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Abstract. The Bender–Knuth involutions on Young tableaux are known to coincide
with the tableau switching on two adjacent letters, together with a swapping of those
letters. Using the shifted tableau switching due to Choi–Nam–Oh (2019), we introduce
a shifted version of the Bender–Knuth operators and define a shifted version of the
Berenstein–Kirillov group. The actions of the cactus group, due to the author, and
of the shifted Berenstein–Kirillov group on the Gillespie–Levinson–Purbhoo straight-
shaped shifted tableau crystal (2017, 2020) coincide. Following the works of Halacheva
(2016, 2020), and Chmutov–Glick–Pylyavskyy (2016, 2020), on the relation between
the actions of the Berenstein–Kirillov group and the cactus group on the crystal of
straight-shaped Young tableaux, we show that the shifted Berenstein–Kirillov group is
isomorphic to a quotient of the cactus group. Not all the known relations that hold in
the classic Berenstein–Kirillov group need to be satisfied by the shifted Bender–Knuth
involutions, but the ones implying the relations of the cactus group are verified. Hence
we have an alternative presentation for the cactus group via the shifted Bender–Knuth
involutions.
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1 Introduction

The Bender–Knuth moves ti are well known involutions on semistandard Young tableaux,
that act on adjacent letters i and i + 1 reverting their multiplicities, and leaving the oth-
ers unchanged [1]. The tableau switching, due to Benkart, Sottile and Stroomer [2] is
an algorithm on pairs of semistandard Young tableaux (S, T), with T extending S, that
moves one through the other, obtaining a pair (ST, ST) component-wise Knuth equiva-
lent to (T, S). The tableau switching of two adjacent letters, together with a swapping
of those letters, coincides with the classic Bender–Knuth involutions [2]. Berenstein and
Kirillov [3] studied relations satisfied by the involutions ti, introducing the Berenstein–
Kirillov group BK (or Gelfand–Tsetlin group), the free group generated by ti, modulo
the relations they satisfy on semistandard Young tableaux of any shape [4, 5]. Chmutov,
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Glick and Pylyavskyy [5], using semistandard growth diagrams, found precise implica-
tions between sets of relations in the cactus group Jn [12] and the Berenstein–Kirillov
group BKn, the subgroup of BK generated by t1, . . . , tn−1, concluding that BKn is iso-
morphic to a quotient of the cactus group Jn, and yielding a presentation for the cactus
group in terms of Bender-Knuth generators. Halacheva has remarked [11, Remark 3.9]
that this isomorphism may also be obtained by noting the coincidence of the actions
of both groups on a crystal of semistandard Young tableaux of straight shape, filled in
[n] := {1< . . .<n} [10, 11].

Bender–Knuth involutions have been defined by Stembridge for shifted tableaux in
[15, Section 6], but they are not compatible with the canonical form of those tableaux
(Section 2). Motivated by the coincidence of the tableau switching of two adjacent let-
ters, on type A tableaux, with the classic Bender–Knuth involutions, we introduce a
shifted version of the Bender–Knuth operators, here denoted ti, for shifted semistan-
dard tableaux, using the shifted tableau switching introduced by Choi, Nam, and Oh
[6]. Alternatively, we may use type C infusion [16] together with the semistandardiza-
tion [13]. Using the shifted Bender–Knuth involutions, we define a shifted version of
the Berenstein–Kirillov group, denoted SBK, with SBKn being defined analogously.
The shifted Bender–Knuth involutions satisfy in SBK all the relations that the Bender–
Knuth involutions are known to satisfy in BK, except (t1t2)6 = 1, which does not need
to hold (see Remark 4.7). This has no effect on the results that follow, as this relation
does not follow from the cactus group relations, similarly to the case with the classic
Bender–Knuth involutions [5, Remark 1.9].

Following the work in [5, 10, 11], we show that the action of SBKn on the shifted
tableau crystal of Gillespie, Levinson and Purbhoo [8] ShST(λ, n), the crystal-like struc-
ture on shifted semistandard tableaux of straight shape λ and filled with [n]′ := {1′ <
1 < · · · < n′ < n}, coincides with the one of Jn on the same crystal [14], concluding
that SBKn is isomorphic to a quotient of the cactus group, and due to [5, Theorem 1.8]
we have in (4.1) another presentation of the cactus group via the shifted Bender–Knuth
involutions.

This paper is organized as follows. Section 2 provides the basic definitions and
algorithms on shifted tableaux, in particular, the reversal and evacuation, as well as the
main concepts regarding the shifted tableau switching [6]. In Section 3 we briefly recall
the basic structure of the shifted tableau crystal [8], and an action of the cactus group
[14]. In Section 4, we introduce the shifted Bender–Knuth operators ti (Definition 4.1),
using the shifted tableau switching, and then define a shifted Berenstein–Kirillov group.
We then prove the main result (Theorem 4.10) stating that the shifted Berenstein–Kirillov
group is isomorphic to a quotient of the cactus group.

This is an extended abstract of a full paper to appear.



Shifted Bender–Knuth moves and a shifted Berenstein–Kirillov group 3

2 Background

A strict partition is a sequence λ = (λ1 > · · ·> λk) of positive integers, called the parts
of λ, displayed in decreasing order. A strict partition λ is identified with its shifted shape
S(λ), a diagram whose i-th row have λi boxes, with each row being shifted i− 1 units to
the right. Skew shapes are defined as expected, with shapes of the form λ/∅ being called
straight. A shifted shape λ lies naturally in the ambient triangle of the shifted staircase
shape δ = (λ1, λ1 − 1, . . . , 1). We define the complement of λ to be the strict partition λ∨

whose set of parts is the complement of the set of parts of λ in {λ1, λ1 − 1, . . . , 1}. In
particular, ∅∨ = δ. We consider the primed alphabet [n]′ := {1′<1< · · ·<n′<n}.

Given strict partitions λ and µ such that µ ⊆ λ, a shifted semistandard tableau T of
shape λ/µ is a filling of λ/µ with letters in [n]′ such that the entries are weakly in-
creasing in each row and in each column, and there is at most one i per column and
one i′ per row, for any i ≥ 1. The reading word w(T) of a shifted tableau is obtained by
reading its entries from left to right, going bottom to top. The weight of T is defined
as the weight of its word. A word or a shifted tableau are said to be standard if their
weight is (1, . . . , 1). Words and tableaux will be presented in canonical form, i.e., the first
occurrence of each letter i or i′ must be unprimed [8, Definition 2.1]. The set of shifted
semistandard tableaux of shape λ/µ, on the alphabet [n]′, in canonical form, is denoted
by ShST(λ/µ, n). For instance, the following is a shifted semistandard tableau of shape
(6, 3, 1)/(3, 1), with its word and weight:

T = 1 1 2′

2 2′

3

w(T) = 322′112′ wt(T) = (2, 3, 1).

2.1 Shifted evacuation and reversal

The shifted jeu de taquin is defined similarly to the one for ordinary Young tableaux,
with an exception for certain slides on the main diagonal (see [17]). The rectification
rect(T) of T is the tableau obtained by applying any sequence of inner slides until a
straight shape is obtained (it does not depend on the chosen sequence of slides). Two
tableaux are said to be shifted Knuth equivalent if they have the same rectification [17,
Theorem 6.4.17]. An operator on shifted tableaux that commutes with the shifted jeu de
taquin is called coplactic. Two shifted semistandard tableaux are shifted dual equivalent (or
coplactic equivalent) if they have the same shape after applying any sequence (including
the empty one) of shifted jeu de taquin slides to both.

Given T ∈ SShT(λ/µ, n), its complement in [n]′ is the tableau cn(T) obtained by reflect-
ing T along the anti-diagonal in its shifted staircase shape, while complementing the en-
tries by i 7→ (n− i+ 1)′ and i′ 7→ n− i+ 1. Note that if T is of shape λ/µ, then cn(T) is of
shape µ∨/λ∨, and if wt(T) = (wt1, . . . , wtn), then wt(cn(T)) = wt(T)rev := (wtn, . . . , wt1).
Haiman [9, Theorem 2.13] showed that, given T ∈ ShST(λ/µ, n), there exists a unique
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tableau Te, the reversal of T, that is shifted Knuth equivalent to cn(T) and dual equiv-
alent to T. If T is straight-shaped, Te is known as the evacuation of T and denoted
evac(T) = rect(cn(T)). Since the operator cn preserves shifted Knuth equivalence [17,
Lemma 7.1.4], the reversal operator is the coplactic extension of evacuation, in the sense
that, we may first rectify T, then apply the evacuation operator, and then perform outer
jeu de taquin slides, in the reverse order defined by the previous rectification, to get a
tableau Te with the same shape of T. From [9, Corollaries 2.5, 2.8 and 2.9], this tableau
Te is shifted dual equivalent to T, besides being shifted Knuth equivalent to cn(T).

2.2 Shifted tableau switching

In this section we recall the shifted tableau switching algorithm [6], which will be used
later in Section 4 to introduce a shifted version of the Bender–Knuth involutions. Unlike
the tableau switching algorithm for type A tableaux [2], the shifted version depends on
the order in which the switches are performed, similarly to the infusion map [16]. As
remarked in [6, Remark 8.1], the output of this algorithm can be recovered by applying
the semistandardization [13] on the type C infusion map of standardized tableaux [16],
since the latter coincide with the shifted tableau switching on standard tableaux.

We begin with the definitions of the shifted tableau switching for pairs (A, B) of
border strip shifted tableaux, with B extending A, and for pairs of shifted semistandard
tableaux (S, T), with T extending S. We omit most of the details and proofs, and refer
to [6]. We write i when referring to the letters i and i′ without specifying whether they
are primed. Given T ∈ ShST(λ/µ, n), we denote by Ti the border strip obtained from T
considering only the letters {i′, i}.

Given S(λ/µ) a double border strip, i.e., a shape not containing a subset of the form
{(i, j), (i + 1, j + 1), (i + 2, j + 2)}, a shifted perforated a-tableau is a filling of some of the
boxes of S(λ/µ) with letters a, a′ ∈ [n]′ such that no a′-boxes are south-east to any a-
boxes, there is at most one a per column and one a′ per row, and the main diagonal has at
most one a. Given a perforated a-tableau A and a perforated b-tableau B, the pair (A, B)
is said to be a shifted perforated (a, b)-pair of shape λ/µ, for S(λ/µ) a double border strip,
if sh(A)t sh(B) = S(λ/µ). If A and B are perforated tableaux, we say that B extends A if
sh(B) extends sh(A), denoting by A t B the filling obtained by putting A and B next to
each other. If (A, B) is a shifted perforated (a, b)-pair, one can interchange an a-box with
a b-box in At B subject to the moves depicted in Figure 1, called the (shifted) switches. A
a-box is said to be fully switched if it can’t be switched with any b-boxes, and that A t B
if fully switched if every a-box is fully switched.

Definition 2.1 ([6]). Let T = A t B be a perforated (a, b)-pair not fully switched. The
shifted switching process from T to ςm(T), with m the least integer such that ςm(T) is fully
switched, is obtained as follows: choose the rightmost a-box in A that is adjacent on
the north or west to a b-box, if it exists, otherwise, choose the bottommost a′-box in
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If an a-box is adjacent to If an a-box is adjacent to
a unique b-box two b-boxes

(S1) a b 7→ b a (S2) a
b
7→ b

a
(S5) a b′

b
7→ b′ a

b
(S6) a b

b
7→ b b

a

(S3) a b′

b
7→ b b

a
(S4) a a

b
7→ b a′

a
(S7) a a b

b
7→ b a′ b

a

Figure 1: The shifted switches [6, Section 3].

the same conditions, and then apply the adequate switch, obtaining ς(T). The process
is repeated until ςm(T) is fully switched, and in this case, we denote AB := (ςm(T))a

and AB := (ςm(T))b, the perforated tableaux obtained from ςm(T) considering only the
letters {a′, a} and {b′, b} respectively.

This process is well defined and it is an involution [6, Theorem 3.5]. It may be ex-
tended to pairs of shifted semistandard tableaux (S, T), with T extending S, by applying
the shifted switching process sequentially to the shifted pairs (Sm, T1), (Sm, T2), . . .,
(Sm, Tn),. . ., (S1, T1), (S1, T2),. . ., (S1, T1), where m and n are the maximum entries of S
and T. This process on pairs of shifted semistandard tableaux is also well defined [6,
Theorem 3.6] and it is an involution [6, Theorem 4.3]. Moreover, it is compatible with
standardization [6, Remark 3.8] and with canonical form.

Example 2.2. The following illustrates the shifted tableau switching on a pair of tableaux:

(S, T) = 1 1 1 1
2 1

(S1)−−→ 1 1 1 1
1 2

(S1)−−→ 1 1 1 1
1 2

(S7)−−→ 1 1′ 1 1
1 2

(S1)−−→ 1 1 1′ 1
1 2

= (ST, ST).

Another algorithm for tableaux of straight shape, that coincides with the shifted
evacuation (Section 2.1), using the shifted tableau switching, is presented in [6]. Using
an auxiliary alphabet, it applies the shifted switching process sequentially to the pairs
(T1, T2 t · · · t Tn), (T2, T3 t · · · t Tn),. . ., (Tn−1, Tn), for T ∈ ShST(ν, n). This algorithm
coincides with the shifted evacuation for straight-shaped tableaux [6, Theorem 5.6]. It
also may be modified to obtain a restriction evack to the alphabet {1, . . . , k}′, for k ≤ n, by
applying evac to T1 t · · · t Tk and maintaining Tk+1 t · · · t Tn unchanged. Similarly to
the ordinary Young tableaux case [2, Section 5], the shifted evacuation algorithms, may
be extended to skew shapes, by performing the adequate shifted switching algorithms
on a given skew shape. We denote these operators by ẽvac and ẽvack. Like in type
A, the operator ẽvac is different from the reversal (Section 2.1), as in general, given
T ∈ ShST(λ/µ, n), ẽvac(T) does not need to be shifted Knuth equivalent to cn(T).
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3 Shifted tableau crystal and a cactus group action

Gillespie, Levinson and Purbhoo [8] introduced a crystal-like structure on ShST(λ/µ, n).
The author shows in [14] that the cactus group acts naturally on this structure via the
restrictions of the shifted Schützenberger involution to primed subintervals of [n].

The shifted tableau crystal consists on a crystal-like structure on ShST(λ/µ, n), to-
gether with primed and unprimed raising and lowering operators Ei, E′i , Fi and F′i ,
lenght functions ϕi and εi, for each i ∈ I := [n− 1], and a weight function. For the sake
of brevity, we omit these definitions and refer to the original work in [7, 8]. We use the
notation ShST(λ/µ, n) for both the set and its crystal-like structure. It may be regarded
as a directed acyclic graph with weighted vertices, and i-coloured labelled double edges,
solid ones for unprimed operators, and dashed ones for primed operators (see Figure 2).
This graph is partitioned into i-strings, which are the {i′, i}-connected components of
ShST(λ/µ, n), for each i ∈ I. There are two possible arrangements for these strings [7,
Section 3.1] [8, Section 8]: separated strings, consisting of two i-labelled chains of equal
length, connected by i′-labelled edges, and collapsed strings a double chain of both i- and
i′-labelled edges. Additionally, ShST(λ/µ, n) decomposes into connected components,
each one having a unique highest weight element (an element for which all primed and
unprimed raising operators are undefined) corresponding to a LRS tableau, and a unique
lowest weight element (defined analogously with lowering operators), the reversal of it.
Thus, each of these connected components is isomorphic, via rectification, to ShST(ν, n),
for some strict partition ν [8, Corollary 6.5].

3.1 The Schützenberger involution and the crystal reflection operators

The Schützenberger or Lusztig involution is defined on the shifted tableau crystal [7,
Section 2.3.1] in the same fashion as for type A Young tableau crystal. It is realized by
the shifted evacuation (for straight shapes) or the shifted reversal (for skew shapes). The
shifted crystal reflection operators σi, for i ∈ I, were introduced in [14], using the crystal
operators. They coincide with the restriction of the Schützenberger involution to the
intervals of the form {i, i + 1}′.
Proposition 3.1 ([14]). There exists a unique map of sets η : ShST(ν, n) −→ ShST(ν, n) that
satisfies the following, for all T ∈ ShST(ν, n) and for all i ∈ I:

1. E′iη(T) = ηF′n−i(T) and Eiη(T) = ηFn−i(T).
2. F′i η(T) = ηE′n−i(T) and Fiη(T) = ηEn−i(T).
3. wt(η(T)) = wt(T)rev.

This map, called the Schützenberger or Lusztig involution, is defined on ShST(λ/µ, n)
by extending it to its connected components. It coincides with the evacuation evac in
ShST(ν, n), and with the reversal e on the connected components of ShST(λ/µ, n). The
map η is a coplactic and a weight-reversing, shape-preserving involution.
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Let [i, j] := {i < · · · < j}, for 1 ≤ i < j ≤ n, and let θi,j denote the longest per-
mutation in S[i,j] embedded in Sn. Given T ∈ ShST(λ/µ, n) and 1 ≤ i < j ≤ n, let
Ti,j := Ti t · · · t T j. We define the restriction of the Schützenberger involution to the in-
terval [i, j]′ as ηi,j(T) := T1,i−1 t η(Ti,j) t T j+1,n. In particular, we have η1,n = η and
ηi,i+1 = σi. The shifted crystal reflection operators σi, for i ∈ I, introduced in [14, Def-
inition 4.3] using the shifted tableau crystal operators, are involutions which coincide
with ηi,i+1, the restriction of the Schützenberger involution to the intervals of the form
{i, i + 1}′. Unlike the type A case, the reflection operators σi do not define an action
of the symmetric group Sn on ShST(λ/µ, n) as the braid relations (σiσi+1)

3 = 1 do not
need not hold.

3.2 An action of the cactus group

Halacheva [10] has shown that there is a natural action of the cactus group Jg on any
g-crystal, for g a complex, reductive, finite-dimensional Lie algebra. In particular, the
cactus group Jn (corresponding to g = gln) acts internally on the type A crystal of semis-
tandard Young tableux, via the partial Schützenberger involutions, or partial evacuations
for straight shapes. Following a similar approach, the author has shown in [14] that there
is a natural action of the cactus group Jn on ShST(λ/µ, n). This action is realized by the
restricted shifted Scützenberger involutions ηi,j.

Definition 3.2 ([12]). The n-fruit cactus group Jn is the free group with generators si,j, for
1 ≤ i < j ≤ n, subject to the relations:

s2
i,j = 1, si,jsk,l = sk,lsi,j for [i, j] ∩ [k, l] = ∅, si,jsk,l = si+j−l,i+j−ksi,j for [k, l] ⊆ [i, j].

(3.1)

There is an epimorphism Jn −→ Sn, sending si,j to θi,j. The kernel of this surjection is
known as the pure cactus group (see [12, Section 3.4]). The first and third relations ensure
that we may only consider generators of the form s1,k, since any si,j may be written as

si,j = s1,js1,j−i+1s1,j. (3.2)

Theorem 3.3 ([14, Theorem 5.7]). There is a natural action of the n-fruit cactus group Jn on
the shifted tableau crystal ShST(λ/µ, n) given by the group homomorphism φ : si,j 7→ ηi,j, for
1 ≤ i < j ≤ n.

Recall that evacj(T) = evac(T1,j) t T j+1,n, for T ∈ ShST(ν, n). As a consequence of φ

being an homomorphism, we have the next result.

Corollary 3.4 ([14, Corollary 5.8]). Let T ∈ ShST(λ/µ, n) and 1 ≤ i < j ≤ n. Then,
ηi,j(T) = η1,jη1,j−i+1η1,j(T). In particular, for T a straight-shaped tableau, we have ηi,j(T) =
evacjevacj−i+1evacj(T).
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The identities (3.2) and η1,i = evaci on straight-shaped tableaux incur the next result.

Corollary 3.5. There is a natural action of the n-fruit cactus group on the shifted tableau crystal
ShST(ν, n), given by the group homomorphism s1,i 7→ evaci, for i ∈ I.

4 A shifted Berenstein–Kirillov group

We use the shifted Bender–Knuth operators to introduce a shifted Berenstein–Kirillov
group. Following the works of Halacheva [10, 11] and Chmutov, Glick and Pylyavskyy
[5], we then show that this group is isomorphic to a quotient of the cactus group and
exhibit an alternative presentation for the cactus group.

4.1 Shifted Bender–Knuth involutions

We now introduce the shifted Bender–Knuth moves ti. These operators differ from the ones
introduced by Stembridge [15, Section 6], which are not compatible with canonical form.
We first fix some notation. Given i ∈ I = [n− 1], recall that θi ∈ Sn denotes the simple
transposition (i, i + 1). We extend θi to [n]′ by putting θi(x′) := (θi(x))′, for x ∈ [n].

Definition 4.1. Given T ∈ ShST(λ/µ, n) and i ∈ I, we define the shifted Bender–Knuth
move ti as ti(T) := θi ◦ SPi,i+1(T), where SPi,i+1(T) is obtained from T by applying the
shifted tableau switching to the pair (Ti, Ti+1), leaving the remaining letters unchanged.

Example 4.2. Let T = 1 1 2′ 2
2 3′

3

. Then, we have:

1 1 2′ 2
2 3′

3

(S5)−−→ 1 2′ 1 2
2 3′

3

(S1)−−→ 1 2′ 2 1
2 3′

3

(S3)−−→ 2 2 2 1
1 3′

3

θ1−→ 1 1 1 2
2 3′

3

= t1(T).

1 1 2′ 2
2 3′

3

(S3)−−→ 1 1 2′ 2
3 3

2

(S2)−−→ 1 1 3 2
3 2′

2

θ2−→ 1 1 2 3
2 3′

3

= t2(T).

The operators ti satisfy t2i = 1 and titj = tjti, for |i − j| > 1, and they act via θi on
the weight of a tableau. Like the case in type A, they are not coplactic, and, in general,
ti 6= σi (although t1 and σ1 coincide on straight-shaped tableaux). Moreover, ti(T) does
not need to be in the same i-string as T (see Figure 2). We define the shifted promotion
operator pi as pi(T) := titi−1 · · · t1(T), for T ∈ ShST(λ/µ, n) and i ∈ I.

Proposition 4.3. Given T ∈ ShST(λ/µ, n) and i ∈ I, we have ẽvaci+1(T) = p1p2 · · · pi(T).
In particular, for T ∈ ShST(ν, n) we have η1,i+1(T) = evaci+1(T) = p1p2 · · · pi(T).

Similar to ηi,j, we may define the restriction of ẽvac to the interval [i, j]′ by ẽvaci,j(T) :=
T1,i−1 t ẽvac(Ti,j) t T j+1,n. However, these operators do not need to satisfy the relation
ẽvaci,j = ẽvacjẽvacj−i+1ẽvacj, unlike the operators ηi,j (see Corollary 3.4).
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Figure 2: An example of the action of t2 on the shifted tableau crystal graph
ShST((3, 1)/(1), 4), which has two connected components.

4.2 The Berenstein–Kirillov group

The Bender–Knuth moves ti, for i ∈ I, are involutions on semistandard Young tableaux
filled in [n], that act only on the letters {i, i + 1}, reverting their weight [1]. They are
known to coincide with the tableau switching on type A on two consecutive letters [2].
The Berenstein–Kirillov group BK (or Gelfand–Tsetlin group), is the free group generated by
these involutions ti, for i > 0, modulo the relations they satisfy on semistandard Young
tableaux of any shape [4, 3, 5]. The following are some of the relations known to hold in
BK [3, Corollary 1.1]

t2
i = 1, titj = tjti, for |i− j| > 1, (t1t2)

6 = 1, (t1qi)
4 = 1, for i > 2,

where qi := t1(t2t1) · · · (titi−1 · · · t1), for i ≥ 1, are involutions. Let qk,j := qj−1qj−kqj−1,
for k < j. In particular, qi = q1,i+1. Another relation was found in [5, Theorem 1.6],
which generalizes the last one:

(tiqj,k)
2 = 1, for i + 1 < j < k.

Let BKn be the subgroup of BK generated by t1, . . . , tn−1. The involutions qi, for i ∈ I,
provide another set of generators, and their action on straight-shaped Young tableaux
coincide with the one of the restriction of the Schützenberger involution to [i + 1] [3,
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Remark 1.3]. It was shown in [5], using semistandard growth diagrams, that BKn is
isomorphic to a quotient of the cactus group. This result could also be derived by noting
the coincidence of the actions of Jn [10] and BKn on straight-shaped semistandard Young
tableaux as noted in [11, Remark 3.9].

Theorem 4.4. The group BKn is isomorphic to a quotient of Jn, as a result of the following being
group epimorphisms from Jn to BKn:

1. si,j 7→ qi,j [5, Theorem 1.4].
2. s1,j 7→ qj−1 [3, Remark 1.3], [10, Section 10.2], [11, Remark 3.9].

Chmutov, Glick and Pylyavskyy [5] established an equivalence between relations
that are satisfied in BKn and the ones of the cactus group Jn (3.1), thus obtaining an
alternative presentation for the latter via the Bender–Knuth involutions.

Theorem 4.5 ([5, Theorem 1.8]). The relations

t2
i = 1, titj = tjti, for |i− j| > 1, (tiqk−1qk−jqk−1)

2 = 1, for i + 1 < j < k,

where qi := t1(t2t1) · · · (titi−1 · · · t1), are equivalent to the cactus group relations (3.1) satisfied
by the maps qi,j

q2
i,j = 1, qi,jqk,l = qi+j−l,i+j−kqi,j, for i ≤ k < l ≤ j, qi,jqk,l = qk,lqi,j, for j < k.

4.3 A shifted Berenstein–Kirillov group and the cactus group

Similar to the definition of the Berenstein–Kirillov group, we consider SBK to be the
free group generated by the shifted Bender–Knuth involutions ti, for i > 0, modulo the
relations they satisfy when acting on shifted semistandard tableaux of any shape. We
call it the shifted Berenstein–Kirillov group, and consider its subgroup SBKn generated
by t1, . . . , tn−1. We define the involutions qi := t1(t2t1) · · · (titi−1 · · · t1), for i ∈ I, which
coincide with evaci+1 on straight-shaped shifted tableaux. We also set qi,j := qj−1qj−iqj−1,
for i < j. In particular, q1,j = qj−1, for j > 1. We remark that, in general, ẽvaci,j 6= qi,j.
However, Corollary 3.4 ensures that qi,j ∈ SBK is realized by ηi,j when acting on straight-
shaped tableaux.

Proposition 4.6. The following relations hold on SBK:
1. t2i = 1, for i > 1.
2. titj = tjti, for |i− j| > 1.
3. (tiqj,k)

2 = 1, for 2 ≤ i + 1 < j < k. In particular, (t1qi)
4 = 1, for i > 2.

Remark 4.7. The operators ti on shifted tableaux do not need to satisfy the relation
(t1t2)

6 = 1 in SBK, as the next example shows:

T = 1 1 2′ 2 3
2 3′ 3

3

6= 1 1 2′ 3′ 3
2 2 3

3

= (t1t2)
6(T).
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This has no effect in the next results, as the said relation does not follow from the cactus
group relations (3.1), similarly to the case with the classic Bender–Knuth involutions [5,
Remark 1.9].

Lemma 4.8. As elements of SBK, we have

t1 = q1, t2 = q1q2q1, ti = qi−1qiqi−1qi−2, for i > 2.

Consequently, q1, . . . , qn−1 are generators for SBKn.

Theorem 4.9. There is a natural action of SBKn on ShST(ν, n), given by the group homomor-
phism qi 7→ evaci+1, which coincides with the action of Jn as defined in Corollary 3.5.

Theorem 4.10 (Main result). The map ψ : si,j 7→ qi,j is an epimorphism from Jn to SBKn, for
1 ≤ i < j ≤ n. Hence SBKn is isomorphic to Jn/ ker ψ.

Proof. Lemma 4.8 ensures that qi are generators for SBKn, for i ∈ I. Since qi = ψ(s1,i)
and thus qi,j = ψ(s1,j−1s1,j−is1,j−1), (3.2) ensures that ψ is a surjection. Theorem 4.9 states
that qi acts as evaci+1 on straight-shaped tableaux, hence it follows from Corollary 3.5
that ψ is an homomorphism. Thus, SBKn is isomorphic to the quotient of Jn by ker ψ.

Theorem 4.5, which is stated in terms of group generators and not of specific opera-
tors, ensures that the relations in Proposition 4.6 are equivalent to

q2
i,j = 1, qi,jqk,lqi,j = qi+j−l,i+j−k, for i ≤ k < l ≤ j, qi,jqk,l = qk,lqi,j, for j < k.

This means that the generators ti, for i ∈ I, provide an alternative presentation for Jn:

Jn = 〈ti, i ∈ I | t2i = 1, titj = tjti, if |i− j| > 1, (tiqj,k)
2 = 1, for i + 1 < j < k〉. (4.1)
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