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Pavel Galashin∗1 and Thomas Lam†2

1Department of Mathematics, University of California, Los Angeles
2Department of Mathematics, University of Michigan, Ann Arbor

Abstract. We relate the mixed Hodge structure on the cohomology of open positroid
varieties (in particular, their Betti numbers over C and point counts over Fq) to Khovanov–
Rozansky homology of the associated links. We deduce that the mixed Hodge poly-
nomials of top-dimensional open positroid varieties are given by rational q, t-Catalan
numbers. Via the curious Lefschetz property, this implies the q, t-symmetry and uni-
modality properties of rational q, t-Catalan numbers. We show that the q, t-symmetry
phenomenon is a manifestation of Koszul duality for category O, and discuss relations
with equivariant derived categories of flag varieties, and open Richardson varieties.
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1 Introduction

The Poincaré polynomial of the complex Grassmannian Gr(k, n) is well known to be
given by the Gaussian polynomial [nk]q. The number of points of Gr(k, n) over a finite
field Fq is given by the same polynomial. The reason these two polynomials coincide
is that the mixed Hodge structure on the cohomology of Gr(k, n) is pure. The situation
is different when one considers the top-dimensional positroid variety Π◦k,n ⊂ Gr(k, n),
introduced in [18] building on the results of [25]. The space Π◦k,n consists of row spans
of full rank k× n matrices whose cyclically consecutive maximal minors are all nonzero.
It turns out that the Poincaré polynomial and the point count of Π◦k,n are given by two
different q-analogs of (rational) Catalan numbers: one of our main results is that when
gcd(k, n) = 1, the Poincaré polynomial of Π◦k,n is given by ∑P∈Dyckk,n−k

qarea(P) while the

number of points of Π◦k,n over Fq equals 1
[n]q

[nk]q, up to a simple factor. The mixed Hodge

structure on H•(Π◦k,n) is non-pure, and we show that its bigraded Poincaré polyno-
mial P(Π◦k,n; q, t) coincides with the rational q, t-Catalan number Ck,n−k(q, t) introduced
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Figure 1: Computing the rational q, t-Catalan number C3,5(q, t).

in [9, 21]. Our proof proceeds via relating both sides to Khovanov–Rozansky knot ho-
mology [17]. Our results apply more generally to arbitrary positroid and Richardson
varieties.

2 Positroid varieties and Catalan numbers

Rational q, t-Catalan numbers. Let a and b be coprime positive integers. The rational
q, t-Catalan number Ca,b(q, t) ∈ N[q, t] was introduced by Loehr–Warrington [21], gener-
alizing the work of Garsia–Haiman [9]. It is defined as follows:

Ca,b(q, t) := ∑
P∈Dycka,b

qarea(P)tdinv(P), (2.1)

where Dycka,b is the set of lattice paths P inside a rectangle of height a and width b that
stay above the diagonal, area(P) is the number of unit squares fully contained between
P and the diagonal, and dinv(P) is the number of pairs (h, v) satisfying the following
conditions: h is a horizontal step of P, v is a vertical step of P that appears to the right of
h, and there exists a line of slope a/b (parallel to the diagonal) intersecting both h and v.
For example, Figure 1 shows that

C3,5(q, t) = q4 + q3t + q2t2 + q2t + qt3 + qt2 + t4. (2.2)

Positroid varieties in the Grassmannian. The Grassmannian Gr(k, n) is the space of
linear k-dimensional subspaces of Cn. Alternatively, it can be identified with the space
of full rank k × n matrices modulo row operations. Building on Postnikov’s cell de-
composition [25] of its totally nonnegative part, Knutson–Lam–Speyer [18] constructed
a stratification Gr(k, n) =

⊔
f∈Sk,n

Π◦f of the Grassmannian into (open) positroid varieties.
Roughly speaking,1 each positroid variety Π◦f corresponds to a permutation f ∈ Sn such
that #{1 ≤ i ≤ n | f (i) < i} = k; the set of such permutations is denoted by Sk,n. For

1More precisely, positroid varieties are in bijection with decorated permutations, where a decoration of
f is an arbitrary coloring of fixed points of f into black and white colors. The actual set Sk,n consists of
decorated permutations f satisfying #{1 ≤ i ≤ n | f (i) < i}+ #{black fixed points of f } = k. The most
interesting special case for us occurs when f is a single cycle, where the decoration is trivial.
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each f ∈ Sk,n, the space Π◦f is a smooth algebraic variety. Two basic questions one can
ask about such a space are: what is the number of points in Π◦f (Fq) over a finite field Fq

with q elements, and what is the cohomology of Π◦f considered as a variety over C?
These two questions turn out to be closely related to each other through the work

of Deligne [4] on mixed Hodge structures, explored in the case of cluster varieties in [19].
Since the work of Scott [27], positroid varieties have been expected to admit a natu-
ral cluster algebra structure arising from Postnikov diagrams. We recently proved this
conjecture building on the results of [20, 23, 28].

Theorem 2.1 ([7]). The coordinate ring of each positroid variety Π◦f is isomorphic to the associ-
ated cluster algebra.

This result allows one to study Π◦f as a cluster variety, in which case Deligne’s mixed
Hodge structure can be explored using the machinery developed by Lam–Speyer [19].
The mixed Hodge structure endows the cohomology H•(Π◦f ) of Π◦f with a second grad-
ing, and the suitably renormalized Poincaré polynomial P(Π◦f ; q, t) of this bigraded vec-
tor space answers both of the above questions simultaneously:

Theorem 2.2 ([19, 7]). For each f ∈ Sk,n, the bigraded Poincaré polynomial P(Π◦f ; q, t) ∈
N[q

1
2 , t

1
2 ] satisfies the following properties:

(i) q, t-symmetry: P(Π◦f ; q, t) = P(Π◦f ; t, q);
(ii) q, t-unimodality: for each d, the coefficients of P(Π◦f ; q, t) at qdt0, qd−1t1, . . . , q0td form a

unimodal sequence;
(iii) P(Π◦f ; q2, 1) equals the Poincaré polynomial of Π◦f (considered as a variety over C);

(iv) q
1
2 dim Π◦f · P(Π◦f ; q, t)|

t
1
2 =−q−

1
2

equals the point count #Π◦f (Fq).

The positroid stratification contains a unique open stratum, the top-dimensional positroid
variety Π◦k,n := Π◦fk,n

corresponding to the permutation fk,n ∈ Sk,n sending i 7→ i + k mod-
ulo n for all 1 ≤ i ≤ n. It is given by

Π◦k,n := {RowSpan(A) | A ∈ Mat(k, n; C) : ∆1,2,...,k(A), ∆2,3,...,k+1(A), . . . , ∆n,1,...,k−1(A) 6= 0}.

Here ∆I(A) is the maximal minor of A with column set I ⊂ {1, 2, . . . , n}, |I| = k. We are
ready to state (the most important special case of) our main result.

Theorem 2.3. Assume that gcd(k, n) = 1. Then

P(Π◦k,n; q, t) =
(

q
1
2 + t

1
2

)n−1
Ck,n−k(q, t). (2.3)



4 Pavel Galashin and Thomas Lam

The equality (2.3) arises as a conjecture from the works [30, 29] and we thank Vivek
Shende for drawing our attention to the conjecture. We generalize Theorem 2.3 to all
positroid varieties in Theorem 4.2 below.

Our proof of Theorem 2.3 involves a number of ingredients, including Khovanov–
Rozansky knot homology and equivariant perverse sheaves. The point count specializa-
tion (t

1
2 = −q−

1
2 ) turns out to require less advanced machinery. Namely, let us denote

[n]q := 1 + q + · · · + qn−1, [n]q! := [1]q[2]q · · · [n]q, and [nk]q := [n]q!
[k]q![n−k]q! . We give an

elementary proof of the following special case of Theorem 2.3.

Proposition 2.4. Assume that gcd(k, n) = 1. Then #Π◦k,n(Fq) = (q − 1)n−1 · 1
[n]q

[nk]q. In
other words, the probability that a uniformly random k-dimensional subspace of (Fq)n belongs to
Π◦k,n(Fq) equals (q−1)n

qn−1 .

Remark 2.5. Surprisingly, this probability (q−1)n

qn−1 does not depend on k. We do not have
a combinatorial explanation for this phenomenon.

Our proof proceeds by associating a link β̂ f to each positroid variety Π◦f (Section 3)

and then comparing the point count #Π◦f (Fq) to the HOMFLY polynomial of β̂ f . The
HOMFLY polynomial is categorified by Khovanov–Rozansky knot homology, and our
proof of Theorem 2.3 may be considered a “categorification” of Proposition 2.4.

Remark 2.6. After discovering the proof of Proposition 2.4 via the HOMFLY polynomial,
we found that it can also be deduced from the results of [30, 29]. Our proof is new
and yields a generalization (Theorem 3.4) of Proposition 2.4 to arbitrary open positroid
varieties.

Torus action. The appearance of the extra factor
(

q
1
2 + t

1
2

)n−1
in (2.3), as well as the

condition gcd(k, n) = 1 are neatly explained by the torus action on Gr(k, n). Let T ∼=
(C∗)n−1 be the quotient of the group of diagonal n× n matrices by the group of scalar
matrices. The group T acts on Gr(k, n) by rescaling the columns of k× n matrices. This
action leaves each positroid variety Π◦f invariant. We say that T acts freely on Π◦f if all
non-identity elements of T act on Π◦f without fixed points. It is straightforward to check
that the action of T on Π◦f is free if and only if the permutation f is a single cycle. Note
that fk,n is a single cycle if and only if gcd(k, n) = 1. We will see later in Definition 3.2
that f is a single cycle precisely when the associated link β̂ f has a single component, i.e.,
is a knot.

Let ncyc( f ) denote the number of cycles of f ∈ Sn, and let Sncyc=1
k,n := { f ∈ Sk,n |

ncyc( f ) = 1}. For f ∈ Sncyc=1
k,n , the quotient Π◦f /T is again a smooth cluster variety, and

Theorem 2.2 applies to it. The associated bigraded Poincaré polynomials are related as



Positroids, knots, and q, t-Catalan numbers 5

P(Π◦f ; q, t) =
(

q
1
2 + t

1
2

)n−1
· P(Π◦f /T; q, t). In particular, in the setting of Theorem 2.3,

we find
P(Π◦k,n/T; q, t) = Ck,n−k(q, t). (2.4)

Combining this with Theorem 2.2 has consequences for q, t-Catalan numbers and positroid
varieties which can be stated in an elementary way. Let us denote dk,n := (k − 1)(n−
k− 1) = dim(Π◦k,n/T).

Corollary 2.7. Assume that gcd(k, n) = 1. We have:

(i) q, t-symmetry: Ck,n−k(q, t) = Ck,n−k(t, q);
(ii) q, t-unimodality: for each d, the coefficients of Ck,n−k(q, t) at qdt0, qd−1t1, . . . , q0td form a

unimodal sequence;
(iii) the Poincaré polynomial of Π◦k,n/T is given by

∑
d

q
d
2 dim Hdk,n−d(Π◦k,n/T) = Ck,n−k(q, 1) = ∑

P∈Dyckk,n−k

qarea(P); (2.5)

(iv) the number of Fq-points of Π◦k,n/T is given by

#(Π◦k,n/T)(Fq) =
1

[n]q

[
n
k

]
q
= q

1
2 dk,n · Ck,n−k(q, 1/q). (2.6)

Remark 2.8. When a = n and b = n + 1, Ca,b(q, t) recovers the famous q, t-Catalan
numbers Cn(q, t) of Garsia and Haiman [9]. The fact that Cn(q, t) is q, t-symmetric and
q, t-unimodal follows from the results of Haiman [14, 13]. For arbitrary a, b, the q, t-
symmetry property follows from the celebrated recent proof of the rational shuffle con-
jecture [22]. To our knowledge, q, t-unimodality of Ck,n−k(q, t) is a new result.

Example 2.9. For k = 3, n = 8, the coordinate ring of Π◦k,n/T is a cluster algebra of type
E8 (with no frozen variables). The associated mixed Hodge table recording the dimensions
of Hk,(p,p)(Π◦3,8/T) has the following form.

Hk H0 H1 H2 H3 H4 H5 H6 H7 H8

k− p = 0 1 0 1 0 1 0 1 0 1
k− p = 1 1 0 1

See [19, Table 5]. The grading conventions are chosen so that the first row contributes
q4 + q3t+ q2t2 + qt3 + t4 while the second row contributes q2t+ qt2 to P(Π◦k,n; q, t). Com-
paring the result with (2.2), we find P(Π◦k,n/T; q, t) = Ck,n−k(q, t).

The polynomial C3,5(q, t) given in (2.2) is indeed q, t-symmetric and q, t-unimodal:
fixing the total degree of q and t, it splits into polynomials q4 + q3t + q2t2 + qt3 + t4 and
q2t + qt2. We also have C3,5(q, 1) = q4 + q3 + 2q2 + 2q + 1; the coefficient of qd/2 is equal
to dim Hdk,n−d(Π◦k,n/T) for each d.
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braid β f = β(w) · β(v)−1 closure β̂ f of β f β fk,n
for k = 3, n = 8

Figure 2: Braids and links associated to positroid varieties.

3 Links associated to positroid varieties

In order to explain how knot theory comes into play, we need a way to represent f ∈ Sk,n
in a slightly different form. Let us say that a permutation w ∈ Sn is k-Grassmannian if
w−1(1) < w−1(2) < · · · < w−1(k) and w−1(k + 1) < · · · < w−1(n). We denote by ≤ the
(strong) Bruhat order on Sn. The following result is well known.

Proposition 3.1 ([18]). For every f ∈ Sk,n, there exists a unique2 pair of permutations v, w ∈ Sn
such that v ≤ w, w is k-Grassmannian, and f = wv−1.

For example, when f = fk,n, we have w = f and v = id. The dimension of Π◦f equals
`v,w := `(w)− `(v), where `(w) is the number of inversions of w.

The group Sn is generated by simple transpositions si = (i, i + 1) for 1 ≤ i ≤ n− 1.
Similarly, let Bn be the braid group on n strands, generated by σ1, . . . , σn−1 with relations
σiσi+1σi = σi+1σiσi+1 and σiσj = σjσi for |i − j| > 1. Connecting the corresponding
endpoints of a braid β gives rise to a link called the closure β̂ of β; see Figure 2.

For each element u ∈ Sn, let β(u) denote the corresponding braid, obtained by choos-
ing a reduced word u = si1si2 · · · si`(u) for u and then replacing each si with σi.

Definition 3.2. For f ∈ Sk,n and v ≤ w ∈ Sn as in Proposition 3.1, let β f := β(w) · β(v)−1.
We refer to the closure β̂ f as the link associated to f . See Figure 2 for an example.

Observe that β̂ f is a knot (i.e., has one connected component) if and only if f ∈
Sncyc=1

k,n . We note that two other (more complicated) ways of assigning a Legendrian or a
transverse link to a positroid variety have appeared recently in [29, 6].

The HOMFLY polynomial P(L) = P(L; a, z) of an (oriented) link L is defined by a skein
relation aP(L+)− a−1P(L−) = zP(L0) and P( ) = 1, where denotes the unknot and
L+, L−, L0 are three links whose planar diagrams locally differ as follows:

L+ L− L0

2If f has fixed points, the pair (v, w) must be compatible with the decoration of f .
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Example 3.3. For n = 2, we may take L+ to be the closure of σ1, in which case L− is the
closure of σ−1

1 and L0 = is the 2-component unlink. Applying the skein relation, we
find P(L0) =

a−a−1

z .

Surprisingly, the HOMFLY polynomial computes the number of Fq-points of any
positroid variety.

Theorem 3.4. For all f ∈ Sk,n, let Ptop
f (q) be obtained from the top a-degree term of P(β̂ f ; a, z)

by substituting a := q−
1
2 and z := q

1
2 − q−

1
2 . Then #Π◦f (Fq) = (q− 1)n−1 · Ptop

f (q).

Remark 3.5. When gcd(k, n) = 1, we have fk,n ∈ Sncyc=1
k,n , and the associated knot β̂ fk,n

is the (k, n− k)-torus knot; see Figure 2(right). The value of P(β̂ fk,n
; a, z) was computed

in [15], and its relationship with Catalan numbers was clarified in [10]. Thus Proposi-
tion 2.4 follows from Theorem 3.4 as a direct corollary.

Example 3.6. For k = 3, n = 8, one calculates (for instance, using Sage3) that the top
a-degree term of P(β̂ fk,n

; a, z) equals z8+8 z6+21 z4+21 z2+7
a8 . Substituting a := q−

1
2 and z :=

q
1
2 − q−

1
2 , we get

Ptop
f (q) = q8 + q6 + q5 + q4 + q3 + q2 + 1 = q4 · C3,5(q, 1/q).

This agrees with (2.6) and Theorem 3.4.

Links associated to Richardson varieties. By Proposition 3.1, positroid varieties corre-
spond to pairs v ≤ w of permutations such that w is k-Grassmannian. There is a more
general class of (open) Richardson varieties R◦v,w, indexed by all pairs v ≤ w ∈ Sn, and the
majority of the above story generalizes to this setting. The varieties R◦v,w form a strati-
fication of the complete flag variety Fln(C). For a permutation f ∈ Sk,n corresponding to
a pair v ≤ w ∈ Sn via Proposition 3.1, the projection map Fln(C) → Gr(k, n) restricts
to an isomorphism Π◦f

∼= R◦v,w. Thus positroid varieties are special cases of Richardson
varieties.

Now, let G be a complex semisimple algebraic group of adjoint type, and choose a
pair B, B− ⊂ G of opposite Borel subgroups. Let T := B ∩ B− be the maximal torus
and W := NG(T)/T the associated Weyl group. For the case G = SLn(C), we have
W = Sn, the subgroups B, B− ⊂ G consist of upper and lower triangular matrices, and
T ∼= (C∗)n−1 is the group of diagonal matrices modulo scalar matrices.4 We have Bruhat
decompositions G =

⊔
w∈W BwB =

⊔
v∈W B−vB, and the intersection BwB ∩ B−vB is

3https://doc.sagemath.org/html/en/reference/knots/sage/knots/link.html
4Note that G is assumed to be of adjoint type, thus in type A we should have G = PGLn(C). However,

we choose to work with G = SLn(C) for simplicity.

https://doc.sagemath.org/html/en/reference/knots/sage/knots/link.html
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nonempty if and only if v ≤ w in the Bruhat order on W. For v ≤ w, we denote
by R◦v,w := (BwB ∩ B−vB)/B an open Richardson variety inside the complete flag variety
G/B. For G = SLn(C), R◦v,w is the subset of G/B = Fln(C) obtained by specifying
the dimensions of the intersections of a given flag with a given coordinate flag and its
opposite coordinate flag.

In the case G = SLn(C), one can similarly associate a braid βv,w := β(w) · β(v)−1

to any pair v ≤ w and consider its closure β̂v,w. We refer to the links of the form
β̂v,w as Richardson links. The point count #R◦v,w(Fq) is given by the Kazhdan–Lusztig R-
polynomial [16], and both the statement and the proof of Theorem 3.4 generalize to this
setting.

4 Main results

All of the above results are actually special cases of a single statement which applies to
arbitrary Richardson varieties. This includes all positroid varieties Π◦f for f ∈ Sk,n, where
ncyc( f ) can be arbitrary. As a warm up, we start with the non-equivariant version.

Ordinary cohomology. Let h := Lie(T) be the Cartan subalgebra of Lie(G) correspond-
ing to T, and denote R := C[h∗]. For G = SLn(C), R = C[y1, . . . , yn−1] is the polynomial
ring. Since W is a Coxeter group, we can consider the category SBim of Soergel bimod-
ules. Each element B ∈ SBim is a graded R-bimodule, and we will be interested in its
R-invariants, which by definition form the zeroth Hochschild cohomology HH0(B) of B. De-
note HH0

C
(B) := HH0(B)⊗R C, where C = R/(h∗) is an R-module on which h∗ acts by

0. While the functor HH0 involves Soergel bimodules, the functor HH0
C

involves Soergel
modules instead.

To any element w ∈ W, Rouquier [26] associates a cochain complex F•(w) of Soergel
bimodules. He also associates another complex F•(w)−1 such that their tensor product
F•(w)⊗R F•(w)−1 is homotopic to the identity. For a braid βv,w = β(w) · β(v)−1, we set
F•v,w := F•(w)⊗R F•(v)−1. Applying the functor HH0

C
to each term of this complex yields

a complex HH0
C
(F•v,w) of graded R-modules. Taking its cohomology HHH0

C
(F•v,w) :=

H•(HH0
C
(F•v,w)), we get a bigraded R-module. We denote by Hk,(p)(HH0

C
(F•v,w)) the poly-

nomial degree 2p part of Hk(HH0
C
(F•v,w)). By convention, the elements of h∗ ⊂ R are

assumed to have polynomial degree 2. On the other hand, let us denote by Hk,(p,p)(R◦v,w)

the (p, p) part of the mixed Hodge structure on Hk(R◦v,w). See Example 2.9.

Theorem 4.1. For all v ≤ w ∈W and k, p ∈ Z, we have

dim Hk,(p,p)(R◦v,w) = dim H−k,(p)(HH0
C(F•v,w)). (4.1)
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Equivariant cohomology. The spaces HHH0(F•v,w) and HHH0
C
(F•v,w) are closely related.

By Theorem 4.1, HHH0
C
(F•v,w) yields the cohomology of R◦v,w. It turns out that HHH0(F•v,w)

yields the torus-equivariant cohomology of R◦v,w.
The algebraic torus T acts on each Richardson variety R◦v,w, and thus we can consider

its T-equivariant cohomology with compact support, denoted H•T,c(R◦v,w). It is equipped with
an action of the ring H•T,c(pt) ∼= R. Similarly to the positroid case, H•T,c(R◦v,w) admits a
second grading via the mixed Hodge structure and is therefore a bigraded R-module.

Theorem 4.2. For all v ≤ w ∈W, we have an isomorphism of bigraded R-modules

H•T,c(R◦v,w)
∼= HHH0(F•v,w). (4.2)

It restricts to a vector space isomorphism H`v,w+2p+k,(p,p)
T,c (R◦v,w)

∼= Hk,(p)(HH0(F•v,w)) for each
k, p ∈ Z, where `v,w = `(w)− `(v) = dim R◦v,w.

Koszul duality and q, t-symmetry. One can encode the dimensions of bigraded com-
ponents of HHH0(F•(β)), resp., HHH0

C
(F•(β)) in a two-variable polynomial P top

KR (β; q, t),
resp., P top

KR;C(β; q, t).5 For any f ∈ Sncyc=1
k,n , the positroid variety Π◦f /T is a cluster va-

riety [7], so the polynomial P top
KR (β̂ f ; q, t) satisfies the properties (i)–(iv) listed in Theo-

rem 2.2 by the results of [19]. In particular, it is q, t-symmetric and q, t-unimodal.
Richardson varieties are not yet known to admit cluster structures (see [20]), in par-

ticular, it does not follow from Theorem 2.2 that P top
KR (β̂v,w; q, t) is q, t-symmetric for

arbitrary v ≤ w ∈ Sn. We show that the q, t-symmetry phenomenon for such links is a
manifestation of Koszul duality for mixed perverse sheaves [1, 2].

Theorem 4.3 (Koszul duality). For any v ≤ w ∈ Sn, we have

P top
KR;C(βv,w; q, t) = P top

KR;C(βv,w; t, q).

If β̂v,w is a knot then it follows that P top
KR (β̂v,w; q, t) = P top

KR (β̂v,w; t, q). This gives a new
proof of the q, t-symmetry of Ck,n−k(q, t) for gcd(k, n) = 1.

5 Catalan numbers associated to positroid varieties

An important combinatorial consequence of our results is an embedding of rational q, t-
Catalan numbers Ck,n−k(q, t) into a family of q, t-polynomials P(Π◦f /T; q, t) ∈ N[q

1
2 , t

1
2 ]

indexed by permutations f ∈ Sncyc=1
k,n (all of which are q, t-symmetric and q, t-unimodal).

5The polynomial P top
KR (β; q, t) the top a-degree coefficient of Khovanov–Rozansky homology [17] of β̂.
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Definition 5.1. For f ∈ Sncyc=1
k,n , define the f -Catalan number C f ∈ Z as the q = 1 special-

ization of the point count polynomial #(Π◦f /T)(Fq).

Let us focus on the case f = fk,n with gcd(k, n) = 1. We will show that C fk,n
=

Ck,n−k(1, 1) = # Dyckk,(n−k) counts certain pipe dreams inside a k × (n − k) rectangle.
This interpretation extends to arbitrary f ∈ Sk,n in a straightforward fashion.

Definition 5.2. Let gcd(k, n) = 1. A maximal fk,n-Deogram (short for Deodhar diagram) is a
way of placing n− 1 elbows in a k× (n− k) rectangle and filling the rest with crossings
so that (i) the resulting permutation obtained by following the paths is the identity, and
(ii) the following distinguished condition [5] is satisfied: if any two paths have crossed an
odd number of times, they cannot form an elbow.

Denote the set of maximal fk,n-Deograms by Deomax
fk,n

. It follows by combining our
results with [5] that C fk,n

equals the number of maximal fk,n-Deograms:

C fk,n
= # Deomax

fk,n
. (5.1)

An analogous result holds for arbitrary f ∈ Sk,n. It would be interesting to give a bijective
proof of (5.1). For example, the maximal f3,8-Deograms are shown below.

According to (5.1), these objects are in bijection with Dyck paths in Figure 1.

Problem 5.3. Find a bijection between Deomax
fk,n

and Dyckk,(n−k) for the case gcd(k, n) = 1.

For the case n = 2k + 1 of the standard Catalan numbers, the maximal fk,n-Deograms
are easily seen (exercise) to be in bijection with non-crossing alternating trees on n + 1
vertices. A recursive proof of (5.1) for the case n = dk± 1 (d ≥ 2) was found by David
Speyer. We were able to find a recursive proof of (5.1) for arbitrary k, n. The problem of
finding a bijective proof remains open.

Remark 5.4. For a class of repetition-free permutations, a combinatorial interpretation of
the numbers C f in terms of Dyck paths avoiding a convex shape was recently given
in [8]. We refer to [8, Section 7] for relations between their q, t-analogs and the results
of [3, 11, 12, 24].
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