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Abstract. We propose a unified approach to prove general formulas for the joint dis-
tribution of an Eulerian statistic, a Mahonian statistic and the color sum statistic over
a set of colored permutations by specializing Poirier’s colored quasisymmetric func-
tions. We apply this method to derive formulas for joint Euler–Mahonian and color
sum distributions on colored permutations, derangements and involutions. A number
of known formulas are recovered as special cases of our results, including formulas of
Biagioli–Zeng, Assaf, Haglund–Loehr–Remmel, Biagioli–Caselli, Faliharimalala–Zeng
and Désarménien–Foata. Several new results are also obtained.
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1 Introduction

For a positive integer n, let Sn be the set of permutations of [n] := {1, 2, . . . , n}. For
w ∈ Sn, an index i ∈ [n− 1] is called a descent of w, if w(i) > w(i + 1). The set of all
descents of w, written Des(w), is called the descent set of w. The cardinality and the sum
of all elements of Des(w) are written as des(w) and maj(w), respectively, and called the
descent number and major index of w. A statistic on Sn which is equidistributed with des
(resp. maj) is called Eulerian (resp. Mahonian). Let

An(x, q) := ∑
w∈Sn

xdes(w)qmaj(w)

be the generating polynomial for the joint distribution (des, maj) on Sn. The polynomial
An(x) := An(x, 1) is called the n-th Eulerian polynomial and constitutes one of the most
important polynomials in combinatorics (see, for example, [3]).
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It follows from the work of MacMahon [15] that

∑
m≥0

[m + 1]nq xm =
An(x, q)

(1− x)(1− xq) · · · (1− xqn)
(1.1)

An(1, q) = [1]q[2]q · · · [n]q, (1.2)

where [n]q := 1+ q + · · ·+ qn−1 is the q-analogue of n. These formulas serve as the basis
for many generalizations to Coxeter groups and r-colored permutation groups, that is
wreath products Zr oSn. Identities such as Equation (1.1), involving Euler–Mahonian
distributions will be called Euler–Mahonian identities. As mentioned in [5, Section 1], a
general approach to prove Euler–Mahonian identities, among others, is via the theory
of symmetric/quasisymmetric functions. We illustrate this approach by proving Equa-
tions (1.1) and (1.2) in a unified way, by specializing Gessel’s fundamental quasisym-
metric functions [19, Section 7.19]. This proof serves as a prototype for the proofs of all
applications presented here (see Section 4).

Let x = (x1, x2, . . . ) be a sequence of commuting indeterminates. The fundamen-
tal quasisymmetric function associated to S ⊆ [n− 1] is defined by

Fn,S(x) := ∑
i1≥i2≥···≥in≥1

j∈S⇒ ij>ij+1

xi1 xi2 · · · xin . (1.3)

The original definition actually defines Fn,S(x) as in Equation (1.3) with 1 ≤ i1 ≤ i2 ≤
· · · ≤ in instead. Our choice of definition will become clear in Section 3. The stable prin-
cipal specialization, written ps, and principal specialization of order m, written psm, of a
formal power series in x are defined [19, Section 7.8] by the substitutions xi = qi−1, for
all i ≥ 1 and

xi =

{
qi−1, if 1 ≤ i ≤ m
0, if i > m,

respectively.
The principal specialization of order m and stable principal specialization of the qua-

sisymmetric generating function of a subset A ⊆ Sn are given by the following formulas
[12, Theorem 5.3]

∑
m≥1

psm F(A; x) xm−1 =
∑w∈A xdes(w) qmaj(w)

(1− x)(1− xq) · · · (1− xqn)
(1.4)

ps F(A; x) =
∑w∈A qmaj(w)

(1− q)(1− q2) · · · (1− qn)
, (1.5)

where F(A; x) := ∑w∈A Fn,Des(w)(x). The quasisymmetric function F(Sn; x) is known to
have [19, Corollary 7.12.5] the following nice form

F(Sn; x) = (x1 + x2 + · · · )n. (1.6)
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The proof of Equations (1.1) and (1.2) follows by taking the principal specialization of
order m and the stable principal specialization of Equation (1.6) and substituting in
Equations (1.4) and (1.5) for A = Sn, respectively.

In our recent paper [17], we provide a unified approach to prove Euler–Mahonian
identities on sets of colored permutations by specializing Poirier’s colored analogue of
quasisymmetric functions [18]. A first instance of this technique appears in the work
of Athanasiadis [3, Equation (45)]. Our choice of colored quasisymmetric functions,
and much of the motivation behind this paper comes from the fact that Poirier’s signed
analogue of the fundamental quasisymmetric functions was recently employed by Adin
et al. [1] in order to define and study a signed analogue of the concept of fine sets and
fine characters of Adin and Roichman (see, for example, [1, Section 1]).

This extended abstract is a summary of our results in [17] with applications involv-
ing color sum Euler–Mahonian identities. In Section 2, we review colored permutation
statistics and recall the definition of fundamental colored quasisymmetric functions.
In Section 3, we present the main results on specializations of colored quasisymmet-
ric functions and in Section 4, we apply these results to prove formulas for the joint
Euler–Mahonian and color sum distributions on colored permutations, derangements
and absolute involutions.

2 Preliminaries

This section provides key definitions regarding colored permutation statistics and col-
ored quasisymmetric functions. For a survey on Euler–Mahonian identities for the col-
ored permutation groups, we refer the reader to [17, Section 2.1]. We assume familiarity
with basic concepts in the theory of symmetric functions as presented in [19, Section 7].
For nonnegative integers 0 ≤ k ≤ n, define

(x; q)n :=

{
1, if n = 0
(1− x)(1− xq) · · · (1− xqn−1), if n ≥ 1(

n
k

)
q

:=


1, if n = 0

[n]q!
[k]q![n− k]q!

, if n ≥ 1

and set (q)n := (q; q)n.

2.1 Colored permutation statistics

Fix a positive integer r and let

Ωn,r := {10, 20, . . . , n0, 11, 21, . . . , n1, . . . , 1r−1, 2r−1, . . . , nr−1}
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be the set of r-colored integers. We will often identify colored integers i0 with i. The r-
colored permutation group, denoted by Sn,r, consists of all permutations w of Ωn,r such that
w(a0) = bj ⇒ w(ai) = bi+j, where i + j is computed modulo r and the product of Sn,r
is composition of permutations. The r-colored permutation group can be realized as the
wreath product group Zr oSn, where the elements of Zr are thought of as colors. The
elements of Sn,r are represented in window notation as w = w(1)c1w(2)c2 · · ·w(n)cn ,
where w(1)w(2) · · ·w(n) ∈ Sn is the underlying permutation and (c1, c2, . . . , cn) is the
color vector of w. We will represent both the colored permutation and the underlying
permutation by the same letter.

Consider the following total order

1r−1 <c · · · <c nr−1 <c · · · <c 11 <c · · · <c n1 <c 10 <c · · · <c n0

on Ωn,r, sometimes called the color order. For w ∈ Sn,r, define Des(w) to be the set of
all indices i ∈ [n − 1] such that w(i) >c w(i + 1) together with 0, whenever w(1) has
nonzero color and let des(w) be its cardinality. Write Des∗(w) := Des(w) \ {0} and
des∗(w) for its cardinality. Also, define

maj(w) := ∑
i∈Des∗(w)

i

csum(w) := c1 + c2 + · · ·+ cn

fmaj(w) := r maj(w) + csum(w)

fdes(w) := r des∗(w) + c1,

the major index, color sum, flag major index and flag descent number of w, respectively. For a
complete account of these statistics we refer to [17, Section 2.1].

For a pair of statistics (eul, mah) on Sn,r and A ⊆ Sn,r, we define the following
generating polynomials

A(eul,mah,csum)
n,r (x, q, p) := ∑

w∈A
xeul(w)qmah(w)pcsum(w)

A(mah,csum)
n,r (q, p) := Aeul,mah,csum

n,r (1, q, p)

A(eul,csum)
n,r (x, p) := Aeul,mah,csum

n,r (x, 1, p)

A(eul,mah)
n,r (x, q) := Aeul,mah,csum

n,r (x, q, 1).

2.2 Colored quasisymmetric functions

Let x(j) = (x(j)
1 , x(j)

2 , . . . ) be sequences of commuting indeterminates, for every 0 ≤ j ≤
r− 1. We consider formal power series in x(0), x(1), . . . , x(r−1) with complex coefficients.
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The fundamental colored quasisymmetric function associated to w ∈ Sn,r with color vector
(c1, c2, . . . , cn) is defined by

Fw(x(0), x(1), . . . , x(r−1)) := ∑
i1≥i2≥···≥in≥1

j∈Des∗(w) ⇒ ij>ij+1

x(c1)
i1

x(c2)
i2
· · · x(cn)

in . (2.1)

This colored analogue of Gessel’s fundamental quasisymmetric functions was intro-
duced by Poirier [18] and further studied in [14] and more recently, for r = 2, in [1].
One can define (colored) quasisymmetric functions indexed by colored compositions, that
is compositions of a positive integer whose parts are colored. This is the approach of
[14, Section 3]. Our definition is slightly different, but equivalent to, the one given in
[14] with the inequalities under the summation on the right-hand side of Equation (2.1)
being reversed.

Lastly, for a subset A ⊆ Sn,r, let

F(A; x(0), x(1), . . . , x(r−1)) := ∑
w∈A

Fw(x(0), x(1), . . . , x(r−1))

be the colored quasisymmetric generating function associated to A.

3 Specializations

This section provides general formulas for the generating polynomials of joint Mahonian
and color sum statistics and joint Euler–Mahonian and color sum statistics on sets of
colored permutations by specializing fundamental colored quasisymmetric functions.
We first state the results and at the end of the section comment on their proofs, the
complete versions of which can be found at [17, Section 3].

We begin by considering the specialization ps(r)q,p defined by the substitutions x(j)
i =

qi−1pj for every i ≥ 1 and 0 ≤ j ≤ r − 1, the specialization ps(r)q,p,m defined by the
substitutions 

x(0)i = qi−1, 1 ≤ i ≤ m

x(j)
i = qi−1pj, 1 ≤ j ≤ r− 1 and 1 ≤ i ≤ m− 1

x(j)
i = 0, otherwise

and the specialization p̃s(r)q,p,m, defined by the substitutions x(j)
i = qi−1pj for every 1 ≤

i ≤ m and 0 ≤ j ≤ r− 1 and x(j)
i = 0 otherwise.
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Theorem 3.1. For a positive integer n and every A ⊆ Sn,r, we have

ps(r)q,p F(A; x(0), . . . , x(r−1)) =
A(maj,csum)

n,r (q, p)
(q)n

(3.1)

∑
m≥1

ps(r)q,p,m F(A; x(0), . . . , x(r−1)) xm−1 =
A(des,maj,csum)

n,r (x, q, p)
(x; q)n+1

(3.2)

∑
m≥1

p̃s(r)q,p,mF(A; x(0), . . . , x(r−1)) xm−1 =
A(des∗,maj,csum)

n,r (x, q, p)
(x; q)n+1

. (3.3)

Next, we consider the specialization ψ
(r)
q,p defined by the substitutions x(j)

i = qr(i−1)+j pj

for every i ≥ 1 and 0 ≤ j ≤ r− 1, the specialization ψ
(r)
q,p,m defined by the substitutions

x(0)i = qr(i−1), 1 ≤ i ≤ m

x(j)
i = qr(i−1)+j pj, 1 ≤ j ≤ r− 1 and 1 ≤ i ≤ m− 1

x(j)
i = 0, otherwise

and the specialization ψ̃
(r)
q,p,m defined by the substitutions x(j)

i = qr(i−1)+j pj for every

1 ≤ i ≤ m and 0 ≤ j ≤ r− 1 and x(j)
i = 0 otherwise.

Theorem 3.2. For a positive integer n and every A ⊆ Sn,r, we have

ψ
(r)
q,pF(A; x(0), . . . , x(r−1)) =

A(fmaj,csum)(q, p)
(qr)n

(3.4)

∑
m≥1

ψ
(r)
q,p,mF(A; x(0), . . . , x(r−1)) xm−1 =

A(des,fmaj,csum)(x, q, p)
(x; qr)n+1

(3.5)

∑
m≥1

ψ̃
(r)
q,p,mF(A; x(0), . . . , x(r−1)) xm−1 =

A(des∗,fmaj,csum)(x, q, p)
(x; qr)n+1

. (3.6)

We remark that Theorem 3.2 follows from Theorem 3.1 by setting q→ qr and p→ qp.
Lastly, we consider a more complicated specialization φ

(r)
q,p,m defined as follows: If m =

rs + t, for some 1 ≤ t ≤ r and s ≥ 0, then let x(j)
i = 0 if the pair (i, j) is lexicographically

greater than the pair (m− t + 1, t− 1) and otherwise

x(j)
i =

{
qi+j−1pj, if i ≡ 1 (mod r)
0, if i 6≡ 1 (mod r).
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We illustrate the definition of φ
(r)
q,p,m by considering a specific example for r = 3 and

m ∈ {7, 8, 9}. The substitutions become

(x(j)
i )0≤j≤2

i≥1
=



 1 0 0 q3 0 0 q6 0 · · ·
qp 0 0 q4p 0 0 0 0 · · ·

q2p2 0 0 q5p2 0 0 0 0 · · ·

 , if m = 7

 1 0 0 q3 0 0 q6 0 · · ·
qp 0 0 q4p 0 0 q7p 0 · · ·

q2p2 0 0 q5p2 0 0 0 0 · · ·

 , if m = 8

 1 0 0 q3 0 0 q6 0 · · ·
qp 0 0 q4p 0 0 q7p 0 · · ·

q2p2 0 0 q5p2 0 0 q8p2 0 · · ·

 , if m = 9.

Theorem 3.3. For a positive integer n and every A ⊆ Sn,r, we have

∑
m≥1

φ
(r)
q,p,mF(A; x(0), . . . , x(r−1)) xm−1 =

A(fdes,fmaj,csum)(x, q, p)
(1− x)(1− xrqr)(1− xrq2r) · · · (1− xrqnr)

.

(3.7)

The proofs of Theorems 3.1 and 3.3 are similar to each other and similar to those of
Equations (1.4) and (1.5) and can be found in [17, Section 3]. The key observation in the
proof of Equation (3.2), for example, is the following identity

ps(r)q,p,m Fw(x(0), . . . , x(r−1)) = ∑
m:=i0≥i1≥···≥in≥1
j∈Des(w) ⇒ ij>ij+1

qi1+···+in−n+csum(w)pcsum(w). (3.8)

This is the case, because under the specialization ps(r)q,p,m substitutions x(1)m , x(2)m , . . . , x(r−1)
m

occur only if the color of the first entry of w is nonzero, which is exactly when 0 is con-
sidered a descent of w, explaining the first inequality under the sum on the right-hand
side of Equation (3.8). Lastly, notice that our choice of the direction of inequalities in the
definition of Fw (see Equation (2.1)) allows us to deal with the major index instead of
the comajor index, as done in [12, Lemma 5.2] for example. This explains the motivation
behind our choice.

4 Applications; Color sum Euler–Mahonian identities on
colored permutations, derangements and absolute invo-
lutions

This section applies the theorems of Section 3 to prove color sum Euler–Mahonian iden-
tities on colored permutations, derangements and absolute involutions .
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For a positive integer n, we have

F(Sn,r; x(0), . . . , x(r−1)) = (e1(x(0)) + · · ·+ e1(x(r−1)))n, (4.1)

where e1(x(j)) := ∑i≥1 x(j)
i , for every 0 ≤ j ≤ r − 1. This formula reduces to Equa-

tion (1.6) for r = 1. It appears in [18, Proposition 1.13] in a more general setting, but can
also be proved using a colored version of the Robinson–Schensted correspondence and
the Frobenius formula for Sn,r (see [17, Lemma 2.1]). The following corollary follows
from Theorem 3.1 for A = Sn,r by specializing Equation (4.1).

Corollary 4.1. For a positive integer n, we have

S
(maj,csum)
n,r (q, p) = [r]np[n]q! (4.2)

and

∑
m≥0

([m + 1]q + p[r− 1]p[m]q)
n xm =

S
(des,maj,csum)
n,r (x, q, p)

(x; q)n+1
(4.3)

∑
m≥0

([r]p[m + 1]q)n xm =
S

(des∗,maj,csum)
n,r (x, q, p)

(x; q)n+1
. (4.4)

Equations (4.2) and (4.3) are due to Assaf [2, Equation (13)] and Biagioli and Zeng
[7, Equation (8.1)], respectively. The following corollary follows from Theorem 3.2 for
A = Sn,r by specializing Equation (4.1).

Corollary 4.2. For a positive integer n, we have

S
(fmaj,csum)
n,r (q, p) = [r]npq[n]qr ! (4.5)

and

∑
m≥0

([m + 1]qr + pq[m]qr [r− 1]pq)
n xm =

S
(des,fmaj,csum)
n,r (x, q, p)

(x; qr)n+1
(4.6)

∑
m≥0

([r]pq[m + 1]qr)n xm =
S

(des∗,fmaj,csum)
n,r (x, q, p)

(x; qr)n+1
. (4.7)

Equation (4.5) refines Haglund, Loehr and Remmel’s formula [13, Equation (34)] for
the distribution of the flag major index over colored permutations and Equation (4.6)
appears in the work of Biagioli and Caselli [6, Theorem 5.2].
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Remark 4.3. (a) Equations (4.3) and (4.6) for q = 1 become

∑
m≥0

(m[r]p + 1)nxm =
S

(des,csum)
n,r (x, p)
(1− x)n+1 , (4.8)

which reduces to an identity of Brenti [8, Equation (12)] for r = 2. In particular, the
polynomial S(des,csum)

n,r (x, p) := ∑n
i=0 an,r,i(p)xi satisfies the formula

(m[r]p + 1)n =
n

∑
i=0

an,r,i(p)
(

m + n− i
n

)
and therefore has only real roots for every positive integer n and every p ≥ 1 (cf.
[8, Corollary 3.7]). Although this result may not be new, it served as a motivation
to introduce the parameter p which keeps track of the color sum.

(b) Setting p = x in Equations (4.4) and (4.7) yields Euler–Mahonian idendities for the
pairs (ldes, maj) and (ldes, fmaj)

∑
m≥0

[m + 1]nq xm =
S

(ldes,maj)
n,r (x, q)
(x; q)n+1[r]nx

∑
m≥0

[m + 1]nqr xm =
S

(ldes,fmaj)
n,r (x, q)
(x; qr)n+1[r]nqx

,

where the length descent number of a colored permutation w ∈ Sn,r is defined by [4,
Definition 5.1]

ldes(w) := des∗(w) + csum(w).

The following corollary appears in the work of Biagioli and Caselli [6, Theorem 5.4]
and can be proved by taking the φ

(r)
q,p,m specialization of Equation (4.1) and substituting

in Theorem 3.3 for A = Sn,r.

Corollary 4.4. For a nonnegative integer m, we write m = rQ(m)+R(m) for some nonnegative
integer Q(m) and 0 ≤ R(m) < r. Then, we have

∑
m≥0

([Q(m) + 1]qr + pq[r− 1]pq[Q(m)]qr + pqrQ(m)+1[R(m)]pq)
n xm

=
S

(fdes,fmaj,csum)
n,r (x, q, p)

(1− x)(1− xrqr)(1− xrq2r) · · · (1− xrqnr)
.

(4.9)

An element of Sn,r without fixed points of zero color is called a colored derangement.
Let Dn,r be the set of all colored derangements in Sn,r. For a positive integer n, we have

F(Dn,r; x(0), . . . , x(r−1)) =
n

∑
k=0

(−1)kek(x(0))(e1(x(0)) + · · ·+ e1(x(r−1)))n−k, (4.10)
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where ek(x(j)) is the k-th elementary symmetric function in x(j). This formula reduces
to [12, Theorem 8.1] and [1, Equation (7.8)] for r = 1 and r = 2, respectively and can be
proved by trivially generalizing Adin et al.’s argument in the proof of [1, Theorem 7.3]
for general r. The following corollary is due to Assaf [2, Theorem 3.2] and can be proved
by taking the ps(r)q,p specialization of Equation (4.1) and substituting in Equation (3.1) for
A = Sn,r.

Corollary 4.5. For a positive integer n, we have

D(maj,csum)
n,r (q, p) = [r]np[n]q!

n

∑
k=0

(−1)k q(
k
2)

[r]kp[k]q!
. (4.11)

The following corollary follows from Theorem 3.2 for A = Dn,r by specializing Equa-
tion (4.10).

Corollary 4.6. For a positive integer n, we have

D(fmaj,csum)
n,r (q, p) = [r]npq[n]qr !

n

∑
k=0

(−1)k qr(k
2)

[r]kpq[k]qr !
(4.12)

and

∑
m≥0

n

∑
k=0

(−1)kqr(k
2)

(
m + 1

k

)
qr
([m + 1]qr + pq[m]qr [r− 1]pq)

n−k xm

=
D(des,fmaj,csum)

n,r (x, q, p)
(x; qr)n+1

.

(4.13)

Equation (4.12) refines Faliharimalala and Zeng’s formula [10, Equation (2.5)] for
the distribution of the flag major index over colored derangements (see also [11, Equa-
tion (6.8)]). Equation (4.13) appears to be new even in the case r = 1, where in this case
refines a celebrated result of Wachs [20, Theorem 4].

For w ∈ Sn,r with color vector (c1, . . . , cn), let w be the r-colored permutation with
underlying permutation w and color vector (−c1, · · · ,−cn). A colored permutation w ∈
Sn,r such that w−1 = w is called an absolute involution. Let In,r be the set of all absolute
involutions in Sn,r. For a discussion on colored involutions (elements w ∈ Sn,r such that
w−1 = w) and absolute involutions we refer to [17, Section 4.3]. We have

∑
n≥0

F(In,r; x(0), . . . , x(r−1)) zn =
r−1

∏
c=0

∏
i≥1

(1− zx(c)i )−1 ∏
1≤i<j

(1− z2x(c)i x(c)j )−1, (4.14)

where F(I0,r; x(0), . . . , x(r−1)) := 1. This formula specializes to [12, Equation (7.1)] and
can be proved using a colored version of the Robinson–Schensted correspondence and
[19, Corollary 7.13.8] (see [17, Theorem 4.8]).
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Corollary 4.7 follows from either Equation (3.2) or Equation (3.5) for q = 1 and
A = In,r by specializing Equation (4.14).

Corollary 4.7. If

I (des,fix,csum)
n,r (x, y, p) :=

 ∑
w∈In,r

xdes(w)yfix(w)pcsum(w), if n ≥ 1

1, if n = 0,

where fix(w) is the number of fixed points of zero color of w, then we have

∑
n≥0

I (des,fix,csum)
n,r (x, y, p)

(1− x)n+1 zn = ∑
m≥0

xm

(1 + z)m(1− zy)m+1(z; p)m
r (z2; p2)

(m
2 )

r

. (4.15)

Equation (4.15) reduces to an identity of Désarménien and Foata [9, Equation (6.2)]
for r = 1 and to [16, Equation (2)] for r = 2 and y = p = 1. We remark that one can prove
similar formulas for the joint Euler–Mahonian and color sum distributions on absolute
involutions.

We close by mentioning that formulas for color sum bimahonian and bieulerian–
bimahonian distributions can be proved using the method of this paper. We refer to [17,
Section 4.3] for more details.
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