.2 we are able to give a characterization for the positivity of mixed multiplicities of
ideals. In another related result, we focus on homogeneous ideals generated in one de-
gree; this case is of particular importance due to its relation with rational maps between
projective varieties. In this setting, we provide more explicit conditions for positivity in
terms of the analytic spread of products of these ideals.

Going back to the setting of Theorem 1.1, we switch our attention to the following
discrete set

MSuppP(X) =
{

n ∈Np | degn
P(X) > 0

}
,

which we call the support of X with respect to P. When X is irreducible, we show that
MSuppP(X) is a (discrete) polymatroid. An alternative proof is given by Brändén and
Huh in [2, Corollary 4.7] using the theory of Lorentzian polynomials. An advantage of
our approach is that we can describe the corresponding rank submodular functions of
the polymatroids, a fact that we exploit in the applications. Additionally, our results are
valid when X is just irreducible and not necessarily geometrically irreducible over k (i.e.,
we do not need to assume that X ×k k is irreducible for an algebraic closure k of k); it
should be noticed that this generality is not covered by the statements in [2] and [20].

Discrete polymatroids [16] have also been studied under the name of M-convex sets
[29]. Polymatroids can also be described as the integer points in a generalized permuto-
hedron [31], so they are closely related to submodular functions, which are well studied
in optimization, see [23] and [34, Part IV] for comprehensive surveys on submodular
functions, their applications, and their history. There are two distinguishable types of
polymatroids, linear and algebraic polymatroids, whose main properties are inherited
by their representation in terms of other algebraic structures. Theorem 1.1 allows us to
define another type of polymatroids, that we call Chow polymatroids, and which interest-
ingly lies in between the other two. In the following theorem we summarize our main
results in this direction.

Theorem 1.3. Over an arbitrary field k, we have the following inclusions of families of polyma-
troids(

Linear polymatroids

)
⊆
(
Chow polymatroids

)
⊆
(
Algebraic polymatroids

)
.

Moreover, when k is a field of characteristic zero, the three families coincide.

If k has positive characteristic, then these types of polymatroids do not agree. In
fact, there exist examples of polymatroids which are algebraic over any field of positive
characteristic but never linear.

Theorem 1.1 can be applied to particular examples of varieties coming from com-
binatorial algebraic geometry. In Section 2.1 we do so to matrix Schubert varieties; in
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this case the multidegrees are the coefficients of Schubert polynomials, thus our results
allow us to give an alternative proof to a recent conjecture regarding the support of
these polynomials. In Sections 2.2 and 2.3 we study certain embeddings of flag varieties
and of the moduli space M0,p+3, respectively. In Section 2.4 we recover a well-known
characterization for the positivity of mixed volumes of convex bodies.

2 Applications

In this section we relate our results to several objects from combinatorial algebraic ge-
ometry.

2.1 Schubert polynomials

Let Sp be the symmetric group on the set [p]. For every i ∈ [p − 1] we have the
transposition si := (i, i + 1) ∈ Sp. Recall that the set S = {si : 1 ≤ i < p} gen-
erates Sp. The length l(π) of a permutation π is the least amount of elements in S
needed to obtain π. Alternatively, the length is equal to the number of inversions, i.e.,
l(π) = {(i, j) ∈ [p]× [p] : i < j, π(i) > π(j)}. The permutation π0 = (p, p− 1, · · · , 2, 1)
(in one line notation) is the longest permutation, it has length p(p−1)

2 .

Definition 2.1. The Schubert polynomials Sπ ∈ Z[t1, . . . , tp] are defined recursively in the
following way. First we define Sπ0 := ∏i tp−i

i , and for any permutation π and transposition si
with l(siπ) < l(π) we let

Ssiπ =
Sπ − siSπ

ti − ti+1
,

where Sp acts on Z[t1, . . . , tp] by permutation of variables. For more information see [12, Chap-
ter 10].

Next we define matrix Schubert varieties following [26, Chapter 15]. Let k be an al-
gebraic closed field and Mp(k) be the k-vector space of p× p matrices with entries in
k. As an affine variety we define its coordinate ring as Rp := k[xij : (i, j) ∈ [p]× [p]].
Furthermore we consider an Np-grading on Rp by letting deg(xij) = ei.

Definition 2.2. Let π be a permutation matrix. The matrix Schubert variety Xπ ⊂ Mp(k) is
the subvariety

Xπ = {Z ∈ Mp(k) | rank(Zm×n) ≤ rank(πm×n) for all m, n},

where Zm×n is the restriction to the first m rows and n columns. This is an irreducible variety
and the prime ideal I

(
Xπ

)
is multihomogeneous [26, Theorem 15.31]. By [26, Theorem 15.40],

the Schubert polynomial Sπ equals the multidegree polynomial of the variety corresponding to
the ideal I

(
Xπ

)
.
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Following [28] we say a polynomial f = ∑n cntn ∈ Z[t1, · · · , tp] have the Satu-
rated Newton Polytope property (SNP for short) if supp( f ) := {n ∈ Np | cn > 0} =
ConvexHull{n ∈ Np | cn > 0} ∩Np, in other words, if the support of f consist of the
integer points of a polytope. In [28, Conjecture 5.5] it was conjectured that the Schubert
polynomials have SNP property and they even conjectured a set of defining inequalities
for the Newton polytope in [28, Conjecture 5.13]. A. Fink, K. Mézáros, and A. St. Dizier
confirmed the full conjecture in [10].

Theorem 2.3. For any permutation π, the Schubert polynomial Sπ has SNP and its Newton
polytope is a polymatroid polytope.

The Newton polytope of a polynomial f is by definition the convex hull of the expo-
nents in the support of f , however in by our convention MSupp consists of the comple-
mentary exponents. This does not change the conclusion that the resulting polytope is a
polymatroid polytope.

Codimensions of projections. We now use Theorem thmA to give a combinatorial
interpretation for the codimensions of the natural projections of matrix Schubert vari-
eties. First we need some terminology.

A diagram D is a subset of a p× p grid whose boxes are indexed by the set [p]× [p].
The authors of [28] define a function θD : 2[p] 7→ Z as follows: for a subset J ⊆ [p] and
c ∈ [p] , we construct a word Wc

D(J) by reading the column c of [p]× [p] from top to
bottom and recording

• ( if (r, c) /∈ D and r ∈ J,

• ) if (r, c) ∈ D and r /∈ J,

• ? if (r, c) ∈ D and r ∈ J;

let θc
D(J) = # paired “()" in Wc

D(J) + # ? in Wc
D(J), and finally θD(J) = ∑

p
i=1 θi

D(J).
Example For example, let D be the diagram depicted in Figure 1 and J = {2, 3}, then

θD(J) = 3.

Figure 1: Example of a diagram in [5]× [5]

For any π ∈ Sp we can define its Rothe diagram as

Dπ := {(i, j) | 1 ≤ i, j ≤ n, π(i) > j and π−1(j) > i} ⊂ [p]× [p].
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For example when π = 42531 then Dπ is the diagram of Figure 1.

Theorem 2.4. Let π ∈ Sp, then for any J ⊆ [p] the projection ΠJ

(
Xπ

)
onto the rows indexed

by J has codimension θDπ([p])− θDπ(J
′), where J′ = [p]\J is the complement of J.

Notice that θDπ([p]) counts the total number of boxes in Dπ, which is equal to the
length of π (see [26, Definition 15.13]). So the case J = [p] of Theorem 2.4 above is
equivalent to the well-known fact that the codimesion of a matrix Schubert variety is
equal to the length of the permutation (see [26, Theorem 15.31]).

2.2 Flag varieties

We now focus on a multiprojective embedding of flag varieties. We first review some
terminology. For more information the reader is referred to [12] or [3].

In this subsection we work over an algebraically closed field k. Consider the complete
flag variety Fl(V) of a k-vector space V of dimension p + 1. This variety parametrizes
complete flags, i.e., sequences V• := (V0, · · · , Vp+1) such that {0} = V0 ⊂ V1 ⊂ V2 ⊂
· · · ⊂ Vp ⊂ Vp+1 = V, and each Vi is a linear subspace of V of dimension i. One can
embed this variety in a product of Grassmannians Fl(V) ↪→ Gr(1, V)×Gr(2, V)× · · · ×
Gr(p, V) as the subvariety cut out by incidence relations.

Furthermore, each Grassmannian can be embedded in a projective space via the
Plücker embedding ιi : Gr(i, V) → P

mi
k for 1 ≤ i ≤ p. By considering the product of

these maps, we obtain a multiprojective embedding of ι : Fl(V) ↪→ P
m1
k ×k · · · ×k P

mp
k .

For convenience we also call ι the Plücker embedding. The proposition below computes
the corresponding multidegree support.

Proposition 2.5. Let V be a k-vector space of dimension p + 1 and let X be the image of the
Plücker embedding ι : Fl(V) ↪→ P = P

m1
k ×k · · · ×k P

mp
k , then

MSuppP(X) =

{
n ∈Np | 1 ≤ nk ≤

k

∑
j=1

(p− j)−
k−1

∑
i=1

ni, ∀k ∈ [p],
p

∑
j=1

nj =

(
p + 1

2

)}
;

(2.1)

The pullbacks of the classes Hi from P
m1
k ×k · · · ×k P

mp
k to Fl(V) are called the Schu-

bert divisors, so Proposition Theorem 2.5 amounts to a criterion for which powers of
these classes intersect. These intersections are called Grassmannian Schubert problems
in [32]. In [32, Theorem 1.2] K. Purbhoo and F. Sottile give a stronger statement by
providing an explicit combinatorial formula using filtered tableau to compute the exact
intersection numbers.
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2.3 A multiprojective embedding of M0,p+3

The moduli space M0,p+3 parametrizes rational stable curves with p + 3 marked points.
Here we apply our methods to an embedding considered in [5]. The starting point is the
closed embedding Ψp : M0,p+3 −→ M0,p+2 ×k P

p
k constructed by S. Keel and J. Tevelev

in [21, Corollary 2.7]. By iterating this construction we obtain an embedding M0,p+3 ↪→
P1

k ×k P2
k ×k · · · ×k P

p
k (see [5, Corollary 3.2]). In [5], R. Cavalieri, M. Gillespie, and

L. Monin computed the corresponding multidegree which turns out to be related to
parking functions. As an easy consequence of our Theorem 1.1, we can compute its
support.

Proposition 2.6. Let X be the image of M0,p+3 ↪→ P = P1
k ×k P2

k ×k · · · ×k P
p
k, then

MSuppP(X) =

{
n ∈Np |

k

∑
i=1

ni ≤ k, ∀1 ≤ k ≤ p− 1,
p

∑
i=1

ni = p

}
. (2.2)

The cardinality of MSuppP(X) is equal to the Catalan number Cn (see [35, Exercise
86]). For a comprehensible survey on Catalan numbers see [35].

2.4 Mixed Volumes

In this subsection we assume k is an algebraically closed field. We begin by reviewing
the definition of mixed volumes of convex bodies, as a general reference see [9, Chapter
IV]. Let K = (K1, . . . , Kp) be a p-tuple of convex bodies in Rd. The volume polynomial
v(K) ∈ Z[w1, . . . , wp] is defined as

v(K1, . . . , Kp) := Vold(w1K1 + · · ·+ wpKp).

This is a homogeneous polynomial of degree d. If the coefficients of v(K) are written as
(d

n)V(K; n)wn, then the numbers V(K; n) are called the mixed volumes of K. A natural
question to ask is: when are mixed volumes positive? The relation between mixed
volumes and toric varieties (see Equation 2.3 below) together with Theorem 1.1 allows
us to give another proof of a classical theorem formulated on the non-vanishing of mixed
volumes [33, Theorem 5.1.8].

Theorem 2.7. Let K = (K1, . . . , Kp) be a p-tuple of convex bodies in Rd. Then, V(K; n) > 0 if
and only if ∑

p
i=1 ni = d and ∑i∈J ni ≤ dim

(
∑i∈J Ki

)
for every subset J ⊆ [p].

The proof can be reduced to the case of polyopes, where we can use basic results
about toric varieties and lattice polytopes. As an initial step we recall some facts about
basepoint free divisors; a general reference is [8, Section 6]. Let Σ be a fan and let P be a
lattice polytope whose normal fan coarsens Σ. Then, P induces a basepoint free divisor
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DP in the toric variety YΣ [8, Proposition 6.2.5]. Here, being basepoint free means that
the complete linear series |DP| induces a morphism φP : YΣ → P

mi
k for some mi ∈ N

such that φ∗(H) = DP ∈ A∗(YΣ), where H is the class of a hyperplane in the projective
space P

mi
k .

Lemma 2.8. Let K1, . . . , Kp be lattice polytopes and let K := K1 + · · ·+ Kp be their Minkowski
sum . Let Y be the toric variety associated to Σ, the normal fan of K, then for each J ⊆ [p] we
have a map φJ : Y → ∏j∈J P

mj
k such that dim (φJ(Y)) = dim

(
∑i∈J Ki

)
.

Lemma 2.9. In the setup of Lemma 2.8, if J = [p] then after scaling each polytope if necessary,
φ = φJ is an embedding.

Proof of Theorem 2.7. We can assume that each Ki is a polytope. Additionally, we can
reduce to the case where each Ki is a lattice polytope since any polytope can be approx-
imated by lattice polytopes (see [11, Page 120]). Let K = K1 + · · · + Kp and let Y be
the toric projective variety associated to the normal fan of K. Each lattice polytope Ki
induces a basepoint free divisor Di on Y. As explained in [11, Eq. (2), Page 116], the
fundamental connection between mixed volumes and intersection products is given by
the following equation

V(K; n) =
(

Dn1
1 · · ·D

np
p

)
/d!, (2.3)

where the numerator is the intersection product of the divisors in Y. Notice that posi-
tivity of mixed volumes is unchanged by scaling so whenever needed we can scale each
polytope.

By Theorem 2.9 we have an embedding φ : Y → ∏
p
i=1 P

mi
k such that the pullback of

each Hi ∈ A∗
(
∏

p
i=1 P

mi
k

)
is Di. By using the projection formula [13, Proposition 2.5(c)],

we can consider the product
(

Hn1
1 · · ·H

np
p

)
/d! instead of the one in Equation 2.3. From

the fact that Y is irreducible we are now in the setup to apply Theorem 1.1 and Lemma
2.8 computes the appropriate dimensions.
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