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Abstract. There is an abundance of deep literature on the use of free resolutions to
study modules and vector bundle resolutions to study coherent sheaves. When study-
ing a module over the Cox ring of a smooth projective toric variety X, each approach
comes with its own challenges. There is geometric information that free resolutions
fail to encode, while vector bundle resolutions resist study using algebraic and com-
binatorial techniques. Recently, Berkesch, Erman, and Smith introduced virtual res-
olutions, which are amenable to algebraic and combinatorial study and also capture
desirable geometric information. In this extended abstract, we continue this program
in the combinatorially-rich Stanley–Reisner setting. In particular, when X is a prod-
uct of projective spaces, we produce a large new class of virtually Cohen–Macaulay
Stanley–Reisner rings. After augmenting the simplicial complexes associated to these
Stanley–Reisner rings with a coloring that reflects the product structure on X, our
primary tool is Reisner’s criterion, whose conclusion we interpret in the virtual set-
ting. We also provide two constructions of short virtual resolutions for use beyond the
Stanley–Reisner case.

Keywords: Stanley–Reisner Rings, Free Resolutions, Toric Varieties, Homological Al-
gebra

Introduction

Let X be a smooth projective toric variety over an algebraically closed field k with Cox
ring S and irrelevant ideal B (see [4, §5.2]). Recall that S is a positively Pic(X)-graded
polynomial ring and that there is a correspondence between Pic(X)-graded B-saturated
modules M over S and sheaves M̃ on X [1, 7, 3] (see [8] when X is not smooth). Unfortu-
nately, the numerics of the minimal Pic(X)-graded free resolutions for such S-modules
do not obviously provide many geometric insights for M when X is not projective space;

*cberkesc@umn.edu CB was partially supported by NSF Grant DMS 1661962 and 2001101.
†klein847@umn.edu
‡michael.loper@uwrf.edu
§jkyang@umn.edu JY was partially supported by NSF Grant DMS 1745638

mailto:cberkesc@umn.edu
mailto:klein847@umn.edu
mailto:michael.loper@uwrf.edu
mailto:jkyang@umn.edu


2 Christine Berkesch, Patricia Klein, Michael C. Loper, and Jay Yang

for example, a minimal Pic(X)-graded free resolution of M may be significantly longer
than the dimension of X. However, this failure appears to be a consequence of imposing
too much algebraic structure on the resolution. Approaching the problem from the geo-
metric perspective, vector bundle resolutions of M̃ are bounded in length by the dimen-
sion of X and can in principle be used to study the geometry of M̃, but vector bundles
on X quite complicated and notoriously difficult to study. A proposed solution comes
from [2], in which the authors introduce a type of resolution of M by free S-modules,
which they call a virtual resolution. Virtual resolutions capture geometrically meaningful
properties of Pic(X)-graded S-modules, such as unmixedness, well-behavedness of de-
formation theory, and regularity of tensor products, while also being amenable to study
by algebraic and combinatorial techniques.

Example 1.1. Consider the variety Y of three points contained in P1 × P1, where two
points have same image under the projection to the first copy of P1 and all three points
have distinct images when projected to the second copy of P1, as in Figure 1. Letting
S be the Cox ring of P1 ×P1 and IY denote the B-saturated ideal for Y, then S/IY has
minimal free resolution

S←−

S(−1,−1)
⊕

S(−3, 0)
⊕

S( 0,−2)
⊕

S(−2,−1)

←−

S(−2,−2)
⊕

S(−1,−2)
⊕

S(−3,−1)2

←− S(−3,−2)←− 0 .

On the other hand, a virtual resolution of S/IY is the shorter chain complex

S1 ←−
S(−1,−1)
⊕

S(−2,−1)
←− S(−3,−1)←− 0 .

This virtual resolution indicates that Y is the intersection of the variety of a (1, 1)-form,
the solid lines, and the variety of a (2, 1)-form, the dashed lines.

Figure 1: A variety of 3 points in P1 ×P1

A current goal of this research program is to develop the theory of the virtual Cohen–
Macaulay property, in which the minimal length of a virtual resolution of M, denoted
vdim M, is equal to codim M, i.e., the codimension of Spec(S/ AnnS(M)) in Spec(S).
In this extended abstract, we will work in the Stanley–Reisner setting. Our main result
provides a large class of virtually Cohen–Macaulay Stanley–Reisner rings.



Combinatorial aspects of virtually Cohen–Macaulay sheaves 3

Theorem 1.2. Let S be the Cox ring of X = Pn1 ×Pn2 × · · · ×Pnr . If ∆ is an r-dimensional
simplicial complex and its associated variety V(I∆) ⊆ X is equidimensional, then S/I∆ is virtu-
ally Cohen–Macaulay.

Relationships between vdim(M) and dim(X) have been of interest since the intro-
duction of virtual resolutions. In [2, Proposition 1.2, Theorem 5.1] a Hilbert Syzygy
Theorem-type bound, vdim(M) ≤ dim(X), was given for an arbitrary Pic(X)-graded S-
module M when X is a product of projective spaces and for an arbitrary punctual scheme
in any smooth projective toric variety X. Further, [10] shows that vdim(S/I) ≤ dim(X)
when I is a relevant monomial ideal of S and X is a smooth projective toric variety. Our
new result most directly compares with a similar theorem in the case of pure and bal-
anced simplicial complexes, which are necessarily dimension of r − 1 (see [5, Theorem
5.10]). Our proof is constructive, and we illustrate its use in building explicit resolutions
in Examples 3.7 and 3.8.

The proof of Theorem 1.2 relies on the addition of faces to ∆ that leave the corre-
sponding variety unchanged. The results on this class are hard won through careful
application of Reisner’s criterion interpreted in a virtual setting together with an anal-
ysis of the spectral sequence associated to a certain nerve complex. This combination
can be viewed in some respects as a hint towards a virtual Reisner’s criterion, especially
since the addition of new cells depends surprisingly little on the actual structure of ∆.

We will also discuss methods for building on an understanding of Stanley–Reisner
rings to achieve results outside of the squarefree monomial setting. In particular, we
provide two methods to construct short virtual resolutions with the goal of establishing
virtually Cohen–Macaulay modules outside of the squarefree monomial context. These
constructions either improve on a longer resolution of the same module or on a short
resolution of a closely-related module.

Acknowledgements

We would like to thank Daniel Erman and Gregory G. Smith for helpful conversations
related to this work.

2 Background

2.1 Virtual resolutions and the virtual Cohen–Macaulay property

Throughout this extended abstract, let X be a smooth projective toric variety over the
algebraically closed field k, and let S = Cox(X). All S-modules are assumed to be
finitely generated and Pic(X)-graded and all sheaves coherent.
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Let M be an S-module. As in [2, Definition 1.1], a free complex F• := [F0 ←−
F1 ←− · · · ] is a virtual resolution of M (or of M̃) if the corresponding complex F̃• of
vector bundles on X is a locally-free resolution of the sheaf M̃. Next, define the virtual
dimension of M, denoted vdim M, to be the minimal length of a virtual resolution for M.
Recall that codim M is defined to be the codimension of Spec(S/ AnnS(M)) in Spec(S).
As noted in [2, Proposition 2.5], working over products of projective space, there is an
inequality vdim M > codim M; in light of this, we say that M is virtually Cohen–Macaulay
if vdim M = codim M, the minimum possible. This definition mirrors the affine case,
in which, by the Auslander–Buchsbaum formula, an S-module M is Cohen–Macaulay
if and only if its projective dimension is equal to its codimension. Moreover, because
every free resolution is a virtual resolution, every Cohen–Macaulay S-module is virtually
Cohen–Macaulay. We say that a subscheme V ⊂ X is virtually Cohen–Macaulay if its Cox
ring is virtually Cohen–Macaulay as an S-module.

2.2 The Stanley–Reisner correspondence

The now-classical Stanley–Reisner correspondence is a correspondence between quo-
tients of polynomial rings by squarefree monomial ideals and simplicial complexes. It
was first developed in the study of the Upper Bound Conjecture and now plays a central
role at the intersection of combinatorics, commutative algebra, and algebraic geometry.
For a detailed introduction, we refer the reader to [6].

Definition 2.1. Let ∆ be a simplicial complex on {1, 2, . . . , n} and R = k[x1, . . . , xn].
Define the Stanley–Reisner ideal of ∆ to be

I∆ = 〈xii · · · xik | {ii, . . . , ik} /∈ ∆〉

and the Stanley–Reisner ring of ∆ to be R/I∆.

Reisner showed in his thesis that R/I∆ is Cohen–Macaulay if and only if ∆ is Cohen–
Macaulay as a simplicial complex. He used what is now known as Reisner’s criterion,
which detects if R/I∆ Cohen–Macaulay by the vanishing of certain reduced simplicial
homology modules of links of the faces of ∆. Careful application of this result in the
virtual setting is key to our proof of Theorem 1.2.

3 Virtually Cohen–Macaulay Stanley–Reisner rings

In this section, we will highlight the main steps in the proof of Theorem 1.2 and give
examples illustrating those steps.

For a vector ~n = (n1, . . . , nr) ∈ Nr with |~n| = ∑r
i=1(ni + 1), let X = P~n = Pn1 ×

· · · × Pnr . As a product of projective spaces, X is a smooth projective toric variety. As
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usual throughout this extended abstract, we will take S = Cox(X) and B to be the
irrelevant ideal of S. In this section, we consider simplicial complexes with the vertex
set X corresponding to the |~n|-variables (xi,j)1≤i≤r,0≤j≤ni in S. Endow the vertices in X
corresponding to xi,• with color i.

Let ∆ be a simplicial complex with vertices in X . Define the color set of a simplex σ ∈ ∆
to be the set of the colors of the vertices of σ, denoted by color(σ). We say a simplex
σ ∈ ∆ is relevant if color(σ) = {1, 2, . . . , r} and irrelevant otherwise. A simplicial complex
∆ is relevant if it contains at least one relevant face, and it is irrelevant otherwise. Note that
if ∆ is an irrelevant simplicial complex on X , then S/I∆ is irrelevant, meaning that the
support of S/I∆ is contained in V(B) = {P ∈ Spec(S) | B ⊆ P}. A relevant simplicial
complex ∆ is relevant-connected if its geometric realization is (topologically) connected
after removing the realization of B := {σ ⊆ X | σ is irrelevant}. Further, a subcomplex
of ∆ is called a relevant-connected component if it is maximal among relevant-connected
subcomplexes of ∆.

The first step in the proof of Theorem 1.2 is to prove the result in the relevant-
connected case, a case we will then reduce to.

Theorem 3.1. If ∆ is an r-dimensional relevant-connected simplicial complex on X , then S/I∆
is virtually Cohen–Macaulay.

The core principle behind the proof of this theorem is that if ∆ and ∆′ differ by
only irrelevant simplicies and S/I∆′ is Cohen–Macualay, then S/I∆ is virtually Cohen–
Macaulay. Conveniently, the only modification we will need to make to our simplicial
complex is to take the union with another simplicial complex, dependent only on the
ambiant toric variety, namely Br := {σ ⊆ X | dim σ ≤ r, σ is irrelevant}. One might
additionally notice that this is precisely the r-skeleton of the simplicial complex B corre-
sponding to the irrelevant ideal.

In particular, the simplicial complex Br is itself close to being Cohen–Macualay, and
the precise way in which it fails to be Cohen–Macualay is captured in Lemma 3.2, which
in the proof of Theorem 1.2 is used along with the long exact sequence of a pair to
compute the reduced homology modules necessary to apply Reisner’s Criterion.

Lemma 3.2. The ring S/IBr is Cohen–Macaulay on the punctured spectrum. Also, H̃r−2(Br; k) =
k and H̃i(Br; k) = 0 for all i < r with i 6= r− 2.

Now with this simplicial complex, we can introduce the notion of interior and exte-
rior faces, which are not only essential ingredients in the proof but also give rise to pic-
tures that build our intuition for which aspects of a simplicial complex may or may not
contribute enough simplicial homology to preclude its being virtually Cohen–Macaulay.

If σ is a face of the simplicial complex ∆, define the link of σ in ∆ to be

lkσ(∆) = {σ′ ∈ ∆ | σ ∪ σ′ ∈ ∆, σ ∩ σ′ = ∅}.
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For a relevant simplicial complex ∆ and σ 6= ∅ a face of ∆, let Ex(σ, ∆) = lkσ(∆) ∩
lkσ(Br), and call these simplices the exterior faces of lkσ(∆). Call the remaining faces of
lkσ(∆) the interior faces of lkσ(∆). Then via some homological computations, questions
about the homologies of links in ∆∪Br can be reduced to careful analysis of the interior
and exterior faces.

Example 3.3. Consider the following example in P3 ×P3, where the left vertical line in
Figure 2 is colored by the first copy of P3 and the right vertical line is colored by the
second copy of P3. Consider the link of the red vertex, which is the union of the green
and blue faces, where the interior faces are in green and the exterior faces are in blue.
Notice that the green faces on the right hand edge of the diagram are irrelevant, but are
still interior faces.

Figure 2: Each column of vertices corresponds to a copy of P3.
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The idea of interior and exterior faces can become considerably more complex. Con-
sider the following illustration of the link of a cell in an example ∆ on Pn ×Pm ×P`. In
Figure 3, the vertices corresponding to each of the parts of the product are colored red,
blue, and green. Only the link is illustrated, and it is the link of a vertex that would be
colored blue. Then the bold faces are the exterior faces, and the remainder are interior
faces.

Figure 3: The link in some ∆ of a certain blue vertex on Pn ×Pm ×P`.
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Lemma 3.4. Let ∆ be a pure, relevant simplicial complex of dimension r and σ 6= ∅ be a face of
∆. Then every facet of the link lkσ(∆) has at most two facets of its own that are interior faces of
lkσ(∆). Moreover, a face of lkσ(∆) has exactly one interior face if it shares a color with σ.

Example 3.5. Continuing with Example 3.3, one of the critical steps in the proof of
Theorem 3.1 is the reduction of the some of the more troublesome homology groups to
the homology of a graph by the construction of the graph given by the interior faces of
the link. It is Lemma 3.4 that allows such a graph to be constructed. In Figure 4 that
graph is shown with the vertices given by × symbols, the edges given by dashed lines,
and the half edges illustrated with a edge terminated by a ◦ symbol.

Figure 4: The graph associated to the complex of interior faces of the link from Figure 3.
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In light of Theorem 3.1, we see that Theorem 1.2 will follow if we can show that
that S/I∆ is virtually Cohen–Macaulay on each of the components of its support. The
required result follows.

Proposition 3.6. Suppose that M is module with equidimensional support X =
⊔

Xi with
disjoint components Xi, then M is virtually Cohen–Macaulay if each M|Xi is virtually Cohen–
Macaulay.

The behavior in Proposition 3.6 can be illustrated in the following example, a union of
two disjoint lines in a 3-dimensional projective space, which is virtually Cohen–Macaulay
but not arithmetically Cohen–Macaulay.

Example 3.7. Let S = k[x0, . . . , x3] be the Cox ring of X = P3, and consider the ideal
J = 〈x0, x1〉 ∩ 〈x2, x3〉. Notice that S/〈x0, x1〉 and S/〈x2, x3〉 are Cohen–Macaulay but
S/J is not, as can be seen from its minimal free resolution, whose length is 3, exceeding
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2 = codim S/J:

S1

[
x0x2 x1x2 x0x3 x1x3

]
←−−−−−−−−−−−−−−−−− S4


−x1 0 −x3 0

x0 0 0 −x3
0 −x1 x2 0
0 x0 0 x2


←−−−−−−−−−−−−−−−−− S4


x3
−x2
−x1

x0


←−−−− S1 ←− 0.

Since J corresponds to a 1-dimensional simplicial complex with a single color, Theo-
rem 1.2 implies that S/J is virtually Cohen–Macaulay, with a short virtual resolution of
the form

S2

x0 x1 0 0
0 0 x2 x3


←−−−−−−−−−−−− S4


−x1 0

x0 0
0 −x3
0 x2


←−−−−−−−−− S2 ←− 0.

We now give an example illustrating the difference between the virtually Cohen–
Macaulay and arithmetically Cohen–Macaulay properties when working over the Cox
ring of a product of projective spaces.

Example 3.8. Let X = P2×P2, and consider the simplicial complex ∆ that is homeomor-
phic to a a cylinder, as shown in Figure 5.

The Stanley–Reisner ideal corresponding to ∆ is I∆ = 〈x0y2, x1y0, x2y1, x0x1x2, y0y1y2〉.
Since H̃1(∆; k) 6= 0 and dim ∆ = 2, Reisner’s criterion implies that S/I∆ is not Cohen–
Macaulay.

Recall that the essential ingredient of our technique is to take the simplicial complex
given by the union of ∆ and an Br, so here we can consider B2 ∪ ∆. This is illustrated
in Figure 5 and corresponds to the ideal J = 〈x0y2, x1y0, x2y1〉, then one can check that
Reisner’s criterion is satisfied in this case. Since Ĩ∆ = J̃, we conclude that S/I∆ is virtually
Cohen–Macaulay.

Figure 5: A cylindrical ∆ on P2 × P2, to which adding irrelevant faces produces a
Cohen–Macaulay complex

y0

y1

y2

x0

x1

x2

y0

y1

y2

x0

x1

x2
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We conclude this section with an example showing that, even when J is a monomial
ideal, S/J being virtual Cohen–Macaulay is not determined by the property holding for
S/
√

J. As such, being virtual Cohen–Macaulay is a scheme-theoretic property rather
than a set-theoretic one.

Example 3.9. If S = k[x0, x1, x2] is the Cox ring of P2 and M = S/〈x2
0, x0x1〉, then there

is no f ∈ S so that (S/〈 f 〉)∼ ∼= (S/I)∼. Therefore, the virtual dimension of M is
at least 2 while codim M = 1, and so M is not virtually Cohen–Macaulay. However,√
〈x2

0, x0x1〉 = 〈x0〉 and S/〈x0〉 is clearly arithmetically Cohen–Macaulay and so also
virtually Cohen–Macaulay. We can view this example as suggesting that the Stanley–
Reisner theory in this section is capturing some well-behavedness of virtual resolutions
in the combinatorial setting of simplicial complexes.

4 New virtual resolutions from old

In this section, we give a construction for shortening a known virtual resolution in The-
orem 4.1. We then propose a notion of a virtually regular element f , which allows us to
describe cases when we can construct a virtual resolution for S/(J + 〈 f 〉) from one for
S/J in Proposition 4.5. These tools allow us to expand on the foundation we built in the
previous section to move beyond the squarefree monomial setting in our consideration
of the virtual Cohen–Macaulay property.

4.1 The mapping cone construction

We will begin by stating our main result to construct a shorter virtual resolution from
a longer one. In our full paper, the construction, which makes use of a mapping cone,
is described in detail. We will then return to Example 3.7 to compare and contrast the
virtual resolution construction using Stanley–Reisner theory in Section 3 and the one
presented in this section using mapping cones. We will then give an example of the
mapping cone construction applied to an example that does not come from a squarefree
monomial ideal.

Let X be a smooth projective toric variety with Pic(X)-graded Cox ring S, and let M
be a finitely generate Pic(X)-graded S-module. For instance, X can be P~n, as in Section 3.

Theorem 4.1. Let F• be a virtual resolution of M of length t such that Extt
S(M, S)∼ = 0. If

Extt
S(M, S) admits a free resolution of length at most t + 2, then we can construct a virtual

resolution of M of length t− 1.

Example 4.2. Referring again to Example 3.7 of the ideal J = 〈x0x2, x0x3, x1x2, x1x3〉,
the mapping cone construction of Theorem 4.1 also yields a short virtual resolution of
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S/J. To give the reader a picture of how the mapping cone construction merges the
resolutions of M and Ext3

S(S/J, S) without stating the full details, we will record the
degree shifts of the free S-modules involved in these resolutions. In that format, the
minimal free resolution of S/J is

S← S(−2)4 ← S(−3)4 ← S(−4)← 0.

Take the mapping cone of the following map of chain complexes, where the bottom
chain complex is the dual of the free resolution of Ext3(S/J, S) ∼= k.

· · · 0 0 S S(−2)4 S(−3)4 S(−4) 0

· · · 0 S S(−1)4 S(−2)6 S(−3)4 S(−4) 0.

The mapping cone yields

S2 ←
S(−1)4

⊕
S(−2)4

←
S(−2)6

⊕
S(−3)4

←
S(−3)4

⊕
S(−4)

← S(−4)← 0,

which after minimizing provides the following virtual resolution of S/J of length
codim S/J = 2:

S2 ← S(−1)4 ← S(−2)2 ← 0. (4.1)

Note that this resolution can also be constructed using the techniques of sheaves over
simplicial complexes of [9].

The resolution in (4.1) is different from that obtained using Stanley–Reisner theory
as Example 3.7. This shows us that these two constructions, even applied to the same
relatively small example, are substantively different. It also highlights the fact, known
well since [2], that virtual resolutions of minimal length are typically not unique.

The next example shows the strength of the mapping cone construction outside of
the squarefree monomial setting.

Example 4.3. Consider the hyperelliptic curve C of genus 4 that can be embedded as
a curve of bidegree (2, 8) in P1 × P2 found in [2, Example 1.4]. If IC denotes the B-
saturated ideal for C, then

IC =

〈 x3
1,1x2,0 − x3

1,1x2,1 + x3
1,0x2,2, x2

1,0x2
2,0 + x2

1,1x2
2,1 + x1,0x1,1x2

2,2, x2
1,1x3

2,0 − x2
1,1x2

2,0x2,1 − x1,0x1,1x2
2,1x2,2 − x2

1,0x3
2,2, x1,0x1,1x3

2,0+

x1,0x1,1x2
2,0x2,1 − x2

1,0x2
2,1x2,2 + x2

1,1x2,0x2
2,2 + x2

1,1x2,1x2
2,2, x1,1x3

2,0x2
2,1 + x1,1x2

2,0x3
2,1 − x1,0x4

2,1x2,2 − x1,0x3
2,0x2

2,2 + x1,0x2
2,0x2,1x2

2,2−
x1,1x2,0x4

2,2 − x1,1x2,1x4
2,2, x1,1x5

2,0 + x1,1x4
2,0x2,1 − x1,0x2

2,0x2
2,1x2,2 + x1,1x2

2,1x3
2,2 + x1,0x5

2,2, x1,0x5
2,0 + x1,0x4

2,0x2,1 + x1,1x4
2,1x2,2+

x1,1x3
2,0x2

2,2 + x1,1x2
2,0x2,1x2

2,2 + x1,0x2
2,1x3

2,2, x8
2,0 + 2x7

2,0x2,1 + x6
2,0x2

2,1 + x6
2,1x2

2,2 + 3x3
2,0x2

2,1x3
2,2 + 3x2

2,0x3
2,1x3

2,2 − x2,0x7
2,2 − x2,1x7

2,2

〉
.
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Now S/IC has minimal free resolution

S1 ←−

S(−3,−1)1

⊕
S(−2,−2)1

⊕
S(−2,−3)2

⊕
S(−1,−5)3

⊕
S(0,−8)1

←−

S(−3,−3)3

⊕
S(−2,−5)6

⊕
S(−1,−7)1

⊕
S(−1,−8)2

←−

S(−3,−5)3

⊕
S(−2,−7)2

⊕
S(−2,−8)1

←− S(−3,−7)1 ←− 0 .

Applying Theorem 4.1 to this free resolution and then again on the virtual resolution
constructed by that process produces a virtual resolution for S/IC of the form

S1

⊕
S(0,−1)2

⊕
S(0,−2)1

⊕
S(−0,−2)1

←−

S(−1,−1)2

⊕
S(−1,−2)1

⊕
S(0,−3)1

⊕
S(−1,−2)1

⊕
S(0,−3)1

⊕
S(−1,−1)1

⊕
S(0,−3)2

←− S(−1,−3)5 ←− 0.

Because codim S/IC = 2, this construction shows that S/IC is virtually Cohen–Macaulay.

4.2 The quotient by a virtually regular element

We conclude by giving an example of how one can take virtual resolution of some quo-
tient ring S/J and a virtually regular element f and construct a virtual resolution of
S/(J + 〈 f 〉) of length exactly one greater than the original resolution. This process gives
us the capacity to build from a squarefree monomial example that we understand to the
setting of more general quotients of polynomial rings.

Definition 4.4. Let f be a Pic(X)-graded element of S and M an S-module. If AnnM f is
irrelevant and dim M/ f M = dim M− 1, then we say that f is virtually regular on M or
that f is a virtually regular element on M.

It is immediate that any regular element on M is virtually regular and that no element
of a minimal prime of M can be virtually regular. The additional flexibility gained in
considering virtually regular elements over regular elements alone is that an element
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of an embedded associated prime of M can be virtually regular if its annihilator is
sufficiently well controlled. Notice also that if M′ is an S-module satisfying M̃′ = M̃,
then f is virtually regular on M if and only if f is virtually regular on M′.

Proposition 4.5. If M has a virtual resolution of length ` and f is a virtually regular element
on M, then M/ f M has a virtual resolution of length ` + 1. In particular, if M is virtually
Cohen–Macaulay, then M/ f M is virtually Cohen–Macaulay.

Example 4.6. Let S = k[x0, . . . , x5] be the Cox ring of P5, m = 〈x0, . . . , x5〉, and

J = 〈x0, x1, x2〉 ∩ 〈x3, x4, x5〉.

With M = S/J and F• equal to the minimal free resolution of M, the construction in
Theorem 4.1 yields a virtual resolution of M of length codim M = 3, which shows that
M is virtually Cohen–Macaulay. We claim that x2 − x5 is a virtually regular element
on M, that x1 − x4 is a virtually regular element on M/〈x2 − x5〉M, and that x0 − x3
is a virtually regular element on M/〈x2 − x5, x1 − x4〉M. Because x2 − x5 is a regular
element, it is automatically a virtually regular element. Observe that

M :=
M

〈x2 − x5〉M
∼=

S
〈x0x3, x0x4, x0x2, x1x3, x1x4, x1x2, x2x3, x2x4, x2

2, x5〉
∼=

S
〈x0, x1, x2, x5〉 ∩ 〈x2, x3, x4, x5〉 ∩ 〈x0, x1, x2

2, x3, x4, x5〉
.

Now x1 − x4 is not a regular element on M, but it is not in either minimal prime of M,
and so dim M = 1 + dim M/(x1 − x4)M. The isomorphism presented above is given by
xi 7→ xi for i 6= 5 and x5 7→ x2 − x5. After application of this isomorphism, it is easy
to see that AnnM(x1 − x4) = 〈x2〉M, which is irrelevant. Hence, x1 − x4 is a virtually
regular element that is not a regular element on M. A similar computation shows that
x0 − x3 is in an embedded prime of M/〈x2 − x5, x1 − x4〉M and has, after applying an
analogous isomorphism to the one described above, an irrelevant annihilator generated
by x1 and x2.

Therefore, since M is virtual Cohen–Macaulay, so are each of the modules M/〈x2 −
x5〉M, M/〈x2 − x5, x1 − x4〉M, and M/〈x2 − x5, x1 − x4, x0 − x3〉M by Proposition 4.5.
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