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Abstract. We study the polytope algebra of McMullen relative to a fixed zonotope.
We endow the corresponding subalgebra with the structure of a module over the Tits
algebra of the corresponding hyperplane arrangement. In the case of Coxeter arrange-
ments of type A and B, we find connections with statistics on (signed) permutations
and with the Hopf monoid of generalized permutahedra of Aguiar and Ardila.
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Introduction

Generalized permutahedra have been a central object of study for many combinatorial-
ists in recent years. They serve as a geometric model for many classical (type A) com-
binatorial objects. We study generalized permutahedra modulo certain valuation and
translation invariance relations, previously considered in the construction of McMullen’s
polytope algebra, and give the resulting space the structure of a module over the Tits
algebra of the braid arrangement. This structure is compatible with the Hopf monoid
structure of Aguiar and Ardila [1].

We review McMullen’s construction of the polytope algebra and its main properties
in Section 1. In Section 2, we review the Tits algebra RΣ[A] of a hyperplane arrangement
and some generalities about modules over RΣ[A]. In particular, we focus on the action
of certain elements of RΣ[A] that we call characteristic. Particular cases of the action of
such elements are related to the antipode problem and to the computation of polyno-
mial invariants in Hopf monoids, this is reviewed in Section 2.1. Our main construction,
the module structure on generalized zonotopes over the Tits algebra of the corresponding
arrangement, is given in Section 3. Finally, in Section 4 we specialize the previous con-
struction to the case of generalized permutahedra and type B generalized permutahedra.
For full details and proofs see [9].

Preliminaries and notation

Let V be a real vector space of dimension d endowed with an inner product 〈 · , · 〉. We
let o ∈ V denote the zero vector of V. Given a polytope p ⊆ V and a vector v ∈ V, we
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let pv denote the face of p maximized in the direction v. That is, pv := {p ∈ p : 〈p, v〉 ≥
〈q, v〉 for all q ∈ p}. The normal cone of a face f of p is the polyhedral cone N(f, p) :=
{v ∈ V : f ≤ pv}. The normal fan of p is the collection Σp := {N(f, p) : f ≤ p} of all
normal cones of p.

Recall that a fan Σ refines Σ′ if every cone in Σ′ is a union of cones in Σ. We say
that a polytope q is a deformation of p if Σp refines Σq. The Minkowski sum of two
polytopes p, q ⊆ V is the polytope p+ q := {p + q : p ∈ p, q ∈ q}. We say that q is a
Minkowski summand of p if p = q+ q′ for some polytope q′. The normal fan of p+ q

is the common refinement of Σp and Σq. Hence, Σp refines the normal fan of any of its
Minkowski summands.

1 McMullen’s polytope algebra

The polytope algebra Π(V) is generated as a group by elements [p], one for each poly-
tope p ⊆ V. These generators satisfy the following valuation and translation invariance
relations:

[p∪ q] + [p∩ q] = [p] + [q] and [p+ {t}] = [p] (1.1)

whenever p, q and p∪ q are polytopes; and for any translation vector t ∈ V.
The product of Π(V) is defined on generators by means of the Minkowski sum

[p] · [q] := [p+ q]. (1.2)

It readily follows from (1.1) that the class of a point 1 := [{o}] is the unit of Π(V).

Lemma 1.1 ([14, Lemma 13]). Let p be a k-dimensional polytope. Then,

([p]− 1)k 6= 0 and ([p]− 1)r = 0 for r > k.

Thus, we can define the log-class of a polytope p by means of the usual power series
of log(x) centered at x = 1. If p has dimension k, then

log[p] :=
k

∑
r=1

(−1)r−1

r ([p]− 1)r.

For r ≥ 0 let Ξr(V) be the subgroup of Π(V) generated by elements of the form (log[p])r.

Theorem 1.2 ([14, Theorem 1]). Π(V) is almost a graded R-algebra, in the following sense:

i. as an abelian group, Π(V) admits a direct sum decomposition Π(V) =
⊕d

r=0 Ξr(V);

ii. under multiplication, Ξr(V) · Ξs(V) = Ξr+s(V), with Ξr(V) = 0 for r > d;

iii. Ξ0(V) ∼= Z, and for r = 1, . . . , d, Ξr(V) is a real vector space;
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iv. the product of elements in
⊕

r≥1 Ξr(V) is bilinear.

Convention 1.3. As in later work of McMullen [15], we replace Ξ0(V) ∼= Z with the
tensor product Ξ0(V)R := Ξ0(V)⊗Z R to get a genuine graded R-algebra Π(V)R. To
simplify notation, we drop the subscript R.

For each scalar λ ∈ R, define the dilation δλ : Π(V) → Π(V) on generators
by δλ[p] := [λp], where λp := {λp : p ∈ p}. One can easily verify that δλ preserves
relations (1.1) and defines an algebra morphism. The following result characterizes the
graded components of Π(V) as the eigenspaces of any positive nontrivial dilation.

Lemma 1.4 ([14, Lemma 20]). Let x ∈ Π(V) and λ > 0, with λ 6= 1. Then,

x ∈ Ξr(V) if and only if δλx = λrx. (1.3)

Definition 1.5. Fix a polytope p ⊆ V. The subalgebra relative to p, denoted Π(p), is the
subalgebra of Π(V) generated by classes [q] of deformations q of p.

Remark 1.6. McMullen [15] defines Π(p) in terms of Minkowski summands of p. A result
of Shephard [13, Section 15.2.7] implies that both definitions are equivalent.

The grading of Π(V) induces a grading of Π(p). We let Ξr(p) = Π(p) ∩ Ξr(V). The
dimension of these spaces was described by McMullen in the case of simple polytopes.

Theorem 1.7 ([15, Theorem 6.1]). If p is a simple polytope, then dimR(Ξr(p)) = hr(p) for
all r.

Fix a face f of p and a direction v ∈ V such that pv = f. If q is a Minkowski summand
of p, say p = q+ q′, then f = qv + q′v. That is, qv is a Minkowski summand of f. It then
follows by [14, Theorem 7] that there is a well-defined algebra morphism

ψf : Π(p)→ Π(f) (1.4)

sending a generator [q] of Π(p) to [qv] ∈ Π(f). One easily checks that ψf is independent
on the particular choice of v ∈ relint(N(f, p)).

Theorem 1.8 ([15, Theorem 2.4]). Let p be a simple polytope and f a face of p. Then, the
morphism ψf : Π(p)→ Π(f) is surjective.

2 The Tits algebra of a linear hyperplane arrangement

Let A be a linear hyperplane arrangement in V. The hyperplanes in A split V into a
collection Σ[A] of convex cones called faces of A. The set Σ[A] has the structure of a
monoid under the Tits product illustrated in Figure 1. The product of two faces F and G,
denoted FG, is the first face you encounter after moving a small positive distance from
an interior point of F to an interior point of G. The unit of this product is the central
face O ∈ Σ[A]: the intersection of all the hyperplanes in A.
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Figure 1: Product of faces in arrangements in dimension 2 and 3. The second arrange-
ment has been intersected with a sphere around the origin.

The Tits algebra of A is the monoid algebra RΣ[A]. See [5, Chapters 1 and 9] for
more details. We let HF denote the basis element of RΣ[A] associated to the face F of A.

An arbitrary intersection of hyperplanes in A is a flat of the arrangement. The
set L[A] of flats is a lattice with maximum > := V and minimum ⊥, the intersection of
all hyperplanes in A. The support of a face F is the smallest flat s(F) containing it.

We view L[A] as a commutative monoid with the join operation for the product.
Then, the support map s : Σ[A]→ L[A] is a morphism of monoids.

The monoid algebra RL[A] is the maximal (split-)semisimple quotient of RΣ[A] via
the support map. We let HX denote the basis element of RL[A] associated to the flat X
of A, so that HX · HY = HX∨Y. It follows that the simple modules over the Tits algebra are
one-dimensional and are indexed by the flats of A. This rests on the fact that RL[A] has
a unique complete system of orthogonal idempotents {QX}X∈L[A] determined by

HX = ∑
Y: Y≥X

QY or equivalently QX = ∑
Y: Y≥X

µ(X, Y)HY, (2.1)

where µ denotes the MÃűbius function of the lattice L[A]. This is a result of Solomon.
For every flat X, let χX denote the character of the simple module of RΣ[A] indexed

by X. An element w ∈ RΣ[A] is characteristic of parameter t ∈ R if χX(w) = tdim(X)

for every flat X ∈ L[A]. Characteristic elements determine the characteristic polynomial
of A and of its contractions. See [2] and [5, Section 12.4] for more information.

A main motivation to study characteristic elements and their action on modules over
the Tits algebra comes from the theory of Hopf monoids. We expand on this next.

2.1 Hopf monoids and the braid arrangement

The theory of Hopf monoids in the category of species was developed by Aguiar and
Mahajan [3, 4], and has received significant attention in recent years. It provides a unified
framework to study families of combinatorial objects that have a natural way to merge
and break structures.



The polytope algebra of generalized permutahedra 5

A species H consists of a vector space H[I] for each finite set I and relabeling maps
H[I] → H[J] for each bijection I → J. A Hopf monoid is a species H with compatible
product and coproduct maps

µS1,...,Sk : H[S1]⊗ · · · ⊗H[Sk]→ H[I] and ∆S1,...,Sk : H[I]→ H[S1]⊗ · · · ⊗H[Sk]

indexed by set compositions (S1, . . . , Sk) of I, and an antipode map sI : H[I] → H[I],
which generalizes the notion of inversion in a group. A fundamental problem in Hopf
monoid theory is to find a reduced formula for the antipode map of a given Hopf
monoid H.

Let Ad denote the braid arrangement in Rd. It consists of the hyperplanes xi = xj
for 1 ≤ i < j ≤ d. We identify faces and flats of Ad with set compositions F � [d] and
set partitions X ` [d] of [d] in the usual way. For instance, the set composition F =
({1, 3}, {2}, {4, 5}) represents the face with equations x1 = x3 > x2 > x4 = x5 of A5.
Similarly, the set partition X =

{
{1, 3}, {2}, {4, 5}

}
represents the flat satisfying x1 = x3

and x4 = x5. Note that s(F) = X.
The Takeuchi element τ ∈ RΣ[Ad] and the Adams element αt ∈ RΣ[Ad] are defined

by

τ = ∑
F
(−1)dim(F)HF and αt = ∑

F

(
t

dim(F)

)
HF.

They are characteristic elements of parameter −1 and t, respectively.

Example/Theorem 2.1 ([4, Section 13.1]). Let H be a commutative Hopf monoid. Then,
the space H[[d]] is a right RΣ[Ad]-module. The action of the basis element HF corre-
sponding to a face F = (S1, . . . , Sk) is given by the composition µS1,...,Sk ◦ ∆S1,...,Sk .

Then, the antipode map s is determined by the action of the Takeuchi element. Explic-
itly, s[d](x) = x · τ. On the other hand, when t = n is an integer, the action of the Adams
element αn agrees with the n-th convolution power of the identity. If ζ is a character of H
and P(x, t) denotes the corresponding polynomial invariant on an element x ∈ H[[d]]
(see [1, Section 16]), then P(x, t) = ζ(x · αt).

2.2 Eulerian idempotents and diagonalization

An Eulerian family of A is a collection {EX}X∈L[A] of idempotent and mutually orthog-
onal elements of RΣ[A] of the form

EX = ∑
F : s(F)≥X

aFHF,

with aF 6= 0 for at least one F with s(F) = X. It follows [5, Theorem 11.20] that {EX}X is
a complete system of orthogonal idempotents and that

s(EX) = QX.
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A characteristic element w of non-critical1 parameter t uniquely determines an Eule-
rian family E = {EX}X, which satisfies

w = ∑
X

tdim(X)EX. (2.2)

It follows that the action of w on any RΣ[A]-module M is diagonalizable.
Let M be a (right) RΣ[A]-module, w ∈ RΣ[A] be a characteristic element of non-

critical parameter t and {EX}X be the corresponding Eulerian Family. Then, we have a
decomposition

M =
⊕

X

M · EX

of vector spaces. Expression (2.2) shows that w acts on M · EX by multiplication by tdim(X).
We define

ηX(M) := dimR(M · EX). (2.3)

The character χM : RΣ[A]→ R of M factors through RL[A]:

RΣ[A]

RL[A] R

χMs

χM

Thus, ηX(M) = dimR(M · EX) = χM(EX) = χM(QX) is independent of the characteristic
element w. Furthermore, using relations (2.1) and the linearity of χM we deduce

ηX(M) = χM(QX) = ∑
Y≥X

µ(X, Y)χM(HY)

= ∑
Y≥X

µ(X, Y)χM(HFY) = ∑
Y≥X

µ(X, Y)dimR(M · HFY) (2.4)

where FY ∈ Σ[A] is such that s(FY) = Y. The last equality follows since HFY is an
idempotent element, and thus χM(HFY) = dimR(M · HFY).

Moreover, the number of composition factors Mi+1/Mi isomorphic to the simple
module indexed by X in a composition series 0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mk = M of M is
precisely ηX(M).

3 The McMullen module of generalized zonotopes

Fix a hyperplane arrangement A in V. Take a normal vector vH for each hyperplane
H ∈ A, and consider the zonotope z := ∑H Conv{o, vH}. Its normal fan Σz coincides
with the collection of faces Σ[A] of the arrangement. We say that a polytope p is a
generalized zonotope of A if it is a deformation of z.

1t ∈ R is non-critical if it is not a root of the characteristic polynomial of A nor any of its contractions.
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We now consider the algebra Π(z) introduced in Definition 1.5. It is generated by the
classes of generalized zonotopes of A. It only depends on the arrangement A and not
on the particular choice normal vectors vH.

Faces of a zonotope z are Minkowski summands of z. Therefore, for each face f of z,
the algebra Π(f) is a subalgebra of Π(z). Moreover, if f = zv for some v ∈ V and q is a

Minkowski summand of f, then qv = q. Hence, the composition Π(f) ↪→ Π(z)
ψf−→ Π(f),

where ψf is the morphism (1.4), is the identity map. We have proved the following.

Proposition 3.1. Let z be a zonotope and f a face of z. Then, the morphism ψf is surjective.

Remark 3.2. Compare this to Theorem 1.8 and note that we do not assume that z is simple.
For an arbitrary polytope p and a face f of p, there is no natural morphism Π(f)→ Π(p),
unlike in the case of zonotopes.

Theorem 3.3. The algebra Π(z) is a right RΣ[A]-module under the following action. For a
generator [q] of Π(z) and a basis element HF of RΣ[A],

[q] · HF := [qv], (3.1)

where v ∈ relint(F). Moreover, each graded component Ξr(z) is a RΣ[A]-submodule and the
action of basis elements HF on Π(z) is by (graded) algebra endomorphisms.

Sketch of proof. It follows from [13, Section 3.1.5] that for a polytope q ⊆ V and vec-
tors v, w ∈ V, (qv)w = qv+λw for any small enough λ > 0. Similarly, if v ∈ relint(F)
and w ∈ relint(G) for F, G ∈ Σ[A], then v+λw ∈ relint(FG) for any small enough λ > 0.

The last statement follows form [14, Theorem 7] and the characterization of the
graded components Ξr in (1.3).

Let w ∈ RΣ[A] be a characteristic element of parameter t and {EX}X the correspond-
ing Eulerian family. It follows from (1.3) and (2.2) that for any λ > 0,

If x ∈ Ξr(z) · EX, then δλx = λrx and x · w = tdim(X)x.

We say that elements in Ξr(z) · EX are double-eigenvectors. We proceed to compute the
dimension of these double-eigenspaces ηX(Ξr(z)) = dimR(Ξr(z) · EX) defined in (2.3).

Let F ∈ Σ[A] and f be the corresponding face of z. Observe that for any x ∈ Π(z),
x · HF = ψf(x). Applying Proposition 3.1 to (2.4), we have

ηX(Ξr(z)) = ∑
Y≥X

µ(X, Y)dimR(Ξr(z) · HFY) = ∑
Y≥X

µ(X, Y)dimR(Ξr(zY)),

where zY is any face of z perpendicular to Y. That is, such that N(zY, zY) = Y. If in
addition A is a simplicial arrangement (i.e. z is simple), Theorem 1.7 implies that

∑
r

ηX(Ξr(z))zr = ∑
Y≥X

µ(X, Y)h(zY, z), (3.2)

where h(zY, z) denotes the h-polynomial of zY.
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4 Generalized permutahedra and Eulerian polynomials

4.1 Type A

LetAd denote the braid arrangement in Rd, see Section 2.1. It is the Coxeter arrangement
of type A, corresponding to the symmetric group Sd. This group acts on Rd by permut-
ing coordinates σ(x1, x2, . . . , xd) = (xσ(1), xσ(2), . . . , xσ(d)). The permutahedron πd ⊆ Rd

is the convex hull of the points obtained by permuting the coordinates of (1, 2, . . . , d). It
is a zonotope of Ad and has dimension d− 1. Deformations of πd are called generalized
permutahedra. In this section we study the algebra/RΣ[Ad]-module Π(πd).

4.1.1 Hopf monoid structure

Aguiar and Ardila introduced in [1] the Hopf monoid of generalized permutahedra GP.
For any finite set I, GP[I] = R{p ⊆ RI : p is a generalized permutahedron}. The
product and coproduct maps of GP are completely determined by

µS,T(p⊗ q) = p× q and (µF ◦ ∆F)(p) = pv

where v ∈ relint(F). Compare this to (3.1). Let Π be the species defined by set-
ting Π[I] := Π(πI), where πI denotes the permutahedron in RI .

Theorem 4.1. The species Π is the Hopf monoid quotient of GP induced by the map p 7→ [p].
Moreover, Π has the structure of a (2,1)-monoid in the category of species with the Cauchy and
Hadamard product.

A result similar to the first statement was recently obtained by Ardila and Sanchez
in [8]. The higher monoidal structure is a consequence of the last statement in Theorem 3.3.
For more information on higher monoidal categories see [3, Chapter 7].

4.1.2 Module structure

We let s(σ) denote the subspace of fixed points by the action of σ on Rd; it is a flat of Ad.
Recall that i ∈ [d] is an excedance of a permutation σ ∈ Sd if σ(i) > i. Let exc(σ) denote
the number of excedances of σ. We completely determine the numbers ηX(Ξr(πd)).

Theorem 4.2. For any flat X ∈ L[Ad] and r = 0, 1, . . . , d− 1,

ηX(Ξr(πd)) =
∣∣{σ ∈ Sd : s(σ) = X, exc(σ) = r}

∣∣.
Building on top of work by BjÃűrner, Brenti showed that for any Coxeter group W,

the h-polynomial of the W-permutahedron is the corresponding W-Eulerian polyno-
mial [10, Theorem 2.3]. The classical Eulerian polynomial Ad(z) is

Ad(z) =
d−1

∑
k=0

Ad,kzk = ∑
σ∈Sd

zexc(σ).
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That is, the coefficient Ad,k counts the number of permutations of [d] with exactly k
excedances. These coefficients are called Eulerian numbers (OEIS: A008292). It is custom-
ary to define Ad(z) in terms of the descents of permutations in Sd. However, Foata’s
fundamental transformation shows that the distribution of these two statistics are equal.

The exponential generating function for the classical Eulerian polynomials was first
described by Euler:

A(z, x) = ∑
d≥0

Ad(z)
xd

d!
=

z− 1
z− ex(z−1)

. (4.1)

Under the identification between flats of Ad and set partitions of [d], s(σ) is the
partition of [d] underlying the cycle decomposition of σ. Given a finite set S, we let C(S)
denote the collection of cyclic permutations on S. For a block S ∈ s(σ), we let σ|S ∈ C(S)
be the restriction of σ to S.

Lemma 4.3. ∑
X={S1,...,Sk}`[d]

µ(⊥, X)A|S1|(z) · . . . · A|Sk|(z) = ∑
σ∈C(d)

zexc(σ).

Sketch of proof. We verify that the exponential generating functions of both sides of the
equation above is log(A(z, x)). Recall that µ(⊥, X) = (−1)k−1(k − 1)!, where k = |X|,
and that log(1 + x) = ∑d≥1(−1)d−1(d − 1)! xd

d! . An application of the Compositional
Formula [16, Theorem 5.1.4] yields the result for the terms on the left.

For the terms on the right, observe that the number of excedances of σ is the sum of
the excedances on each of its cycles. That is,

exc(σ) = ∑
S∈s(σ)

exc(σ|S) (4.2)

An application of the Exponential formula then shows that A(z, x) = exp(Ã(z, x))
where Ã(z, x) is the exponential generating function of the terms on the right.

Proof of Theorem 4.2. Sketch. Faces of πd are products of permutahedra of lower dimen-
sion. Explicitly, if X = {S1, . . . , Sk}, then (πd)X

∼= π|S1| × · · · × π|Sk|. On the other hand,
flats Y containing X = {S1, . . . , Sk} correspond to a choice of partitions Y|Si for each Si,
and in this case µ(X, Y) = µ({S1}, Y|S1) · · · µ({Sk}, Y|Sk).

Using that h(p× q, z) = h(p, z)h(q, z), formula (3.2) then yields

∑
r

ηX(Ξr(π))zr = ∏
S∈X

(
∑

Y={T1,...,T`}`S
µ(⊥, Y)A|T1|(z) · . . . · A|T`|(z)

)
.

Applying Lemma 4.3, we get

∑
r

ηX(Ξr(π))zr = ∏
S∈X

(
∑

σ∈C(S)
zexc(σ)

)
= ∑

σ∈Sd
s(σ)=X

zexc(σ).

Finally, taking the coefficient of zr on both sides yields the result.

https://oeis.org/A008292
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Let {EX}X be the Eulerian family corresponding to the Adams element αt from Sec-
tion 2.1. The particular case r = 1 of Theorem 4.2 reads

ηX(Ξ1(πd)) =

{
1 if X has exactly 1 non-singleton singleton block,
0 otherwise.

(4.3)

Let X be such a flat and let J ⊆ [d] be the corresponding non-singleton block.

Proposition 4.4. The space Ξ1(πd) · EX is spanned by the element log[∆J ] · EX, where ∆J denotes
the simplex with vertex set {ej : j ∈ J}.

In view of (4.3), the proof of this boils down to showing that log[∆J ] · EX 6= 0.
This rests on a result of Ardila, Benedetti and Doker [6, Proposition 2.4] that implies
that {log[∆J ] : |J| ≥ 2} is a linear basis of Ξ1(πd).

Their result shows that every generalized permutahedron p can be written uniquely
as a signed Minkowski sum of the simplices {∆J , ∅ 6= J ⊆ [d]}. That is, there are unique
coefficients {yJ}J ⊆ R such that p+ ∑yJ<0 |yJ |∆J = ∑yJ>0 yJ∆J . Taking log-classes, we
get that

log[p] = ∑
J

yJ log[∆J ].

Since log[∆J ] = log(1) = 0 for |J| = 1, we deduce that every log-class log[p] can be
written uniquely as a linear combination of {log[∆J ], |J| ≥ 2}.

4.2 Type B

Let Bd denote the Coxeter arrangement of type B in Rd. It consists of hyperplanes
xi = xj, xi = −xj and xi = 0. Flats of Bd are in correspondence with signed set partitions
X `B [d] of [d]. A signed set partitions of [d] is a weak partition {S0, S1, S1, . . . , Sk, Sk}
of ±[d] := {i, i : i ∈ [d]} such that S0 = S0, Si 6= ∅ and Si ∩ Si = ∅ for i 6= 0.
For instance, the type B partition

{
{1, 1, 4, 4, 5, 5}, {2, 3}, {2, 3}

}
represents the flat of B5

with equations x1 = x4 = x5 = 0, x2 = −x3. For i ∈ [d], write i = |i| = |i|.
The hyperoctahedral group Bd consists of signed permutations τ : ±[d] → ±[d]

satisfying τ(i) = j if and only if τ(i) = j. Signed permutations act on Rd by per-
muting coordinates and changing signs. For example, let τ = (1414)(55)(23)(23).
Then, τ(x1, x2, x3, x4, x5) = (−x4,−x3,−x2, x1,−x5). Note that s(τ) is the flat in the
previous paragraph.

The type B permutahedron πB
d ⊆ Rd is the convex hull of all the signed permutations

of the point (1, 2, . . . , d). It is full-dimensional and a zonotope of Bd, its h-polynomial is
the type B Eulerian polynomial Bd(z), it keeps track of the statistic excB(τ) on Bd. Let
B(z, x) denote the type B generating function of the polynomials Bd(z). Deformations
of πB

d are called type B generalized permutahedra. We now consider the module Π(πB
d ).
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Theorem 4.5. For any flat X ∈ L[Bd] and r = 0, 1, . . . , d,

ηX(Ξr(π
B
d )) =

∣∣{τ ∈ Bd : s(τ) = X, excB(τ) = r}
∣∣.

The statistic excB is closely related to the flag-excedance of a signed permutation,
see [12]. We do not go into the details of its definition, but we highlight a key property
of excB analogous to (4.2). If s(τ) = {S0, S1, S1, . . . , Sk, Sk}, then τ|S0 is a signed permu-
tation with s(τ|S0) =⊥ and each τ|Si ∈ C(Si) for i ≥ 1 is a cyclic permutation. Moreover,
excB(τ) = excB(τ|S0) + ∑i≥1 exc≺(τ|Si), where exc≺ denotes the usual excedance but
computed with respect to a particular order ≺ on Si.

Sketch of proof. The analogous result to Lemma 4.3 is

∑
{S0,...,Sk,Sk}`B[d]

µ(⊥, X)B|S0|/2A|S1| . . . A|Sk| = ∑
τ∈Bd

s(τ)=⊥

zexcB(τ). (4.4)

We again proceed by comparing the type B exponential generating function of both sides
and verify it equals B(z,x)√

A(z,x)
. The proof involves a type B analogous of the Compositional

and Exponential formula. With X as above, µ(⊥, X) = (−1)k(2k− 1)!! (compare with the
generating function of (1 + x)−1/2). On the other hand, the type B exponential formula
together with the observations following the statement of Theorem 4.5 yield B(z, x) =

B̃(z, x) exp( log(A(z,x)
2 ), where B̃(z, x) is the type B exponential generating function of the

right side of (4.4). See [9, Section 6.2] for all the details.

As a byproduct of the proof, we obtain the following formula. To the best of our
knowledge, this is a new formula. The analogous result for the symmetric group was
described by Brenti in [11, Proposition 7.3].

Corollary 4.6. ∑
d≥0

(
∑

τ∈Bd

tdim(s(τ))zexcB(τ)
) xd

2d d!
= B(z, x) A(z, x)

t−1
2 .

In [7], the authors ask for a nice set of generators for the family of type B generalized
permutahedra, in the sense of Ardila, Benedetti and Doker in the previous section. The
special case r = 1 of Theorem 4.5 implies the following.

Corollary 4.7. Any set of generators for the family of type B generalized permutahedra must
contain at least 2d−1 full-dimensional polytopes.

Proof. As discussed after Proposition 4.4, the log-classes of any such set would linearly
generate Ξ1(π

B
d ). Let {EX}X be an Eulerian family of Bd.

Let p be a type B generalized permutahedron that is not full-dimensional. Let F
be a maximal face in the flat N(p, p). Then, s(F) 6=⊥. It follows from [5, Lemma 11.12]
that HF · E⊥ = 0. Since the action of basis elements HF on Π(πB

d ) is by endomorphisms, we
get log[p] · HF = log([p] · HF) = log[p] and consequently log[p] · E⊥ = (log[p] · HF) · E⊥ = 0.
The result follows since, by Theorem 4.5, dimR(Ξ1(π

B
d ) · E⊥) = η⊥(Ξ1(π

B
d )) = 2d−1.
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This is in sharp contrast with the type A case, where the set of generators is formed
by the collection of faces of the standard simplex.
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