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Abstract. It is well known since the seminal work by Bousquet-Mélou, Claesson,
Dukes and Kitaev (2010) that certain refinements of the ascent sequences with respect
to several natural statistics are in bijection with corresponding refinements of (2 + 2)-
free posets and permutations that avoid a bivincular pattern. Different multiply-
refined enumerations of ascent sequences and other bijectively equivalent structures
have subsequently been extensively studied by various authors.

We contribute new bi-symmetric equidistributions to this subject. Our main result
is a bijective proof of a bi-symmetric septuple equidistribution of statistics on ascent
sequences, involving the number of ascents (asc), the number of repeated entries
(rep), the number of zeros (zero), the number of maximal entries (max), the number
of right-to-left minima (rmin), and two additional statistics. We further establish
a new transformation formula for non-terminating basic hypergeometric 4φ3 series
expanded as an analytic function in base q around q = 1, which is utilized to prove
two (bi)-symmetric quadruple equidistributions on ascent sequences.

A by-product of our findings includes the affirmation of a conjecture about the
bi-symmetric equidistribution between the quadruples of Euler–Stirling statistics
(asc, rep, zero,max) and (rep, asc,max, zero) on ascent sequences, that was motivated
by a double Eulerian equidistribution due to Foata (1977) and recently proposed by
Fu, Lin, Yan, Zhou and the first author (2018).

Keywords: ascent sequences, equidistributions, Euler–Stirling statistics, Fishburn
numbers, basic hypergeometric series

1 Introduction

In the seminal paper [4] by Bousquet-Mélou, Claesson, Dukes and Kitaev, ascent se-
quences were introduced, as they are in bijection with several different combinatorial
structures such as (2 + 2)-free posets, certain bivincular pattern-avoiding permuta-
tions, Stoimenow’s involution and regular linearized chord diagrams [25, 26]. Several
natural statistics on posets, permutations and sequences are also kept track of by a se-
quence of bijections established by these authors. Since then, various joint distributions
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of classical statistics on ascent sequences and many other bijectively equivalent struc-
tures including Fishburn matrices [10, 11] and (2− 1)-avoiding inversion sequences
have been intensively explored; see for instance [7, 9, 8, 17, 18, 20, 21, 23].

Recently, Fu, Lin, Yan, Zhou and the first author [13] discovered a new decomposi-
tion of ascent sequences which contributes to a systematic study of Eulerian and Stir-
ling statistics on ascent sequences, certain pattern-avoiding permutations and (2− 1)-
avoiding inversion sequences. In particular, their work led them to conjecture the
bi-symmetry of a quadruple Euler–Stirling statistics on ascent sequences (see Conjec-
ture 1.4) that is motivated by a double Eulerian equidistribution due to Foata [12].
However, it appears that the use of the new decomposition from [13] is not sufficient
to prove this bi-symmetry conjecture.

In our present work, we affirm this conjecture in two different ways: one by devel-
oping a second new decomposition of ascent sequences; and the other one by identify-
ing the generating function of the quadruple statistics as a basic hypergeometric series
to which a (newly obtained) transformation formula is applied. We start with some
necessary definitions and then state the consequences of our results.

An inversion sequence (s1, s2, . . . , sn) is a sequence of non-negative integers such that
for all i, 0 ≤ si < i. We denote by In the set of inversion sequences of length n, which is
in one-to-one correspondence with the set Sn of permutations of [n] := {1, 2, . . . , n} via
the well known Lehmer code σ (see for instance [12, 22]). That is, for π = π1π2 · · ·πn ∈
Sn, the map σ : Sn → In is defined as

σ(π) = (s1, s2, . . . , sn), where si := |{j : j < i and πj > πi}|.

Some restrictions set up on permutations and inversion sequences could produce new
sets of equal cardinality, but not necessarily through the Lehmer code. For instance,
ascent sequences and ( )-avoiding permutations (defined as below) are equinumer-
ous.

Definition 1.1 (Ascent sequence). For any sequence s ∈ In, let

asc(s) := |{i ∈ [n− 1] : si < si+1}| (1.1)

be the number of ascents of s. An inversion sequence s ∈ In is an ascent sequence if for
all 2 ≤ i ≤ n, the si satisfy

si ≤ asc(s1, s2, . . . , si−1) + 1.

Definition 1.2 (( )-avoiding permutation). We say that a permutation π ∈ Sn avoids
the pattern if there is no subsequence πiπi+1πj of π satisfying both πi − 1 = πj and
πi < πi+1. Otherwise we say π contains the pattern . Sometimes the pattern is
written as 2|31̄.

The ( )-avoiding permutations, more generally, permutations that avoid a spe-
cific bivincular pattern, were introduced and studied by Bousquet-Mélou, Claesson,
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Dukes and Kitaev [4] as both of them are surprisingly in bijection with other classi-
cal combinatorial structures such as (2 + 2)-free posets [10, 11] and regular linearized
chord diagrams [25, 26].

Let An and Sn( ) be the sets respectively of ascent sequences and ( )-avoiding
permutations of length n. Bousquet-Mélou, Claesson, Dukes and Kitaev [4] proved
that

|An| =
∣∣Sn( )

∣∣ = [tn]
∞

∑
k=1

k

∏
i=1

(1− (1− t)i), (1.2)

and thus, as a consequence of a result by Zagier [26] (who discovered that the series
on the right-hand side of (1.2) is the generating functions of the Fishburn numbers),
|An| is equal to the n-th Fishburn number (see A022493 of the OEIS [24]). Their explicit
values are given as

(|An|)n≥1 = (1, 2, 5, 15, 53, 217, 1014, 5335, 31240, 201608, . . .),

for which no closed form is known. The study of Fishburn numbers and their gen-
eralizations has remarkably led to many interesting results, including congruences [2,
14], asymptotic formulas [5, 16, 26], intriguing connections to transformations of hy-
pergeometric series [1], modular forms [5, 26] and a variety of bijections [7, 9, 8, 17,
18, 20, 21, 23]. In particular, various members of the Fishburn family can be viewed as
supersets of corresponding members of the Catalan family. Here the Fishburn (resp.
Catalan) family refers to classes of combinatorial objects enumerated by the Fishburn
(resp. Catalan) numbers.

This extended abstract, which is essentially an abridged version of [19], is devoted
to the presentation of new bijective and basic hypergeometric aspects of Fishburn struc-
tures.

Let us review some classical statistics on ascent sequences and ( )-avoiding per-
mutations. For any sequence s ∈ In, asc(s) is defined in (1.1). Let furthermore

rep(s) := n− |{s1, s2, . . . , sn}|,
zero(s) := |{i ∈ [n] : si = 0}|,
max(s) := |{i ∈ [n] : si = i− 1}|, and
rmin(s) := |{si : si < sj for all j > i}|,

be the respective numbers of repeated entries, zeros, maximal entries (or maximals for
short) and right-to-left minima of s. For instance, when s = (0, 1, 2, 0, 1, 3, 5) ∈ I7, then
asc(s) = 5, rep(s) = 2, zero(s) = 2, max(s) = 3 and rmin(s) = 4.

For any permutation π ∈ Sn, let

des(π) := |{i ∈ [n− 1] : πi > πi+1}|,
iasc(π) := asc(π−1) = |{i ∈ [n− 1] : πi + 1 appears to the right of πi}|,

be the number of desents and inverse ascents of π, respectively. Similar to rmin, the
statistics lmin, lmax and rmax represent the numbers of left-to-right minima, left-to-right
maxima and right-to-left maxima, respectively.



4 Emma Yu Jin and Michael J. Schlosser

Previous bijections developed in [4, 9, 13] preserve natural statistics on posets, per-
mutations, sequences and matrices. As examples, we list below five pairs of equidis-
tributed statistics that were established in those papers.

(asc, zero) on ascent sequences 1−1←→ (des, lmax) on ( )-avoiding permutations,
1−1←→ (mag,min) on (2 + 2)-free posets,
1−1←→ (dim, rowsum1) on Fishburn matrices,
1−1←→ (rep,max) on (2− 1)-avoiding inversion sequences.

Remark 1.3. The statistics mag, min are abbreviations for magnitude and the number of
minimal elements of a poset; the statistics dim and rowsum1 refer to dimension and the
sum of entries in the first row of a matrix.

In a recent paper [13] by Fu, Lin, Yan, Zhou and the first author, a joint symmet-
ric distribution of statistics asc and rep over ascent sequences was discovered. The
motivation came from a symmetric distribution of (asc, rep) on inversion sequences

∑
s∈In

uasc(s)xrep(s) = ∑
s∈In

urep(s)xasc(s). (1.3)

This is a direct consequence of a double Eulerian equidistribution due to Foata [12]:

∑
s∈In

uasc(s)xrep(s) = ∑
π∈Sn

udes(π)xiasc(π). (1.4)

It turns out that not only (1.3) and (1.4) are true if In and Sn are replaced by the
corresponding subsets An and Sn( ), but an even stronger result on a bi-symmetric
equidistribution of Euler–Stirling statistics1 over ascent sequences was conjectured.

Conjecture 1.4 ([13]). For each n ≥ 1, the following bi-symmetric quadruple equidistribution
holds:

∑
s∈An

uasc(s)xrep(s)zzero(s)ymax(s) = ∑
s∈An

urep(s)xasc(s)zmax(s)yzero(s).

Remark 1.5. Conjecture 1.4 is equivalent to a bi-symmetric equidistribution between
the quadruples (des, iasc, lmax, lmin) and (iasc, des, lmin, lmax) on ( )-avoiding permu-
tations, according to [13, Theorem 12].

Two results in approaching this conjecture were presented in [13]: one is an ex-
plicit formula for the generating function of ascent sequences with respect to the four

1We adopt the classification of statistics from [13]: any statistic whose distribution over a member of
the Fishburn family equals the distribution of asc (resp. zero) on ascent sequences is called an Eulerian
(resp. a Stirling) statistic. So according to Theorem 1.7, asc, rep are Eulerian statistics and zero,max, rmin
are Stirling statistics.
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statistics asc, rep, zero,max (see Theorem 1.6); and the other one is a quadruple equidis-
tribution between (asc, rep, zero,max) and (rep, asc, rmin, zero) on ascent sequences (see
Theorem 1.7).

Let G(t; x, y, u, z) denote the generating function of ascent sequences counted by the
length (variable t), asc (variable u), rep (variable x), max (variable y) and zero (variable
z). That is,

G(t; x, y, u, z) :=
∞

∑
n=1

tn ∑
s∈An

xrep(s)ymax(s)uasc(s)zzero(s). (1.5)

Theorem 1.6 ([13]). The generating function G(t; x, y, u, z) of ascent sequences is

G(t; x, y, u, z) =
∞

∑
m=0

zyrxm(1− yr)(1− r)m(x + u− xu)
[x(1− u) + u(1− yr)(1− r)m][x + u(1− x)(1− yr)(1− r)m]

×
m−1

∏
i=0

1 + (zr− 1)(1− yr)(1− r)i

x + u(1− x)(1− yr)(1− r)i , (1.6)

where r = t (x + u− xu).

Theorem 1.7 ([13]). There is a bijection Υ : An → An which transforms the quadruple

(asc, rep, zero,max) to (rep, asc, rmin, zero).

Conjecture 1.4 can be settled, with the the help of Theorems 1.6 and 1.7, by showing
either (I) or (II), described as follows.

(I) G(t; x, y, u, z) = G(t; u, z, x, y);

(II) the quadruple (asc, rep, zero,max) has the same distribution as (asc, rep, zero, rmin)
over ascent sequences.

We are able to settle Conjecture 1.4 independently in both ways, (I) and (II).

2 Main results

2.1 A bi-symmetric septuple equidistribution

Our first main result (Theorem 2.1) is a bijective proof of a bi-symmetric septuple
equidistribution on ascent sequences, which significantly generalizes (II) and conse-
quently affirms Conjecture 1.4.

The five statistics asc, rep, zero, max, and rmin on inversion sequences were defined
in the previous section. We now define two additional statistics on ascent sequences.

First we recall the definition of the statistic ealm on ascent sequences which was
introduced in [13]. Let s be an ascent sequence with max(s) 6= |s|, then ealm(s) =
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smax(s)+1, i.e., the entry right after the last maximal entry. For the ascent sequence
s = (0, 1, . . . , |s| − 1) that has max(s) = |s|, we set ealm(s) = 0.

For example, ealm(0, 1, 0, 1, 3, 0, 2) = 0.
Next, we introduce the new statistic rpos on ascent sequences. For the sake of

convenience, we index all right-to-left minima from left to right starting from 0 (rather
than from 1). For any ascent sequence s with rmin(s) 6= |s|, define rpos(s) = m if m
is the maximal index such that the m-th right-to-left minimum appears at least twice
after the (m− 1)-th right-to-left minimum. If no such m exists or rmin(s) = |s|, then set
rpos(s) = 0.

For example, rpos(0, 0, 1, 2, 3, 4) = 0 and rpos(0, 0, 1, 2, 0, 1, 2, 1, 3, 3, 4) = 2.
Having defined the two additional statistics ealm and rpos, we are now ready to

state our main result.

Theorem 2.1. There is a bijection Φ : An → An such that for all s ∈ An,

(asc, rep, zero,max, ealm, rmin, rpos)s = (asc, rep, zero, rmin, rpos,max, ealm)Φ(s). (2.1)

The main idea to prove Theorem 2.1 relies on two parallel decompositions of ascent
sequences that are in close relation to the two respective statistics ealm and rpos. The
first decomposition was discovered in [13], while the second decomposition is new
and plays an essential role in the proof of Theorem 2.1. The proof itself consists of a
sequence of bijections with delicate subdivisions into cases. See [19] for the details.

2.2 A new basic hypergeometric transformation with applications

Our second main result (Theorem 2.2) is a new transformation formula of non-
terminating basic hypergeometric 4φ3 series, valid as an identity expanded in base
q = 1− r around q = 1, or, equivalently, r = 0. Basic hypergeometric series in base q
expanded around q = 1 typically appear as (multiply-refined) generating functions of
objects of the Fishburn family (compare with (1.2)) which is the reason of our interest
in identities for such series, and, indeed, we successfully apply special cases of the new
4φ3 transformation to prove equidistribution results.

For convenience, we recall some standard notions from the theory of basic hyper-
geometric series, cf. [15].

For indeterminates a and q (the latter is referred to as the base), and non-negative
integer k, the basic shifted factorial (or q-shifted factorial) is defined as

(a; q)k :=
k

∏
j=1

(1− aqj−1).

This also makes sense for k = ∞, where the infinite product is viewed as a formal
power series in q (whereas, viewed as an analytic expression in q, we would need to
insist on |q| < 1, for convergence). When dealing with products of q-shifted factorials,
it is convenient to use the following short notation,

(a1, . . . , am; q)k := (a1; q)k · · · (am; q)k,
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where again k is a non-negative integer or ∞.
An αφβ basic hypergeometric series with α upper parameters a1, . . . , aα, and β lower

parameters b1, . . . , bβ, base q and argument z is defined as

αφβ

[
a1, . . . , aα

b1, . . . , bβ
; q, z

]
:=

∞

∑
k=0

(a1, . . . , aα; q)k
(q, b1, . . . , bβ; q)k

(
(−1)kq(

k
2)
)1+β−α

zk. (2.2)

The series in (2.2) (where the lower parameters are assumed to be chosen such that no
poles occur in the summands of the series) terminates if one of the upper parameters,
say a1, is of the form q−n. Since (q−n; q)k = 0 for k > n, the series in that case contains
only finitely many non-vanishing terms. If the series does not terminate, one usually
imposes |q| < 1. See [15, Sec. 1.2] for conditions under which the series converges.

One of the most important identities in the theory of basic hypergeometric series is
the Sears transformation [15, (III.15)],

4φ3

[
q−n, a, b, c

d, e, abcq1−n/de
; q, q

]
=

(e/a, de/bc; q)n

(e, de/abc; q)n
4φ3

[
q−n, a, d/b, d/c

d, aq1−n/e, de/bc
; q, q

]
. (2.3)

In (2.3), a, b, c, d, e and q are indeterminates and n is a non-negative integer (which is
responsible that both 4φ3 series are actually finite sums and each contains only n + 1
non-vanishing terms).

With the relevant definitions and ingredients of proof given, we are ready to state
the main result of this subsection.

Theorem 2.2. Let a, b, c, d, e, r be complex variables, j be a non-negative integer. Then, assum-
ing that none of the denominator factors in (2.4) have vanishing constant term in r, we have
the following transformation of convergent power series in a and r:

4φ3

[
(1− r)j, 1− a, b, c

d, e, (1− r)j+1(1− a)bc/de
; 1− r, 1− r

]
=

((1− r)/e, (1− r)(1− a)bc/de; 1− r)j

((1− r)(1− a)/e, (1− r)bc/de; 1− r)j

× 4φ3

[
(1− r)j, 1− a, d/b, d/c

d, de/bc, (1− r)j+1(1− a)/e
; 1− r, 1− r

]
. (2.4)

While for non-terminating basic hypergeometric series in base q we usually con-
sider expansions around q = 0, here (and more generally, when dealing with generat-
ing functions of members of the Fishburn family) we are dealing with power series in
r, which can be written as basic hypergeometric series in base q = 1− r, thus can be
viewed as functions analytic around q = 1. We need to be cautious when we resort to
non-terminating identities for basic hypergeometric series.

The first part of the argument in the proof of Theorem 2.2, as our main result in this
section, is similar to that used by Andrews and Jelínek in [1] for establishing q-series
identities around q = 1.
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Proof of Theorem 2.2. Observe that both sides of the identity converge as power series
in a, thus are analytic functions in a. Indeed, for each m ≥ 0 the expansion of (1−
a; 1− r)m in monomials airl only involves terms with i + l ≥ m and each factor in the
denominator of the series has a non-vanishing constant term. Thus, in the expansion
of the series in the variables a and r the contribution of coefficients for each monomial
airl is finite.

Now both sides of (2.4) agree for a = 1− (1− r)−n where n = 0, 1, 2, . . . by the
(q, a, b, c, d, e) 7→ (1 − r, (1 − r)j, b, c, d, e) special case of the transformation in (2.3).
Since we have shown (2.4) for infinitely many values of a accumulating at a = −∞, i.e.
1− a = ∞, by the identity theorem in complex analysis the transformation (2.4) is true
for all a in its domain of analyticity.

We utilize special cases of Theorem 2.2 to give analytic proofs of two different
quadruple (bi)-symmetric equidistributions of Euler–Stirling statistics on ascent se-
quences, collected in Theorem 2.3. The first application of Theorem 2.2 is a proof
of (I) by making use of the explicit form of the generating function in Theorem 1.6,
and thus constitutes a non-combinatorial proof of the bi-symmetric equidistribution
in Conjecture 1.4, while the second application establishes a symmetric equidistribu-
tion by employing a new explicit generating function obtained by a refined recursive
construction of ascent sequences from [13].

Theorem 2.3. For the generating function defined in (1.5), we have the bi-symmetry

G(t; x, y, u, z) = G(t; u, z, x, y). (2.5)

Furthermore, define

G(t; x, y, u, v) :=
∞

∑
n=1

tn ∑
s∈An

xrep(s)ymax(s)uasc(s)vrmin(s), (2.6)

then we have, with r = t(x + u− xu),

G(t; x, y, u, v) =
vyt

1− vytu
+

∞

∑
m=0

rv(1− yr)(1− r)m

(x− xu + u(1− yr)(1− r)m)(1− tuvy)

×
m

∏
i=0

x(1− (1− yr)(1− r)i)(x− xu + u(1− yr)(1− r)i)

(x− u(x− 1)(1− yr)(1− r)i)(x− xu + u(1− rv)(1− yr)(1− r)i)
, (2.7)

and the symmetry
G(t; x, y, u, v) = G(t; x, v, u, y), (2.8)

Remark 2.4. In the language of bijections, the (bi)-symmetric equidistributions in Theo-
rem 2.3 mean that for any ascent sequence s ∈ An,

(asc, rep, zero,max)s = (rep, asc,max, zero)Υ−1(Φ(s)),
(asc, rep,max, rmin)s = (asc, rep, rmin,max)Φ(s),
(asc, rep, zero, rmin)s = (rep, asc, rmin, zero)Υ(Φ(s)),

where Υ and Φ are the bijections respectively in Theorems 1.7 and 2.1.
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Remark 2.5. We are not the first ones to study equivalent forms for generating func-
tions of objects of the Fishburn family using tools from basic hypergeometric series.
Initiating with work of Zagier [26] who established the basic hypergeometric series
in (1.2) as a concrete form of the generating function G(t; 1, 1, 1, 1) for the Fishburn
numbers, Andrews and Jelínek [1] subsequently proved three equivalent forms of
G(t; 1, 1, 1, z) by applying the Rogers–Fine identity. However, to the best of our knowl-
edge, no algebraic or analytic arguments to determine equivalent forms of the gen-
erating functions G(t; x, y, u, z) or G(t; x, y, u, v) were known, not even, say, for the
special case G(t; 1, 1, u, z). Our analytic proofs of G(t; x, y, u, z) = G(t; u, z, x, y) and
G(t; x, y, u, v) = G(t; x, v, u, y) strengthen the already known existing ties between (re-
fined) generating functions of objects of the Fishburn family with basic hypergeometric
series that are expanded in base q = 1− r around r = 0. At the same time it demon-
strates the benefit of having equivalent forms of generating functions, and the power
of basic hypergeometric machinery.

3 Discussion

3.1 Reformulations

All aforementioned (bi)-symmetric distributions on ascent sequences have counterparts
over other members of the Fishburn family.

Corollary 3.1. There are three bijections between Sn( ) and itself such that the following
three (bi)-symmetric equidistributions hold, respectively:

(des, iasc, lmax, lmin, rmax)π = (des, iasc, lmax, rmax, lmin)(Ψ−1 ◦Φ ◦Ψ)(π),

(des, iasc, lmax, lmin)π = (iasc, des, lmin, lmax)(Ψ−1 ◦ Υ−1 ◦Φ ◦Ψ)(π),

(des, iasc, lmax, rmax)π = (iasc, des, rmax, lmax)(Ψ−1 ◦ Υ ◦Φ ◦Ψ)(π),

where Υ, Φ are the bijections respectively in Theorems 1.7 and 2.1, and Ψ : Sn( ) → An is
the bijection from [13, Theorem 12].

Let us recall the definition of Fishburn matrices and associated three Stirling statis-
tics.

Any cell (i, j) of a matrix M is called a weakly north-east cell if Mi,j 6= 0 and Ms,t = 0
for all s ≤ i and t ≥ j. A matrix is a Fishburn matrix if all of its entries are non-negative
integers such that neither row nor column contains only zero entries. Let Fn be the set
of Fishburn matrices whose sum of entries equals n, then for any M ∈ Fn, let

rowsum1(M) := the sum of entries in the first row of M,
ne(M) := the number of weakly north-east cells of M,

mtr(M) := the smallest index i such that (M1,i, . . . , Mi−1,i, Mi,i) 6= (0, . . . , 0, 1).
If no such index exists, then set mtr(M) = dim(M).



10 Emma Yu Jin and Michael J. Schlosser

Corollary 3.2. There is a bijection between Fn and itself such that the following symmetric
distribution holds:

(rowsum1, ne,mtr)M = (rowsum1,mtr, ne)(φ ◦Φ ◦ φ−1)M,

where Φ is the bijection in Theorem 2.1 and φ : An → Fn is the bijection from [6, Theorem 3.6].

Remark 3.3. The three Stirling statistics rowsum1, ne,mtr are pairwise symmetric on Fn.
The fact that the pair (ne,mtr) is symmetric on Fn is a direct consequence of Corol-
lary 3.2 and it is known from [6, 13, 18] that the other two pairs (rowsum1, ne) and
(rowsum1,mtr) are also symmetric.

3.2 A conjecture about a symmetric quintuple equidistribution on
inversion sequences

We pose a conjecture on a symmetric equidistribution of Euler–Stirling statistics on
inversion sequences, which is analogous to Theorem 2.1 but with the two statistics
ealm, rpos (only defined on ascent sequences) being removed, and An (the set of ascent
sequences) being replaced by In (the set of inversion sequences).

Conjecture 3.4. There is a bijection Ω : In → In such that for all s ∈ In,

(asc, rep, zero,max, rmin)s = (asc, rep, zero, rmin,max)Ω(s).

Consequently for all π ∈ Sn,

(des, iasc, lmax, lmin, rmax)π = (des, iasc, lmax, rmax, lmin)(b−1 ◦Ω ◦ b)(π),

where b : Sn → In is a bijection due to Baril and Vajnovszki (see Theorem 1 of [3]).

The validity of Conjecture 3.4 has been verified by Maple up to n = 10. See [19,
Section 7] for a discussion on a possible approach to prove the conjecture.
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