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Low elements and small inversion sets are in
bijection in rank 3 Coxeter groups
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Abstract. In this extended abstract we announce a proof that, in a Coxeter group of
rank 3, low elements are in bijection with small inversion sets. This gives a partial
confirmation of Conjecture 2 in [Dyer, Hohlweg ’16]. That same article provides the
main ingredient: the bipodality of the set of small roots is used to propagate information
on the vertices of inversion polytopes.
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One of the reasons that Coxeter groups are so well studied, other than their ubiquity,
is perhaps their position at the intersection of group theory, combinatorics and geometry.
A most impressive example of a result made possible by this confluence is the proof by
Brink & Howlett in [3] of the automatic structure of infinite Coxeter groups. Indeed,
the combinatorial construction of an automaton recognizing the reduced words of the
Coxeter group is based on the notion of small roots which is geometric in nature. In [9],
Hohlweg, Nadeau & Williams explore the connection of Garside shadow and low elements
with families of automatas recognizing the reduced words of a Coxeter group. These two
objects, the latter being an example of the former, were introduced by Dyer & Hohlweg
in [4] and were motivated by questions of decidability of the word problem in Braid
groups.

In this paper, we focus our study on low elements and specially on Conjecture 2
of [4], where Dyer & Hohlweg ask whether low elements are in bijection with small
inversion sets. This conjecture, if true, would give a connection with Shi arrangements
and can in fact be formulated as "low elements are in bijection with Shi regions". As
Shi arrangements and their regions are extensively studied ([6] or [11] for instance), this
could reveal a structure on the set of low elements or, conversely, provide a model for
the Shi regions.

In this extended abstract, we announce a proof to this conjecture in the case of rank
3 Coxeter groups. In Section 1, we recall notions on Coxeter groups with emphasis on
geometric constructions: root systems, inversion sets, projective picture, and the Tits
cone. In the following Section 2 we present the conjecture. Finally, in Section 3, we
explain our strategy for the proof in rank 3 before sketching the demonstrations of its
main steps.
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1 Coxeter groups and geometry: a brief guided tour

In this section we recall notions related to Coxeter groups necessary both for the state-
ment of the conjecture in Section 2 and the sketches of proofs in Section 3.

1.1 Geometric representations and based root systems

Let V be a finite dimensional real vector space equipped with a symmetric bilinear form
B. A simple system in (V, B) is a set ∆ ⊂ V of simple roots such that :

1. ∆ is positively linearly independent, meaning that no line trough 0 is contained in
the cone cone(∆) = ∑δ∈∆ R+δ generated by ∆.

2. For all δ ∈ ∆, B(δ, δ) = 1.

3. For all distinct δ, δ′ ∈ ∆, B(δ, δ′) ∈ ]−∞,−1] ∪ {− cos(π/mδ,δ′) |mδ,δ′ ∈N≥2}.

Let S = {sδ | δ ∈ ∆} where sδ : x 7→ x − B(x, δ)δ is the B-reflection associated with δ.
Denote by W the subgroup of the group of B-orthogonal linear maps generated by S; we
say that W is a Coxeter group and that (W, S) is a Coxeter system of rank |S|. The length
of an element w ∈ W, denoted by |w|, is the minimal length of a product of generators
equal to w. For all (w, s) ∈ W × S, |ws| = |w| ± 1. When |ws| = |w| − 1, we say that s is
a descent of w and that ws is covered by w. The transitive reflexive closure of the covering
relation is called the right weak order and is denoted by ≤R.

We say that (V, B) is a geometric representation of W. When ∆ is linearly independent
and B(es, et) ≥ −1, we get the classical representation. The orbit of ∆ under W is called
the root system and is denoted by Φ (see Figure 1). The pair (Φ, ∆) is called a based root
system (as used in [8]). Based root systems enjoy the following usual properties:

• The root system is partitioned in positive roots Φ+ = Φ ∩ cone(∆) and negative roots
Φ− = −Φ+.

• For ρ ∈ Φ, Rρ ∩Φ = {ρ,−ρ}.

In addition, based root systems restrict well to reflection subgroups. Indeed, let A ⊂
Φ+, if HA is the subgroup of W generated by B-reflections associated to A, we set
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VA = Span(A), ΦA = HA(A) and ∆A to be the roots generating the extreme rays of
cone(ΦA ∩Φ+); then (VA, B|VA

) is a geometric representation of HA of which (ΦA, ∆A)
is a based root system. Beware: it needs not be a classical representation even when the
original representation is.

This restriction property gives a finiteness test: a reflection subgroup HA is finite if
and only if Span(ΦA) ∪Q = {0} where Q = {v ∈ V | B(v, v) = 0} is the isotropic cone of
B.

1.2 Inversion sets

For the remainder of this paper, we fix a Coxeter system (W, S) of finite rank. Many
of the combinatorial definitions on Coxeter groups have geometric equivalents through
inversion sets. We recall below some of their properties (see [10] for details).

Proposition 1.1. Let w ∈ W be a group element. The (right) inversion set of w is N(w) =
Φ+ ∩ w(Φ−). The inversion set map from (W,≤R) to the power set (P(Φ),⊆) of Φ is an
increasing injection. Moreover, s is a descent of w if and only if N(w) \ {−w(es)} = N(w′) for
some w′.
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Figure 1: The inversion set of sts (the orthogonal reflection associated with b) in the
dihedral group D4: N(sts) = {es, a, b}

Denote by Γw = {γ ∈ N(w) | ∃w′, N(w) \ {γ} = N(w′)} the set of right geometric
descents, or descents for short. We want to draw the reader’s attention on the fact that
Γw = ∅ ⇔ w = 1 ⇔ N(w) = ∅ and that |Γw| = |S| is possible only if W is finite, in
which case w is uniquely defined by N(w) = Φ+. When this occurs, w is called the
maximal element of W. This will be useful later in Lemma 3.8.

The question of deciding whether a subset of Φ+ is an inversion set arises naturally.
Fortunately, Proposition 2.11 of [7] gives a simple characterization.

Proposition 1.2. Let Φ be the root system of a geometrical representation of (W, S). A subset
A of Φ+ is an inversion set if and only if it is finite and separable: there exists some hyperplane
H such that A is strictly on one side of H and Φ+ \ A is strictly on the other side.
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1.3 The projective picture

From now on, we set (V, B) to be the classical geometric representation of (W, S) and
(Φ, ∆) the corresponding based root system.

In the case of infinite Coxeter groups, Φ can prove challenging to picture: there are
infinitely many roots, they are of unbounded norm... Following [8], we may obtain a
handy depiction of the root system: the projective picture. To a root ρ we associate a
normalized root ρ̂ = Rρ ∩ H1, where H1 is the affine hyperplane generated by ∆. The
normalized roots form the set Φ̂ = {ρ̂ | ρ ∈ Φ}, as shown in Figure 2. We call projective
picture the set Φ̂ seen as embedded in H1. Since Φ+ is naturally in bijection with Φ̂, we
will identify a ∈ Φ+ with â.

Φ
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Φ
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et es

a b

â b̂
H1

︸ ︷︷ ︸

N(sts)

eset â b̂
normalization

Figure 2: The projective picture for the dihedral group D4.

Remark. Since Φ+ ⊂ cone(∆) and ∆ ⊂ H1, we have Φ̂ ⊂ conv(∆), the convex hull of
∆. Because of this, the projective picture is essentially the image of Φ by the canonical
projection in the projective space P(V).

More than a simple tool to draw pictures of rank 3 or 4 root systems, the projective
picture has several advantages. Because it is a subset of a compact set, Φ̂ has accumula-
tion points which, by [8], are on the isotropic cone (strictly speaking, on Q1 = Q ∩ H1).
This circumscribes the treatment of many topological issues to a neighborhood of Q1. In
our proofs in Section 3, it will also allow us to simplify the formalism: cones become
convex hulls, extreme rays become points, etc. This allows us to translate the inversion
set into an "even more" geometric object.

Definition 1.3. The inversion polytope of an element w in W is the convex hull of N(w) in
H1. It is denoted by Pw. The set of its vertices is denoted by N1(w).

Recall that N(w) is separable. This too translates in the projective picture: there exists
some affine hyperplane H of H1 strictly separating the inversion polytope Pw from its
complement in Φ̂. This imposes that N(w) is convex in the sense that Pw ∩ Φ̂ = N(w)
(see [7, Lemma 2.10]): Pw and N(w) hold the same information.



Low elements and small inversion sets are in bijection in rank 3 Coxeter groups 5

1.4 The Tits cone

We present here the notion of Tits cone which can be understood as a dual of the root
system. This dual point of view will be useful in stating simply the proofs in §3.1 where
we examine the interactions of inversion sets and moving separation hyperplanes. We
refer to [1] for more details.

Recall that we have fixed (W, S) of finite rank, which means that V is finite dimen-
sional. We denote by 〈 · | · 〉 : V × V∗ −→ R the duality bracket. For v ∈ V we set
Hv = { f ∈ V∗ | 〈v | f 〉 = 0}, H+

v = { f ∈ V∗ | 〈v | f 〉 > 0} and H−v = −H+
v . The map

v 7→ (Hv ∪ H+
v ) is a bijection from the sphere of V to the set of closed half-spaces of V∗

which is bicontinuous.
Let the set C =

⋂
δ∈∆ H+

δ =
⋂

ρ∈Φ H+
ρ be the fundamental chamber and C its closure for

the usual topology, then the Tits cone of W is U =
⋃

w∈W w(C). The connected components
of U \⋃ρ∈Φ Hρ are called the Weyl chambers. They are in bijection with W via w 7−→ w(C),
where w acts on C by duality. Fix a root ρ ∈ Φ and a Weyl chamber w(C). We say that
Hρ is a wall of w(C) if Hρ ∩ w(C) spans Hρ. Walls give us yet another way to recognize
inversions and descents.

Proposition 1.4. For any w ∈ W, ρ ∈ N(w) if and only if w(C) ⊂ H−ρ . Moreover ρ is a
descent of w if and only if ρ ∈ N(w) and Hρ is a wall of w(C).
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Figure 3: On the left, the projective picture. On the right, the Coxeter complex (U \
{0})/R+. Weyl chambers are labeled by their associated element. Half-spaces in the
primal are sent to points of the same color in the Coxeter complex. Conversely, the
descent ρ of rts is sent to the wall Hρ of rts(C) with rts(C) ⊂ H−ρ .
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2 The Dyer-Hohlweg conjecture

In this section, we state the conjecture, briefly explain its connection with Shi regions,
and present the notion of bipodality.

Definition 2.1. We say that a ∈ Φ+ is a small root if for all b ∈ Φ+ \ {a}, there is some
w ∈W such that a ∈ N(w) and b /∈ N(w). The set of small roots is denoted by Σ.

For w ∈ W, Σ(w) = Σ ∩ N(w) is the small inversion set of w. We denote by Λ the set
of all small inversion sets.

An element w of W is a low element if N(w) = cone(Σ(w)) ∩ Φ+. The set of low
elements is denoted by L.

Said in the language of the projective picture, where extreme rays of cones become
extreme points of convex sets, an element w ∈ W is low if and only if the vertices of its
inversion polytope are small roots; that is N1(w) ⊂ Σ. Because we already know that
the map w 7−→ N(w) is injective, the map Σ : w ∈ L 7−→ Σ(w) ∈ Λ is injective as well.
Is it surjective?

Conjecture 2.2 ([4, Conjecture 2, Dyer, Hohlweg ’16]). The map Σ : L −→ Λ is a bijection
between low elements and small inversion sets.

Let us restate this in terms of Shi regions, that is, the connected components of U \
AΣ where U is the Tits cone and AΣ = {Ha | a ∈ Σ} is the Shi arrangement (this is
equivalent to the usual definition, see [2, p.123]). As the Weyl chambers are in bijection
with inversion sets, the Shi regions are naturally in bijection with the small inversion
sets. Considering this, the question becomes "are low elements in bijection with Shi
regions?".

In the same paper where Dyer & Hohlweg introduce the conjecture ([4]), they define
the notion of bipodality and prove that the set of small roots is bipodal. This property
will be central in the proof in the next section. We illustrate it in Figure 4.

Definition 2.3. Let d be a line in the projective picture and, as in §1.1, let Hd be the
reflection subgroup corresponding to Φ+

d , the roots contained in d. We say that the pair
(a, b) is an arrow from a to b if b ∈ ∆d is a simple root and a ∈ Φ+

d \∆d is not, and denote
it a → b. A subset A ⊂ Φ+ is said to be bipodal if for any arrow a → b, a ∈ A implies
b ∈ A.

Theorem 2.4 ([4, Dyer, Hohlweg ’16, Theorem 4.18]). Σ is always bipodal.

3 The result

We are now in position to state our main result – Conjecture 2.2 holds in rank 3 – and
sketch its proof.
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Figure 4: Bipodality of the small roots (with the blue halo): because the small root ρ

is an "internal" root of the dashed lines, it imposes that the "extremal" roots on these
lines (here a and er, b and es) are small too. In turn, this forces et to be small.

Proposition 3.1. In rank 3, Σ : L −→ Λ is surjective.

Strategy. Recall that an element w is low if and only if the vertices of Pw are in Σ. Thus,
we can prove this result by exhibiting for any small inversion set λ ∈ Λ an element w
such that N1(w) ⊂ Σ and Σ(w) = λ. Our strategy is as follows:

1. Choose w with Σ(w) = λ such that its descents are small, i.e. Γw ⊂ Σ (Lemma 3.4).

2. Define the bipodality graph Gbip(w) as the directed graph whose vertices are those of
Pw and whose edges are those of Pw that are arrows in the sense of definition 2.3.

3. Prove that every vertex on the bipodality graph is accessible from Γw: show that
Gbip(w) is acyclic (Proposition 3.6) and that its sources lie in Γw (Proposition 3.7).
By bipodality, this imposes that N1(w) ⊂ Σ, proving that w is a low element.

The most difficult point is to show that the sources form a subset of the descents. We
present here a proof in rank 3 and it is the only part of the proof that does not easily
extend to higher ranks. We begin by some remarks on the interaction between moving
separations hyperplane and inversion polytopes in §3.1. This gives us some tools to
prove that Gbip(w) is acyclic in §3.2 and to localize the sources of the graph in §3.3.

3.1 Wiggling hyperplanes

As can be seen on Figure 3, the set of separation hyperplanes H for N(w) is homeomor-
phic to w(C)/R+. This shows, for instance, that if H, H′ are two separation hyperplanes
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P

(a) Weak separation... (b) ...to regular... (c) ...to removing a descent.

Figure 5: Wiggling hyperplanes : movements of the separation hyperplane on the top
row (primal) correspond to a movement of the associated point of the Coxeter complex
in the bottom row (dual). The root-free envelope is figured in yellow.

for N(w), we can continuously move one to the other. In this spirit, we examine in
this section some interactions between roots and moving hyperplanes, beginning with a
relaxation of the separability condition.

Definition 3.2. Let w be an element of W and Pw its inversion polytope. We say that an
affine hyperplane H ⊂ H1 is a weak separation hyperplane for Pw if Pw is on one side of
H, while its complement Φ̂ \ Pw is strictly on the other side and H does not intersect the
normalized isotropic cone.

For finite subsets of Φ̂, this is equivalent to the regular separability condition: a weak
separation hyperplane H does not cross the isotropic cone so it is at a strictly positive
distance of the roots it does not contain. This gives us a root free envelope (fig. 5a)
in which we may translate H to make it into a strict separation hyperplane (fig. 5b).
Because the set Φ̂ is bounded, we may actually exit this envelope, as long as we do it
"far enough": we can tilt H to remove the vertices of conv(H ∩ Φ̂) (fig. 5c). This gives us
indications on the descents of an element:

Lemma 3.3. Let w be an element of W, and Pw its inversion polytope. We suppose that H is a
weak separation hyperplane for Pw containing a face F of Pw. Then the vertices of F are in Γw.

This lemma expresses a more general idea: because small perturbations of a point in
the Coxeter complex correspond to small perturbations of a separation hyperplane, we
can choose to enter a chamber through one of its walls.
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3.2 Gbip(w) is acyclic.

Let λ ∈ Λ be a small inversion set, let us show that we can choose w ∈W with Σ(w) = λ

and Γw ⊂ Σ, as per the first point of our strategy. Indeed, if it is not the case then remove
γ ∈ Γw \ Σ. Notice that the resulting set of roots is still the inversion set of some w′ and
that the small inversion set is unchanged. Repeat. Because the initial w is of finite length,
this eventually terminates. We obtained the following lemma:

Lemma 3.4. Let λ ∈ Λ be a small inversion set. Then there exists some w ∈ W such that
Σ(w) = λ and Γw ⊂ Σ.

We now want to show that every vertex of Pw is accessible from Γw. It is enough
to prove that Gbip(w) is acyclic and that the sources of Gbip(w) (meaning the vertices
connected only to outward edges) are a subset of Γw. Indeed, to find a path from Γw to a
vertex v we just have to follow the following process: if v is a source, stop. Else, v must
be connected by an inward edge to v′, replace v by v′ and iterate. Since there is no cycle,
this terminates on a source, which is in Γw.

We now fix the w obtained from Lemma 3.4 for the remainder of this paper. Our
next step is to show that the bipodality graph is acyclic. Let us first prove the following
useful lemma.

Lemma 3.5. We say that a permutation R = (ρ1, ρ2, . . . , ρ|w|) of N(w) is a removal order if
for all i ∈ {1, . . . , |w|}, N(w) \ {ρj | i ≤ j} = N(wi) for some wi. Let [a, b] be an edge of Pw
with a→ b. Then the roots on [a, b] are removed from a to b.

Proof. Notations are defined on Figure 6. Suppose we remove b first. Since the remaining
roots form an inversion set, it means that a separation hyperplane H must cut the line
(a, b) between a and b and between α and a: this is absurd.

α ba

H

Figure 6: A removal order follows the arrows. α exists by definition of [a, b] being an
arrow from a to b.

Remark. Note that this argument has two consequences. Firstly, an edge [a, b] of Pw
is either an arrow or complete, meaning (a, b) ∩ Φ̂ = [a, b] ∩ Φ̂. Secondly, it means that
any removal order determines an orientation on the edges of Pw. Indeed, even if [a, b] is
complete, if a is removed first, the remaining roots on [a, b] must be removed from a to
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b. This allows us to define a (directed) removal graph GR(w) formed of the vertices and
edges of Pw oriented by R: if [a, b] is an edge of Pw, we note a →R b the corresponding
edge in GR(w).

We can now restate Lemma 3.5 as: for any order R, Gbip(w) is a subgraph of GR(w).
This will help us to reach our goal for this paragraph:

Proposition 3.6. The bipodality graph is acyclic.

Proof. Because Gbip(w) is a subgraph of GR(w) for any removal order R, it is enough to
show that GR(w) is acyclic for some R. Let H be a separation hyperplane. In the spirit
of Lemma 3.3, we further assume that H is generic: it is not parallel to any line through
two roots in Pw. We continuously translate H through Pw, following its orthogonal line.
Because H is generic, the roots will traverse H one at a time: except at these times, H
is a separation hyperplane for the remaining roots. Hence, this defines a removal order.
Since a →R b is only possible if H visits a before b, the related removal graph GR(w) is
acyclic.

3.3 The sources of Gbip(w) are descents.

The goal of this section is to prove the following proposition:

Proposition 3.7. Assume that |S| = 3. Then every source of the bipodality graph on Pw is a
descent.

Let v be a source: either it is only connected to outward arrows (case 1), or it is
connected to at least one complete edge (case 2). Case 1 is easy: such a source in
Gbip(w) must be a source in any removal graph. In particular, removal graphs obtained
by pushing hyperplanes through polytopes (as in Proposition 3.6) only have one source,
which is the first root they meet and thus must be a descent.

Case 2 is harder. First, notice that a simple root cannot be a source because it always
can be removed last, which means it is a sink in some removal graph. The only remaining
possibility is dealt with in the following lemma.

Lemma 3.8. We suppose that (W, S) is a Coxeter system of rank 3. Let Pw be the inversion
polygon of an element w ∈W. Let [a, b] be a complete edge of Pw. If a /∈ ∆, then a ∈ Γw.

Proof. Notice first that, because [a, b] is complete, d = (a, b) does not intersect the
isotropic cone. If we can prove that d is a weak separation line for Pw, from Lemma 3.3
we get that a must be a descent. Let δ be a separation line for Pw, and d+ (resp. δ+)
the closed half-plane associated to d (resp. δ) containing Pw. We treat here only the case
where d+ ∩ Φ̂ is finite, that is, is the inversion set of some w′. If we can move δ to d
without meeting any root, we will have shown that w = w′, because from Lemma 3.3
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we can then translate it to some separation hyperplane d′ for Pw′ without meeting any
more roots. We then rotate δ to d around their intersection point, in the direction where
it does not pass through Pw. If we meet a root during the movement, it must be in
J = d+ ∩ (R2 \ δ+) (see Figure 7). Up to small perturbations of our movement, we may
assume that we meet a unique last root c, meaning we enter w′(C) through the wall
associated to c. We have c ∈ N(w′) and by reversing the movement we can remove it
and still be left with an inversion set, so c ∈ Γw′ . Since a, b ∈ Γw′ , this means |Γw| = 3 so
w′ must be the maximal element and N(w′) = Φ+. However, there is a simple root on
either side of d′ because a is not a simple root. This is absurd. The case where d+ ∩ Φ̂ is
infinite is treated similarly by considering the other side of d and interpreting walls as
three different elements covering a non neutral element.

4 Final remarks

It can be noted that the proof only requires the bipodality property of the set of small
roots and thus can be extended to other bipodal sets. In particular, in [5], Dyer proves
that the set of n-small roots (a generalization of small roots) is always bipodal. Thus, the
proof we have presented here generalizes to n-low elements and n-small inversion sets.
It is our hope that this partial result in rank three could be used as a lemma for higher
rank as in [4, Lemma 4.21], through the careful choice of rank 3 reflection subgroups.
Finally, considering inversion polytopes by themselves yields another special case: one
can show that, when all small roots lie on the edges of the simplex formed by conv(∆)
in the projective picture, all small inversion polytopes conv(λ), λ ∈ Λ, are inversion
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polytopes. This happens for instance in the so called right-angled case or when no pair of
generators in S commute.
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