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Abstract. We consider a generalization of Young tableaux in which we allow some
consecutive pairs of cells with decreasing labels, conveniently visualized by a "wall"
between the corresponding cells. Some shapes can be enumerated by variants of
hook-length type formulas. We focus on families of tableaux (like the so-called "Jenga
tableaux") having some periodic shapes, for which the generating functions are harder
to obtain. We get some interesting new classes of recurrences, and a surprisingly rich
zoo of generating functions (algebraic, hypergeometric, D-finite, differentially-algebraic).
Some patterns lead to nice bijections with trees, lattice paths, or permutations. Our
approach relies on the density method, a powerful way to perform both random
generation and enumeration of linear extensions of posets.
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tions, hypergeometric functions, differentially-algebraic functions, random generation,
density method, linear extensions of posets

1 Introduction

Counting the number of linear extensions of a poset is known to be a hard problem; it
was even proven to be #P-complete by Brightwell and Winkler [9]. The enumeration is
even still #P-complete when restricted to posets of height 2; see Dittmer and Pak [11].
This enumeration challenge is also strongly connected to the question of uniform random
generation. While there exist thousands of ad hoc approaches to generate combinatorial
structures (see, e.g., [18, 22]), there are few generic methods for their uniform random
generation: one could name rejection algorithms and Markov chain sampling [17], the
recursive method [15, 22], generating trees [2], and Boltzmann sampling [12]. Another
important method that we want to promote and to add to this list is the density method. We
will illustrate its power and its flexibility in this article by applying it to many different
posets.
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What we call the density method is an appropriate combination of recurrences and
integral representations of order polytope volumes in order to enumerate poset structures.
For this reason, as suggested by one referee, it could also be called the polytope volume
method. Some ancestors of this natural idea can be found in [5, 7, 13, 23]. It should
also be mentioned that several works by Stanley (see for example his nice survey [26])
contributed to propagating interest in this idea, e.g., in connection with variants of the
enumeration of zig-zag permutations (permutations which have a periodic succession of
rises and falls [1, 8]); this led to the articles [6, 19, 21]. Together with Philippe Marchal,
we further developed this density method in [3, 4], as a way to analyse structures like
permutations, trees, Young tableaux, all with additional order constraints on their labels.

In this article, we consider a generalization of Young tableaux by allowing two
consecutive cells to have decreasing values. We put a bold red edge between the cells
which are allowed (but not imposed) to be decreasing (we call these edges "walls"), and
consider structures where the location of the walls obey some periodicity rules. More
precisely, let a tableau Y with periodic walls be the concatenation (as shown in Figure 1)
of n copies of a building block B of cells (i.e., Y = Bn) and then filled with all integers
from {1, . . . , |B|n} respecting the induced order constraints.

B =
3 10 5 6 12 16 13 14

1 2 4 7 8 9 11 15
B4 =

Figure 1: Left: example of a block B of shape 2× 2. Right: a Young tableau with
periodic walls at positions imposed by concatenations of B.

13 14 16 17 19 20 21 25 27

11 2 10 12 15 18 6 23 26

4 1 8 5 7 9 3 22 24

λ1 λ2 λ3 λ4

Some of these tableaux are in bijection with other com-
binatorial structures. Just to give a small example, if all
the λi’s = 1, the tableaux on the left are in bijection with
partitions of {1, . . . , 3n} into n sets of size 3.

In [3], we introduced rectangular Young tableaux with
walls and explored their links with hook-length-like formulas, the Chung–Feller theorem,
and studied their uniform random generation. In this article, we introduce other several
families of tableaux with periodic walls to illustrate the rich diversity of the corresponding
generating functions, and some of their unexpected closure properties.
Plan of the article. In Section 2, we consider the class of Young tableaux of shape n× 2,
where adding walls enrich known bijections with trees and lattice paths. In Section 3, we
use the density method to enumerate certain poset structures (the new Jenga tableaux),
which lead to unexpected closed forms, and sometimes to D-finite generating functions.
In Section 4, we show that some simple classes of Young tableaux with periodic walls
lead to complicated asymptotic formulas. In Section 5, we characterize (except for two
cases) Young tableaux with periodic walls built of 2× 2 blocks with respect to the nature
of their counting sequences: simple product, algebraic, hypergeometric, or D-algebraic.
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2 Young tableaux of shape n× 2 and binary trees

In this section, just to illustrate a little bit more the diversity of combinatorial objects
which can be related to tableaux with walls, we consider Young tableaux of shape n× 2,
allowing some walls between their two columns and map them bijectively to leaf-marked
binary trees; see Figure 2. The following proposition gives a new combinatorial meaning
to several OEIS1 entries, such as A000108, A000984, A002457, A002802, and A020918.

Proposition 2.1. The generating function of n× 2 Young tableaux with k walls is equal to

Vk(z) := ∑
n≥0

vn,kzn =
Cat(k− 1)zk−1

(1− 4z)(2k−1)/2
where Cat(n) =

1
n + 1

(
2n
n

)
,

and the corresponding generating polynomial with respect to the number of walls is

vn(u) :=
n

∑
k=0

vn,kuk = Cat(n)((1 + u)n+1 − un+1). (2.1)

Proof. In [3, Theorem 2.1], using a link with Dyck paths and the Chung–Feller theorem,
we proved that the number vn,k of n× 2 Young tableaux with k vertical walls is equal to

vn,k =
1

n + 1− k

(
n
k

)(
2n
n

)
.

The formula for vn(u) follows by summing vn,k with respect to n. What is more, a simple
rewriting shows that vn,k =

(n)k−1
k! (2n

n ) for k ≥ 1. This shows

∑
n≥0

vn,kzn = ∑
n≥k−1

(n)k−1

k!

(
2n
n

)
zn =

zk−1

k!
dk−1

dzk−1 ∑
n≥0

(
2n
n

)
zn =

zk−1

k!
dk−1

dzk−1
1√

1− 4z
.

It is noteworthy that vn,k is at the same time divisible by Cat(n) and Cat(k− 1), and,
obviously, (2.1) demands a simple combinatorial explanation. The following classical
lemma will allow us to give a bijective explanation of all these facts.

Lemma 2.2. Young tableaux of shape n× 2 are in bijection with binary trees that have n internal
nodes.

Proof. The key observation is that every element in the first column corresponds to an
internal node and every element in the second column to a leaf. For the bijection we
iterate through the cells in increasing order. We start with an internal node for the entry 1.
Depending on the column of m, we add an internal node or a leaf to the next available
empty position in depth-first order. At the end, we add a leaf to the left-most branch of
the root.

1OEIS stands for the On-Line Encyclopedia of Integer Sequences, accessible via https://oeis.org.

https://oeis.org/A000108
https://oeis.org/A000984
https://oeis.org/A002457
https://oeis.org/A002802
https://oeis.org/A020918
https://oeis.org
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Figure 2: The bijection between n× 2 Young tableaux with k walls and binary trees
with k marked leaves from Theorem 2.3. Here n = 14 and k = 5.

Theorem 2.3. Young tableaux of shape n× 2 with k walls are in bijection with binary trees with
n internal nodes and k marked leaves.

Proof. The following bijection consists of (possibly) 3 steps and is shown on an example
in Figure 2. First, we mark every entry in the second column that is in a row with a wall
and remove the wall. Then, we sort each row to get a standard n× 2 Young tableau (yet,
with k markers).

Second, we transform this tableau together with its markers into a binary tree using
Lemma 2.2. If no internal nodes are marked, then we are finished; yet if some internal
nodes are marked, then we perform the following step.

Third, we inductively transform the binary tree with markers into a binary tree with
marked leaves. Observe that if an internal node on the right-most branch of the root is
marked, all internal nodes in the left subtree are marked as well, but no leaf. Vice versa,
if in such a subtree at least one leaf is marked, no internal node is marked. This follows
from the depth-first traversal of Lemma 2.2 as we only append a new internal node to the
right-most branch of the root if the subtableau corresponding to the previous nodes is a
valid Young tableau. Now, start from the right-most leaf in the right branch of the root
and move upwards to the root. If an internal node is marked, push all markers to the
leaves of the left subtree and thereafter swap the left and right subtree. Continue until
you reach the root.

For the reverse bijection, we distinguish two cases: Either the right-most leaf is marked
or not. If it is not marked we reverse only steps 1 and 2, while if it is marked, we reverse
all three steps.

In the next section, we introduce the main tool of this article: the density method.
We apply it on different variants of tableaux with walls, leading here to unexpectedly
well-structured generating functions (e.g., hypergeometric or D-finite).
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3 Jenga tableaux and the density method

The towers of the game Jenga2 inspired the following fruitful generalization of Young
tableaux. Consider a column of n cells to which one attaches at row i, `i cells to the left
and ri cells to the right. The N := n + ∑n

i `i + ri cells of this structure are then filled
with the integers 1 to N under the constraint that each row and the middle column have
increasing labels, and each label appears only once; see Figure 3.

16 17 19 21

1 5 15 20 22

11 14

10 18

8

3 6 7 9 13

2 4 12

`1 r1

`7 r7

U1 · · · U` Z V1 · · · Vr

X` r

Figure 3: Left: a Jenga tableau with n = 7 rows and the left and right subsequences
(li)7

i=1 = (1, 2, 0, 0, 1, 2, 0) and (ri)
7
i=1 = (1, 2, 0, 1, 0, 2, 3), respectively. Right: the building

block used here in the density method to generate each row iteratively.

The density method is the key to enumerate such objects. We used it in [4, 20, 21] for
other classes of tableaux. Let us sketch its principle on the example of Jenga tableaux.

The density method builds on a geometric interpretation of the problem. Consider an
N-tuple α (with non-equal coordinates) that is an element of the hypercube [0, 1]N . Then,
we associate to each of these N coordinates one of the N cells of Y : if the jth coordinate
of α is the ith biggest element, then we assign the value i to the cell j. This filling is
not (yet) respecting all increasing constraints, but this operation is readily reversed by
associating to every legitimate filling of Y a region of [0, 1]N which corresponds to a
polytope. The key observation now is that the volume of this polytope is equal to 1/N!.
Let P be the set of all polytopes corresponding to correct fillings of Y . Then, a uniformly
random element P corresponds to a uniformly random filling of Y . Note that P is also
known as the “order polytope” in poset theory.

We build now on this geometric viewpoint and describe how the density method
works. Consider the generic building block of a row shown in Figure 3. It consists of the
` cells U1, . . . , U`, the r cells V1, . . . , Vr, one cell Z, and one cell X. To each of these cells
we assign a random number from [0, 1]. Then, we define a sequence of polynomials fn(z)
which encode the order constraints satisfied by these cells up to row n:

2“Jenga!” means “Construct!” in Swahili. It is the name of a game created by Leslie Scott for his children
in the 70s in which one dismantles block by block a tower of small wooden building blocks.
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fn(z) :=
∫

z<v1<1

. . .
∫

vr−1<vr<1

∫
0<u`<z

. . .
∫

0<u1<u2

∫
0<x<z

fn−1(x) dx du1 . . . du` dvr . . . dv1.

Now the simple block structure of each row leads to the following simplification

fn(z) =
z`n(1− z)rn

`n!rn!

∫ z

0
fn−1(x) dx and f1(z) :=

z`1(1− z)r1

`1!r1!
. (3.1)

The crucial observation is now the following: The value
∫ 1

0 fn(z) dz is equal to the volume
of the order polytope P associated to the correct fillings of Yn. Thus, N!

∫ 1
0 fn(z) dz is

equal to the number of legitimate fillings. For more details see [4].
We thus get that the number yn of Jenga tableaux with n rows is

yn =
( n

∑
i=1

(`i + ri + 1)
)

!
∫ 1

0
fn(x) dx. (3.2)

We now continue with some periodic patterns, that is if there exists an integer p > 0 such
that `i+p = `i and ri+p = ri for all i ≥ 1. The smallest such p is called the period. The
simplest possible period is p = 1; this case leads to a noteworthy generating function.

Theorem 3.1 (D-finiteness of periodic Jenga tableaux with p = 1). The bivariate generating
function F(t, z) = ∑n≥1 fn(z)tn is D-finite in t and z. Accordingly, the counting sequence
(yn)n≥1 given by Equation (3.2) of Jenga tableaux with n rows is P-recursive.

Proof. In [3, Theorem 4.4] it was shown that F(t, z) is D-finite in z for any periodic pattern
with one hole. For the D-finiteness in t we use the density relations (3.1) and obtain

F(t, z) = t f1(z) exp
(

t
∫ z

0
f1(u) du

)
. (3.3)

Then, taking the derivative with respect to t, we get that F(t, z) is also D-finite in t:

tFt(t, z)−
(

1 + t
∫ z

0
f1(u) du

)
F(t, z) = 0.

Hence, by closure properties (Hadamard product and integration; see, e.g., [25]), the
corresponding sequence (yn)n≥1 of Jenga tableaux with n rows is P-recursive.

Note that set partitions of equal set sizes fall into the class of Theorem 3.1 as `i = m− 1
and ri = 0 for all i ≥ 0. Let us also mention the following unexpected link.

Remark 3.2 (Link with Sheffer sequences). Considering the series expansion of F(t, z) in z
instead of t, Equation (3.3) shows that we have here some variant of Borel transform3 of Sheffer
sequences. Sheffer sequences are sequences of polynomials f̂n(t) having an exponential generating
function of shape ∑∞

n=0 f̂n(t) zn

n! = A(z) exp(tB(z)). They play an important rôle in umbral
calculus; see [24] and [25, Exercise 5.37].

3The Borel transform (or the “inverse Laplace transform”) of a sequence (an) is the sequence (an/n!).
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As further examples of Jenga shapes, the density method also gives:

Proposition 3.3. For ri = 0 for all i ≥ 1 (see Figure 3), the number yn of Jenga tableaux satisfies

yn =
(∑n

i=1(`i + 1))!

∏n
i=1 `i!(∑i

j=1(`j + 1))
.

Specializing these tableaux to periodic cases leads to some hypergeometric formulas.

Proposition 3.4. Consider Jenga tableaux with period p, arbitrary left sequence (`i)
p
i=0, and right

sequence (ri)
p
i=0 = (0, . . . , 0) (see Figure 3). Define L := ∑

p
i=1 `i. Then, the number yn of such

tableaux satisfies

ykp+m = ym

(
(L + p)L

∏
p
i=1 `i!

)k L+p

∏
j=1

j 6=`1+···+`i+i

Γ
(

k + j+m
L+p

)
Γ
(

j+m
L+p

) .

Accordingly, the generating function of such tableaux is the sum of p hypergeometric functions.

It is also possible to consider other shapes, such as skew Young tableaux. Next, we
give such an example and thus add walls to a model analysed in [5].

Proposition 3.5. Consider tableaux with periodic walls in a diagonal strip of width w between
each column in all but the top cell; see Figure 4. Let bw,n be the number of such tableaux with n
columns; one has

bw,n =

(
ww−2

(w− 2)!

)n w−2

∏
j=1

Γ
(

n + j
w

)
Γ
(

j
w

) .

Proof. The formula is obtained by a bijection (depicted in Figure 4) between this class
and periodic Jenga tableaux of period p = 2, `1 = w− 2, `2 = 0, and ri = 0, such that
bw,n = a2n.

Figure 4: The building block of width 4 (left) is repeated k times and each time shifted
up by one cell to form a Young tableau with periodic walls in a diagonal strip (centre).
These tableaux are in bijection with periodic Jenga tableaux with period p = 2, left
sequence (`i)

2
i=1 = (2, 0), and right sequence (ri)

2
i=1 = (0, 0) (right).
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4 Some unusual asymptotics

The density method can also be used to count and generate objects which do not have
simple counting formulas. We now present such a class, which is a priori quite simple,
but which however leads to rather surprising asymptotics. Thus, this class illustrates well
the non-intuitive asymptotic behaviour of our objects.

6 10 14 15 17 18

3 5 9 12 13 16

2 1 7 4 11 8

S Y

R X

Figure 5: A 3× n Young tableau with walls in its first row, and the corresponding
building block for each column used in the density method.

Theorem 4.1. The number an of Young tableaux of length n with shape given by Figure 5 has the
following asymptotics

an = Θ
(

n! 12nea1(3n)1/3
n−2/3

)
, (4.1)

where a1 ≈ −2.338 is the largest root of the Airy function of the first kind.

Proof (sketch). The increasing label constraints encoded in the building block of Figure 5
directly translate to the following densities

fn+1(x, y) := x
∫ x

0

∫ y

x
fn(r, s) ds dr and f1(x, y) := x(y− x).

Accordingly, as the initial configuration corresponding to f1 consists of a building block
without the cell R, the number of tableaux is

an = (3n + 1)!
∫ 1

0

∫ y

0
fn(x, y) dx dy.

This gives the sequence OEIS A213863: {1, 7, 106, 2575, 87595, 3864040, 210455470, . . . }.
It also counts words where each letter ` of the n-ary alphabet occurs 3 times and for each
prefix p one has |p|` = 0 or |p|` ≥ |p|j for all j > `, where |p|` counts the occurrences of `
in p. The bijection with our tableaux follows by mapping indices to rows. Formula (4.1) is
then obtained by using the methods introduced in [14], i.e., sandwiching an between two
sequences having the same asymptotics dictated by the first zero of a D-finite function
(here, the Airy function satisfying y′′ − xy = 0; see [16]).

https://oeis.org/A213863
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5 A classification of 2× 2 periodic shapes

We now consider Young tableaux made of the concatenation of 2× 2 blocks with walls
(see Figure 1 in Section 1). This model is interesting as it leads to rather different natures
of generating functions. Indeed, Table 1 hereafter summarizes the main results and
groups them into four classes according to their counting sequences: simple products,
algebraic, hypergeometric, or D-algebraic. Surprisingly, some of these sequences connect
with classical combinatorial objects!

There are 6 possible non-trivial locations for walls in a 2× 2 block (due to possible
coincidences of the walls on the right when the blocks are concatenated). Thus, there are
in total 26 = 64 different types of building blocks. Most of these blocks come in pairs, as
rotating a tableau by 180 degrees and reversing the labels gives a bijection.

First, one gets 40 blocks for which the walls create independent regions. This leads to
19 distinct sequences P1–P19, all having a simple product formula.

Second, we consider the 4 blocks without vertical walls. They lead to 3 distinct
sequences A1–A3, which all have an algebraic generating function. For A1 and A2 the
proof uses a bijection to Dyck paths. For A3 we decompose at the first wall that cannot
be removed and get the recurrence an = Cat(2n) + ∑n

i=1 Cat(2i− 1)an−i, which we then
solve with generating functions.

Third, we consider 14 blocks with a uniquely determined minimum or maximum.
They lead to 7 distinct sequences H1–H7, all hypergeometric. The models H1–H5 are
Jenga-like tableaux from Section 3 that satisfy li = 0 for all i. For the models H6 and H7
we use a recursive approach, decomposing with respect to the location of the unique
minimum or maximum.

Fourth, there are three blocks which show a zig-zag-like pattern. By analogy to the
known zig-zag permutations, we conjecture Z2 and Z3 to be non-D-finite. For Z1 we are
able to prove that the exponential generating function is D-algebraic, and not D-finite, i.e.,
it satisfies a non-linear differential equation and no linear one. For this purpose we use
Carlitz’ theory [10] of generalized alternating permutations. Let k1, k2, . . . , km be positive
integers such that k1 + k2 + · · ·+ km = n. Then, a generalized alternating permutation of
type (k1, . . . , km) is an n-tuple (a1, . . . , an) such that ai ∈ {1, . . . , n} and

a1 < · · · < ak1 > ak1+1, ak1+1 < · · · < ak1+k2 > ak1+k2+1, . . . ak1+···+km−1+1 < · · · < an.

The type of a classical alternating permutation is thus k1 = · · · = km = 1, while the type
of a tableau from Z1 with m− 1 blocks is k1 = 3, k2 = · · · = km−1 = 4, and km = 1. Then,
the claimed closed form of A(t) = ∑n≥0 an

tn

n! for Z1 follows from a generalization of [10,
Equation (1.11)] taking into account the different behaviours at the beginning and the end
of the permutation. Thus, we get

A(t) =
F4,3(t)F4,1(t)

F4,0(t)
+ F4,0(t) where Fk,r(t) = ∑

n≥0
(−1)n tnk+r

(nk + r)!
.
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Class Shape Formula

P1 , 4
(4n)!
24n

P2
(4n)!
12n

P3 3
(4n)!
12n

P4
, ,

,

(4n)!
8n

P5
, ,

,
4
(4n)!

8n

Class Shape Formula

P6 ,
(4n)!

6n

P7 , 3
(4n)!

6n

P8 ,
8
5
(4n)!

(
5

24

)n

P9 ,
(4n)!

4n

P10 , 2
(4n)!

4n

P11 4
(4n)!

4n

P12 ,
(4n)!

3n

Class Shape Formula

P13 , 6
(4n)!

3n

P14
, ,

,

(4n)!
2n

P15 , 2
(4n)!

2n

P16 ,
(4n)!
(2n)!2n

P17 , 2
(4n)!
(2n)!2n

P18 ,
(4n)!
(2n)!

P19 (4n)!

Class Shape Sequence OEIS

A1 Cat(2n) =
1

2n + 1

(
4n
2n

)
A048990

A2
(

4n
2n

)
A001448

A3 , 22n+1 Cat(n)−Cat(2n + 1) A079489

H1 ,
n

∏
i=1

(4i− 1)(4i− 3) A101485

H2 ,
n

∏
i=1

(2i− 1)(4i− 1) A159605

H3 , 2n+1n!
n

∏
i=1

(4i− 3) 2n+1·A084943

H4 ,
(

4n
n

) n

∏
i=1

(3i− 1) (4n
n )·A008544

H5 ,
(

4n
n

) n

∏
i=1

(3i− 2) (4n
n )·A007559

H6 , 2nn!
n

∏
i=1

(4i− 3) n!·A084948

H7 ,
n

∏
i=1

(2i− 1)(4i− 1) A159605

Z1 ,
cos(t/

√
2)2 + cosh(t/

√
2)2

2 cos(t/
√

2) cosh(t/
√

2)
related to A211212

Z2 , ? ???

Z3 , ? ???

Table 1: The 64 different models of 2 × 2 blocks for tableaux with periodic walls
grouped into 4 different classes: (P) simple products, (A) algebraic, (H) hypergeometric,
(Z) zig-zag. The length n is equal to the number of repeated blocks. The model Z1 is
D-algebraic and not D-finite, which is what we conjecture for the models Z2 and Z3.

https://oeis.org/A048990
https://oeis.org/A001448
https://oeis.org/A079489
https://oeis.org/A101485
https://oeis.org/A159605
https://oeis.org/A084943
https://oeis.org/A008544
https://oeis.org/A007559
https://oeis.org/A084948
https://oeis.org/A159605
https://oeis.org/A211212
https://oeis.org/search?q=3%2C119%2C13761%2C3178785%2C1226341035%2C711310157271%2C578808021857625%2C+629094292867153665%2C880420061542046903955%2C1542142783860061524297975%2C3305066423033878298552132145%2C8507914454392557998456492959905&sort=&language=english&go=Search
https://oeis.org/search?q=8%2C416%2C56136%2C14433600%2C6042488040%2C3743684613216%2C3219214017819240%2C3668912290108229760%2C5352687624294728270280%2C9729190960995966590426400%2C21557816749990824984425855880%2C57201801255727138416863255878080&sort=&language=english&go=Search
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A pleasant feature of the density method approach is that it is automatable. See our
Jenga Maple package dedicated to the enumeration of tableaux with walls, thus allowing
our readers to play with the examples of their choice!

In conclusion, we have seen that Young tableaux with walls are a rich model, leading
(via the density method) to new varieties of recurrences, interesting per se, mixing finite
differences and differential operators (challenging the current state of the art in computer
algebra and holonomy theory!), and surprising asymptotics (challenging the current state
of the art in analytic combinatorics!).
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