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Abstract. Given partitions λ, µ, ν with at most n nonzero parts and a permutation
w ∈ Sn, the refined Littlewood–Richardson coefficient cν

λµ(w) is the multiplicity of the
irreducible GLnC module V(ν) in the so-called Kostant-Kumar submodule K(λ, w, µ)

of the tensor product V(λ) ⊗ V(µ). We derive a hive model for these coefficients
and prove that the saturation property holds if w is 312-avoiding, 231-avoiding or
a commuting product of such elements. This generalizes the classical Knutson-Tao
saturation theorem.

Keywords: hives, saturation, refined Littlewood–Richardson coefficients

1 Introduction

The Schur polynomials sλ(x) form a basis of the ring of symmetric polynomials C[x]Sn

in the n variables x = (x1, x2, · · · , xn) as λ varies over the set P [n] of partitions with at
most n parts. The Littlewood–Richardson coefficients are the structure constants of this
basis:

sλ(x)sµ(x) = ∑
ν∈P [n]

c ν
λµ sν(x)

Arguably among the most celebrated numbers in all of algebraic combinatorics, the
c ν

λµ can be explicitly computed by the Littlewood–Richardson rule (and its numerous
equivalent formulations). They have been generalized in many directions over the years
and in this article, we undertake a closer study of one such generalization.

To define our main objects of study, we recall the Demazure operators Ti : C[x] →
C[x] given by:

(Ti f )(x) =
xi f (x1, x2, · · · , xn)− xi+1 f (x1, · · · , xi−1, xi+1, xi, xi+2, · · · , xn)

xi − xi+1
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for 1 ≤ i ≤ n − 1. For w ∈ Sn, let Tw = Ti1 Ti2 · · ·Tik where w = si1si2 · · · sik is any
reduced expression for w as a product of simple transpositions si = (i, i + 1). The Ti
satisfy the braid relations and Tw is independent of the chosen decomposition. Further
if w0 denotes the longest element of Sn, then Tw0 is given by

Tw0( f ) =
∑w∈Sn sgn(w)w(xρ f )

∏1≤i<j≤n(xi − xj)
(1.1)

where ρ = (n − 1, n − 2, · · · , 1, 0) is the staircase partition. The map Tw0 : C[x] →
C[x]Sn is C[x]Sn-linear and surjective, with Tw0(x

µ) = sµ(x) for µ ∈ P [n]. Here we use
the standard notation xα = ∏i xαi

i for an n-tuple α = (α1, α2, · · · , αn) of non-negative
integers.

For w ∈ Sn and µ ∈ P [n], the Demazure character (or key polynomial) is χw,µ(x) :=
Tw(xµ). The Demazure characters form a basis of C[x] as w, µ vary.

Definition 1.1. Given w ∈ Sn and λ, µ, ν ∈ P [n], the w-refined Littlewood–Richardson
coefficient c ν

λµ(w) is the coefficient of sν(x) in the Schur basis expansion

Tw0(x
λ χw,µ(x)) = ∑

ν∈P [n]
c ν

λµ(w)sν(x). (1.2)

Its key properties are summarized in the following proposition.

Proposition 1.2. (a) c ν
λµ(w0) = c ν

λµ (b) c ν
λµ(1) = δλ+µ,ν (c) c ν

λµ(w) ∈ Z+ (d)
c ν

λµ(w) ≤ c ν
λµ(w

′) if w ≤ w′ in the Bruhat order on Sn (e) c ν
λµ(w) = cν

µλ(w
−1) (f)

c ν
λµ(w) = c ν

λµ(w
′) if WλwWµ = Wλw′Wµ where Wλ, Wµ are the Young subgroups of Sn which

stabilize λ, µ respectively.

Thus, for fixed λ, µ, ν, the map w 7→ c ν
λµ(w) is an increasing function of posets Sn →

Z+. Figure 1 shows an example for n = 4, with the values c ν
λµ(w) superimposed on the

Bruhat graph of S4.
While the first two parts of Proposition 1.2 follow directly from (1.2), the remaining

four can be deduced from the underlying representation theory. We now proceed to
describe this briefly. Let V(λ) denote the finite-dimensional irreducible polynomial rep-
resentation of G = GLnC corresponding to the partition λ ∈ P [n]. Given λ, µ ∈ P [n]
and w ∈ Sn, let vλ denote the highest weight vector of V(λ) and v′wµ a nonzero vector of
weight wµ in V(µ). The cyclic G-submodule of the tensor product V(λ)⊗ V(µ) gener-
ated by vλ ⊗ v′wµ is called a Kostant-Kumar module [11, 12] and is denoted K(λ, w, µ).

Its character was computed by Kumar [11] (in a more general context):

Theorem 1.3. char K(λ, w, µ) = Tw0(x
λ χw,µ(x)).
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Figure 1: Values of c ν
λµ(w) (superimposed on the Bruhat graph of S4) for n = 4,

λ = (13, 7, 4), µ = (13, 7, 2), ν = (21, 12, 9, 4).

Thus c ν
λµ(w) is the multiplicity of V(ν) in K(λ, w, µ). This interpretation establishes

properties (c)-(f) of Proposition 1.2. A bijective proof of (e) using the hive model will
be sketched in §2.3. The c ν

λµ(w) are also related to the combinatorial excellent filtrations of
Demazure modules and have descriptions in terms of Lakshmibai-Seshadri paths [14] or
crystals [4, 5]. We will return to this point of view in section 2.

In this article, we are interested in the saturation problem for the w-refined Littlewood–
Richardson coefficients. A permutation w ∈ Sn is said to have the saturation property if
the following holds for all λ, µ, ν ∈ P [n]:

c kν
kλ,kµ(w) > 0 for some k ≥ 1 implies c ν

λµ(w) > 0 (1.3)

Both w = 1 and w = w0 have the saturation property. The former is a trivial con-
sequence of Proposition 1.2, while the latter is exactly Klyachko’s classical saturation
conjecture for the c ν

λµ, established by Knutson-Tao [8] using the honeycomb model. Our
main result is the following sufficiency condition for saturation.

Theorem 1.4. (1) Let w ∈ Sn be either 312-avoiding or 231-avoiding. Then w has the saturation
property. (2) More generally, let H = Sn1 × Sn2 × · · · × Snp ⊆ Sn be a Young subgroup and
w = w1w2 · · ·wp ∈ H such that each wi ∈ Sni is either 312- or 231-avoiding. Then w has the
saturation property.



4 Mrigendra Singh Kushwaha, K.N. Raghavan, and Sankaran Viswanath

Remarks. (1) Permutations satisfying the conditions of Theorem 1.4 appear in work
of Postnikov-Stanley, where explicit formulas for the degree polynomials of the corre-
sponding Schubert varieties were established [18, Theorem 13.4, Corollary 13.5, Remark
15.5]. (2) Since w0 satisfies these conditions, our theorem extends the Knutson-Tao
saturation theorem. As in their case, the reverse implication in (1.3) is easy. (3) For
n = 1, 2, 3, all permutations in Sn are of the form of the theorem. For n = 4, our theo-
rem establishes saturation for all except the following four permutations of S4 (written in
one-line notation): 2413, 3142, 3412, 4231 (see §4.3).

The rest of the sections are devoted to deriving a hive description of the c ν
λµ(w) and

proving Theorem 1.4. The arguments are sketched to the extent possible subject to the
overall space restrictions. The detailed proofs are part of a forthcoming publication [13].

2 A hive model for c ν
λµ(w)

Putting together recent results of Fujita [2] and those of [5, 14], one obtains a combina-
torial model for c ν

λµ(w) as a certain subset of integer points in the Gelfand-Tsetlin (GT)
polytope. We describe this first, followed by our more succinct reformulation in terms
of hives. A word on notation: if P is a (not necessarily bounded) polytope, or a face
thereof, then PZ will denote the set of integer points in P.

Given a partition µ ∈ P [n], let Tab(µ) denote the set of semistandard Young tableaux
of shape µ with entries in 1, 2, · · · , n. To each T ∈ Tab(µ) we associate its reverse row
word bT obtained by reading the entries of T from right to left and top to bottom (in
English notation), for example, T = 1 1 3

2 3
and bT = 31132. The crystal raising and

lowering operators ei, fi (1 ≤ i < n) act on the set Tab(µ), and more generally on words
in the alphabet {1, 2, · · · , n} (we refer to [16, Chapter 5] for all undefined terms). Let
T◦µ denote the highest weight element of Tab(µ), satisfying eiT◦µ = 0 for all i, and let b◦µ
denote its reverse row word. The weight of a word u in the alphabet {1, 2, · · · , n} is the
tuple (a1, a2, · · · , an) where ai is the number of occurrences of i in u.

Given w ∈ Sn, fix a reduced decomposition w = si1si2 · · · sik . The set Dem(µ, w) :=
{ f m1

i1
f m2
i2
· · · f mk

ik
T◦µ : mj ≥ 0} is called a Demazure crystal. We now have:

Theorem 2.1 ([4, 5, 14]). c ν
λµ(w) is the cardinality of the set

Demν
λ(µ, w) := {T ∈ Dem(µ, w) : b◦λ ∗ bT is a dominant word of weight ν}.

Here ∗ denotes concatenation, and a word u is said to be dominant (or a ballot se-
quence) if every left subword of u contains more occurrences of i than i + 1 for all
1 ≤ i < n. We note that we could replace b◦µ with any other dominant word b+ of weight
µ (these are Knuth equivalent), define Dem(µ, w) := { f m1

i1
f m2
i2
· · · f mk

ik
b+ : mj ≥ 0}, and

the theorem still holds, appropriately modified. We will use this in §4.2.
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Figure 2: Gelfand-Tsetlin array for n = 5. The red edges aij −→ ai−1,j are labelled by
si−j

2.1 Kogan faces of GT polytopes

A GT pattern of size n is a triangular array A = (aij)n≥i≥j≥1 of real numbers (figure 2)
satisfying the following (“North-East” and “South-East”) inequalities for all i > j: NEij =
aij − ai−1,j ≥ 0 and SEij = ai−1,j − ai,j+1 ≥ 0. For µ ∈ P [n], the GT polytope GT(µ) is
the set of all GT patterns with ani = µi for 1 ≤ i ≤ n. We have the standard bijection
A 7→ Γ(A) from GTZ(µ) to Tab(µ), with the tableau Γ(A) uniquely specified by the
condition that for all i ≥ j, the number of i in row j equals NEij (with ai−1,i := 0).

Fix a subset F ⊂ {(i, j) : n ≥ i > j ≥ 1}. Consider the face of GT(µ) obtained by
setting NEij = 0 for (i, j) ∈ F and leaving all other inequalities untouched. We call this
the Kogan face1 K(µ, F). To each pair i > j, associate the simple transposition si−j ∈ Sn.
We list the elements of F in lexicographically increasing order: (i, j) precedes (i′, j′) ⇔
either i < i′, or i = i′ and j < j′. Denote the product of the corresponding si−j in this
order by σ(F). If len σ(F) = |F|, i.e., this word is reduced, we say that F is reduced and
set [2, Definition 5.1]:

v(F) = w0 σ(F)w0

For w ∈ Sn, let K(µ, w) := ∪K(µ, F), the union over reduced F for which v(F) = w. We
can now state [2, Corollary 5.19]:

Proposition 2.2. The bijection Γ : GTZ(µ) → Tab(µ) restricts to a bijection KZ(µ, w0w)
∼→

Dem(µ, w).

It was previously shown in [6] (for regular µ) and [18] (for w 312-avoiding) that
KZ(µ, w0w) and Dem(µ, w) have the same character. This weaker statement is however
inadequate for our present purposes.

1These are often called dual Kogan faces in the literature, with Kogan faces reserved for ones defined by
South-East equalities. We will not be needing this other kind here.
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Figure 3: (a) The big hive triangle ∆ for n = 5, with the three kinds of rhombi marked.
(b) The border labels of hives in Hive(λ, µ, ν) as functions of λ, µ, ν.

2.2 Hives

We begin with a quick overview. The big hive triangle ∆ is the array of Figure 3, with
(n + 1) vertices on each boundary edge, and (n − 2)(n − 1)/2 interior vertices. Given
λ = (λ1, λ2, · · · , λn) ∈ Rn, let |λ| = ∑i λi. Define the (n + 1)-tuple of partial sums
λ = (0, λ1, ∑2

i=1 λi, · · · , ∑n
i=1 λi) and the (n − 1)-tuple of successive differences ∂λ =

(λ2 − λ1, λ3 − λ2, · · · , λn − λn−1), so that ∂λ = λ.
For (λ, µ, ν) ∈ (Rn)3 with |λ|+ |µ| = |ν|, the hive polytope Hive(λ, µ, ν) is the set of

all labellings of the vertices of ∆ with real numbers such that: (i) the boundary labels are
λ (left edge, top to bottom), |λ|+ µ (bottom edge, left to right) and ν (right edge, top to
bottom) (figure 3) (ii) content(R) ≥ 0 for each rhombus R in ∆, where content(R) is
the sum of the labels on the obtuse angled vertices of R minus the sum of labels on its
acute angled vertices. A hive is an element of Hive(λ, µ, ν) for some λ, µ, ν. We note that
there are 3 types of rhombi in ∆ (figure 3), the NE slanted (in red), the SE slanted (in
green) and the vertical diamonds (in blue).

We now fix λ, µ, ν ∈ P [n] with |λ| + |µ| = |ν|. Since each h ∈ Hive(λ, µ, ν) is
an R-labelled triangular array (of size n + 1), its horizontal sections (marked in blue
in figure 4) form a sequence of vectors h0, h1, · · · , hn (listed from top to bottom), with
hi ∈ Ri+1. Consider the (“row-wise successive differences”) map h 7→ ∂h where ∂h is
the sequence of vectors ∂h1, ∂h2, · · · , ∂hn, thought of again as a triangular array (of size
n this time) (figure 4). One sees immediately that ∂h ∈ GT(µ) [1, Appendix], [19].

Note that each NE edge difference NEij of ∂h (§2.1) equals the content of a corre-
sponding NE-slanted rhombus Rij of h (figure 5). Thus NEij = 0 (in ∂h) if and only if
content(Rij) = 0 (in h). A rhombus with zero content is said to be flat.
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Figure 4: The hive on the left maps under ∂ to the GT pattern on the right (example
borrowed from [19])

R51 R52 R53 R54

R41 R42 R43

R31 R32

R21

Figure 5: (a) Labelling of North-East slanted rhombi (shown for n = 5). (b) A typical
configuration of rhombi in Fw.

Proposition 2.3. (1) ∂ : Hive(λ, µ, ν)→ GT(µ) is an injective, linear map.
(2) ∂h ∈ GTZ(µ)⇔ h ∈ HiveZ(λ, µ, ν). (3) Γ ◦∂ is a bijection between HiveZ(λ, µ, ν) and
{T ∈ Tab(µ) : b◦λ ∗ bT is a dominant word of weight ν}.

This proposition is easily verified [13]. Note that the last assertion implies that
|HiveZ(λ, µ, ν)| = c ν

λµ (and is a variation of proofs in [1], [17]).
Given F ⊂ {(i, j) : n ≥ i > j ≥ 1}, recall that K(µ, F) is the face of GT(µ) on

which NEij vanishes for all (i, j) ∈ F. The inverse image ∂−1 K(µ, F) is thus the face
{h ∈ Hive(λ, µ, ν) : Rij is flat in h for all (i, j) ∈ F}. We denote this (“hive Kogan”) face
by KHive(λ, µ, ν, F), and term it reduced if F is. For w ∈ Sn, define KHive(λ, µ, ν, w) :=
∂−1(K(µ, w)). Putting together Theorem 2.1 and Propositions 2.2, 2.3, we obtain our hive
description of the c ν

λµ(w):

Theorem 2.4. c ν
λµ(w) = |(Γ ◦∂)−1(Demν

λ(µ, w))| = # KHive
Z (λ, µ, ν, w0w).
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2.3 Right keys

The symmetry c ν
λµ = cν

µλ was first studied via hives in [3]. We briefly touch upon another
point-of-view stemming from Proposition 2.3, which leads to a bijective proof of the
general symmetry property c ν

λµ(w) = cν
µλ(w

−1). This uses Lascoux-Schutzenberger’s
notion of the right key of a tableau (or more generally of any word in the alphabet
{1, 2, · · · , n} - the right key is invariant under Knuth moves) [15]. Right keys of tableaux
correspond to certain permutations in Sn [15, Definition 2.12, Proposition 5.2] (actually
to minimal coset representatives of the stabilizer of the shape of the tableau).

By Proposition 2.3, an integral hive h ∈ HiveZ(λ, µ, ν) determines a tableau T =
Γ ◦∂(h) of shape µ. Consider now the “North-Easterly” version ∂NE of ∂, which takes
successive differences of labels along the NE − SW direction (red edges of Figure 4)
(see [19, Example 2.8] and [1, Appendix], whose hive-drawing conventions differ from
ours and from each other!). This produces a GT pattern ∂NE(h) of shape λ, which can
be interpreted as a contretableau T† of shape λ [1]. It can be shown that if w ∈ Sn
corresponds to the right key of T and w† to the right key of T † (or the unique element
of Tab(λ) in the Knuth equivalence class of T†), then w† = w−1 [13].

2.4 Hive Kogan faces for 312-avoiding permutations

Let w ∈ Sn be 312-avoiding. Then, w0w is 132-avoiding and there exists a unique reduced
Fw ⊂ {(i, j) : n ≥ i > j ≥ 1} such that v(Fw) = w0w (§2.1). Further, it has the following
form Fw = {(i, j) : p ≤ i ≤ n, 1 ≤ j ≤ mi} for some 1 ≤ p ≤ n, 1 ≤ mp ≤ mp+1 ≤ · · · ≤
mn with mi < i for all i [10, 18]. Pictorially, the union of the rhombi Rij, (i, j) ∈ Fw forms
a left-and-bottom justified region in the big hive triangle ∆ (figure 5). Thus, for such w,
KHive(λ, µ, ν, w0w) is just the single Kogan face KHive(λ, µ, ν, Fw) on which the Rij are
flat for all (i, j) ∈ Fw.

3 Increasable subsets for hives

Let λ, µ, ν ∈ Rn with |λ|+ |µ| = |ν| and let h ∈ Hive(λ, µ, ν). A subset S of the interior
vertices of ∆ is said to be increasable for h if those vertex labels of h can be simultaneously
increased by some ε > 0 to obtain another element of Hive(λ, µ, ν). Formally, let IS
denote the indicator function of S (1 on S and 0 elsewhere); then S is increasable if there
is an ε > 0 such that h′ = h + εIS ∈ Hive(λ, µ, ν). This notion is one of the central ideas
of Knutson-Tao’s proof of the saturation conjecture via hives [7, 1]:

Proposition 3.1. (Knutson-Tao) Let λ, µ, ν ∈ Rn be regular (i.e., λi 6= λj if i 6= j, and likewise
for µ, ν) with |λ| + |µ| = |ν|. Let h satisfy the following properties: (i) h is a vertex of the
hive polytope Hive(λ, µ, ν), (ii) h has no increasable subsets. Then each interior label of h is
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an integral linear combination of its boundary labels. In particular, if λ, µ, ν ∈ P [n], then
h ∈ HiveZ(λ, µ, ν).

3.1 Increasable subsets for hives in 312-avoiding Kogan faces

Let w be 312-avoiding and let Fw be as in §2.4. Let λ, µ, ν ∈ Rn with |λ|+ |µ| = |ν|. The
following simple observation is a crucial step in extending the Knutson-Tao method to
our problem.

Lemma 3.2. Let h ∈ KHive(λ, µ, ν, Fw) and let S be an increasable subset for h, say h′ =
h + εIS ∈ Hive(λ, µ, ν) for some ε > 0. Then h′ ∈ KHive(λ, µ, ν, Fw).

Proof. We will show that S is disjoint from the set of vertices of the rhombi Rij for (i, j) ∈
Fw. This would imply that the Rij remain flat in h′, which is the desired conclusion. This
is trivial if Fw is empty. If Fw is non-empty, then (n, 1) ∈ Fw. The rhombus Rn1 has three
vertices on the boundary, and these cannot be in S. The fourth vertex is acute-angled,
and if it belongs to S, then content(Rn1) < 0 in h′, a contradiction. Moving on to the
next rhombus Rn2 (if (n, 2) ∈ Fw), again three of its vertices cannot be in S since they
are either on the boundary or shared with Rn1. Neither can its fourth vertex, since it
is acute-angled as before. Proceed in this fashion, left-to-right along the rows, from the
bottom row to the top.

Remark 3.3. The following converse holds too. If KHive(λ, µ, ν, F) is a hive Kogan face
for which the conclusion of Lemma 3.2 holds for all λ, µ, ν ∈ Rn, then F = Fw for some
312-avoiding permutation w.

4 Proof of the main theorem

With Lemma 3.2 in place, we can use Knutson-Tao’s arguments to complete the proof of
Theorem 1.4 for w 312-avoiding.

Consider the set of all R-labellings of vertices of the big hive triangle ∆ (with the
boundary labels also allowed to vary) subject to (i) the inequalities: content(R) ≥ 0 for all
rhombi R in ∆, and (ii) the equalities: content(Rij) = 0 for all (i, j) ∈ Fw. This set forms
a polyhedral cone, denoted KHive( – , w0w). Given h ∈ KHive( – , w0w), consider the
projection π : KHive( – , w0w)→ (Rn)3 defined by π(h) = (λ, µ, ν), where the boundary
labels of h are λ, |λ|+ µ, ν as in Figure 3. The image of π is a polyhedral cone in R3n [20,
lecture 1], which we denote by Horn(w0w) (adapting the notation of [7]). For w = w0,
Horn(1) is the cone of spectra of triples (A, B, C) of n × n Hermitian matrices with
C = A + B [9].

We note that the saturation property (1.3) is equivalent to the statement that:

KHive
Z ( – , w0w) ∩ π−1(λ, µ, ν) is non-empty for all λ, µ, ν ∈ HornZ(w0w). (4.1)
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This follows from Theorem 2.4 and the scaling property:
KHive(pλ, pµ, pν, w0w) = p KHive(λ, µ, ν, w0w) for all positive real numbers p.

4.1 The largest lift map

Following [7, 1], choose a functional ζ on the cone KHive( – , w0w) which maps each hive
h to a generic positive linear combination of its vertex labels. Then, for each λ, µ, ν ∈
Horn(w0w), the maximum value of ζ on π−1(λ, µ, ν) is attained at a unique point; this
point will be called its largest lift. The map ` : Horn(w0w)→ KHive( – , w0w), (λ, µ, ν) 7→
largest lift of (λ, µ, ν), is continuous and piecewise-linear.

It is also clear that `(λ, µ, ν) is a vertex of KHive(λ, µ, ν, w0w), thereby satisfying the
first condition of Proposition 3.1. We claim that it also satisfies the second condition
there, i.e., that h = `(λ, µ, ν) has no increasable subsets. For if S is an increasable subset,
let h′ = h + εIS ∈ Hive(λ, µ, ν) for some ε > 0. By Lemma 3.2, h′ ∈ KHive(λ, µ, ν, w0w).
But ζ(h′) > ζ(h), violating maximality of ζ(h).

So Proposition 3.1 implies that for λ, µ, ν regular, each label of `(λ, µ, ν) is an integer
linear combination of the λi, µi, νi, 1 ≤ i ≤ n. As in [1, §4] and [7], by the continuity of `,
it follows that each piece of ` is a linear function of (λ, µ, ν) ∈ R3n with Z-coefficients.
As a corollary:

`(HornZ(w0w)) ⊆ KHive
Z (λ, µ, ν, w0w)

This proves Theorem 1.4 for w 312-avoiding.

4.2 Completing the proof

We now complete the proof of Theorem 1.4. If w is 231-avoiding, then w−1 is 312-
avoiding. Proposition 1.2(e) finishes the argument in this case.

To handle the remaining w, note that only the p = 2 case needs to be established
(in the notation of Theorem 1.4), with induction doing the rest. We sketch the contours
of the argument. It is more natural to work with the Lie algebra slnC here. Suppose
I1, I2 ⊂ {1, 2, · · · , n− 1} are such that si and sj commute for all i ∈ I1, j ∈ I2. Let I0 =

{1, 2, · · · , n− 1} − ⋃2
r=1 Ir. Let Wr be the subgroup of Sn generated by the {si : i ∈ Ir}

for r = 1, 2. Let µ be a dominant integral weight µ = ∑n−1
i=1 ciΛi of slnC, where Λi are

its fundamental weights. Define µ = µ0 + µ1 + µ2 where µr = ∑i∈Ir ciΛi for r = 0, 1, 2.
Let b(µr) denote the reverse row word of the highest weight tableau T◦µr of shape µr for
r = 0, 1, 2. The concatenation η = b(µ0) ∗ b(µ1) ∗ b(µ2) is a dominant word of weight µ

(§2).
Given wr ∈Wr for r = 1, 2 and w = w1w2, consider the Demazure crystal (cf. remarks

following Theorem 2.1) Dem(µ, w) := { f m1
i1

f m2
i2
· · · f mk

ik
η : mj ≥ 0}. where si1si2 · · · sik is a
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reduced word of w obtained by concatenating reduced words of w1 and w2. It follows
from the hypotheses and the properties of the crystal operators [16] that:

Dem(µ, w) = b(µ0) ∗Dem(µ1, w1) ∗Dem(µ2, w2)

Given dominant weights λ, ν of slnC, we decompose them likewise into λr, νr for r =
0, 1, 2. Let π ∈ Dem(µ, w), say π = b(µ0) ∗ π1 ∗ π2 with πr ∈ Dem(µr, wr) for r = 1, 2.
Then, π ∈ Demν

λ(µ, w) ⇔ λ0 + µ0 = ν0 and πr ∈ Demνr

λr(µr, wr) for r = 1, 2. We
have thus proved that c ν

λµ(w) = δλ0+µ0,ν0 cν1

λ1 µ1(w1) cν2

λ2 µ2(w2). It is easy to see that this

equation establishes that if w1 and w2 have the saturation property, then so does w. This
concludes the proof of Theorem 1.4.

4.3 Concluding remarks

For n = 4, the only permutations in S4 which are not of the form of Theorem 1.4 are
3412, 3142, 2413, 4231 (in one-line notation). For w = 3142, we have w0w = 2413 with
reduced decompositions s3s1s2 = s1s3s2. There is a unique reduced F such that v(F) =
2413, but the rhombi Rij, (i, j) ∈ F are not left-and-bottom justified, and Lemma 3.2 fails
(Remark 3.3). For the other three w, there exist two reduced faces each. In these cases,
KHive( – , w0w) is a union of two polyhedral cones.

While our methods do not apply to a general w ∈ Sn (beyond those covered by
Theorem 1.4), we do not know if the saturation property fails there. In particular, a pre-
liminary search using Sage for n = 4, 5 and small λ, µ, ν, k did not turn up any counter-
examples.
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