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Abstract. The chromatic symmetric function (CSF) of Dyck paths of Stanley and its
Shareshian–Wachs q-analogue have important connections to Hessenberg varieties,
diagonal harmonics and LLT polynomials. In the case of, so called, abelian Dyck
paths they are also curiously related to placements of non-attacking rooks by results of
Stanley–Stembridge (1993) and Guay-Paquet (2013). For the q-analogue, these results
have been generalized by Abreu–Nigro (2020) and Guay-Paquet (private communica-
tion), using q-hit numbers, which are a variant of the ones introduced by Garsia and
Remmel. Among our main results is a new proof of Guay-Paquet’s elegant identity
expressing the q-CSFs in a CSF basis with q-hit coefficients. We further show its equiv-
alence to the Abreu–Nigro identity expanding the q-CSF in the elementary symmetric
functions.

Keywords: chromatic symmetric functions, abelian Dyck paths, q-hit numbers, q-rook
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1 Introduction

Let G be a graph with vertices {v1, v2, . . . , vn} that are totally ordered v1 < v2 < · · · < vn.
In [15], Stanley defined the chromatic symmetric function XG(x) of G as

XG(x) = ∑
κ:V→P, proper

xκ = ∑
κ:V→P, proper

x#κ−1(1)
1 x#κ−1(2)

2 · · · , (1.1)

where P = {1, 2, 3, . . .}, x = (x1, x2, . . .), and the sum is over the proper colorings of the
vertices of G.

Stanley and Stembridge [16] conjectured that the chromatic symmetric functions ex-
pand with positive coefficients in the basis {eλ} of elementary symmetric functions for
the following graphs. Given a Dyck path d from (0, 0) to (n, n), let G(d) be the graph
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with vertices {1 . . . n} and edges (i, j), i < j if and only if the cell (i, j) is below the path
d. These are also the incomparability graphs of unit interval orders or graphs obtained
from Hessenberg sequences.

Shareshian–Wachs [14] introduced a quasisymmetric version of XG(x) defined by

XG(x, q) = ∑
κ:V→P, proper

qasc(κ)xκ,

where asc(κ) is the number of edges {vi, vj} of G with i < j and κ(vi) < κ(vj).
For the graphs G(d) coming from Dyck paths, the quasisymmetric function XG(d)(x, q)

is actually symmetric and Shareshian–Wachs gave a refinement of the Stanley–Stembridge
conjecture for this Catalan family of graphs.

Conjecture 1.1 (Stanley–Stembridge, Shareshian–Wachs). Let d be a Dyck path then the
coefficients of XG(d)(x, q) in the elementary basis are in N[q].

The symmetric functions XG(d)(x, q) are very actively studied thanks to their connec-
tions to Hessenberg varieties [14], diagonal harmonics [4], and Macdonald polynomials [2].

Conjecture 1.1 has been verified independently and by different techniques by Cho–
Huh [5], Hamada–Precup [12] , and Abreu–Nigro [1] for the case of abelian Dyck paths:
paths d of size m + n of the form nmw(λ)en where w(λ) is the encoding in North (n) and
East (e) steps of the partition λ ⊂ n×m (see Figure 2). We denote the associated graph
by G(λ) and the chromatic symmetric function by Xλ(x, q) = XG(λ)(x, q).

The symmetric functions of abelian Dyck paths are deeply related to the q-rook the-
ory of Garsia–Remmel [8] as was unveiled in the Abreu–Nigro expansion, itself a q-
analogue of a result of Stanley–Stembridge [16]. The following statements use the
standard notation [n]k = [n][n − 1] · · · [n − k + 1], [n]! = [n]n, [ n

k ] = [n]k/[k]!, where
[x] = (1− qx)/(1− q). Also Hn

j (λ) denotes q-hit numbers [7] which are equal to the
Garsia–Remmel q-hit numbers [8] up to a power of q. Moreover, the Hn

j (λ) are symmet-
ric polynomials in N[q] that at q = 1 give the number of permutations of size n with
permutation matrix having support of size j in the board of λ.

Theorem 1.2 (Abreu–Nigro [1]). Let λ be partition inside an n×m board with `(λ) = k ≤ λ1.
Then

Xλ(x, q) = [k]!Hn+m−k
k (λ) · em+n−k,k +

k−1

∑
j=0

qj [j]! [n + m− 2j] Hm+n−j−1
j (λ) · em+n−j,j.

Central to this paper is a new identity of Guay-Paquet (private communication [9])
that expands Xλ(x, q) in terms of chromatic symmetric functions for rectangular shape
with coefficients given by q-hit numbers of rectangular boards of size n×m that we denote
by Hm,n

j (λ) and satisfy ∑n
j=0 Hm,n

j (λ) = [m]n.
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Theorem 1.3 (Guay-Paquet [9]). Let λ be partition inside an n×m board (n ≤ m). Then

Xλ(x, q) =
1

[m]n

n

∑
j=0

Hm,n
j (λ) · Xmj(x, q).

The original proofs of the two statements above use a linear relation satisfied by
XG(d)(x, q) called the modular relation [1, 3, 10]. Our first main result is an elementary
proof of Theorem 1.3 using a desymmetrizing recursive relation and q-rook theory (Sec-
tion 3) and our second main result is the equivalence of this result and Theorem 1.2
(Section 4). As a by-product of our arguments, we obtain a new proof of the Abreu–
Nigro expansion, a new recurrence to compute Xλ(x, q) (Lemma 3.2), and new relations
of q-rook numbers and q-hit numbers (Lemma 3.4 and 4.3) that develop further the q-rook
theory of rectangular boards [13].

The full version of this paper is available at [6].

2 Background on q-rook theory

For the rest of the paper, we assume m and n are non-negative integers with m ≥ n.

2.1 q-rook numbers

Definition 2.1 (q-rook numbers [8]). Given a partition λ = (λ1, λ2, . . . , λn) inside an n×m
board, the Garsia-Remmel q-rook numbers are defined as Rk(λ) = ∑p qinv(p), where the sum
is over all placements p of k non-attacking rooks on λ and inv(p) is the number of cells of λ left
after each rook cancels its cell, the cells North in its column and the cells West in its row (see
Figure 1).

Proposition 2.2 (Garsia-Remmel [8]). Given a partition λ = (λ1, . . . , λ`) we have that

F(x; λ) :=
`

∑
k=0

Rk(λ)[x]`−k =
`

∏
i=1

[x + λ`−i+1 − i + 1]. (2.1)

Lemma 2.3. Given a partition λ = (λ1, . . . , λ`) we have that

qλ1 [x]
F(x− 1; λ)

F(x; λ)
= [x− `+ λ1]−

λ1

∑
j=1

qλ1−j
λ′j

∏
t=1

[x + λt − 1− `+ t]
[x + λt − `+ t]

.

Proof. We use induction on `(λ) and apply Proposition 2.2. For `(λ) = 1, we have

[x]
F(x− 1; λ)

F(x; λ)
= [x− 1] +

λ1

∑
j=1

q−j − q−j [x + λ1 − 1]
[x + λ1]

= q−λ1
[x + λ1 − 1]
[x + λ1]

([x + λ1]− [λ1]).
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Next, expanding the RHS of the above identity and doing standard manipulations gives

[x− `+ λ1]−
λ1

∑
j=1

qλ1−j
λ′j

∏
t=1

[x + λt − 1− `+ t]
[x + λt − `+ t]

=

= qλ1−λ2
[x + λ1 − `]

[x + λ1 − `+ 1]

[x + λ2 − (`− 1)]−
λ2

∑
j=1

qλ2−j
λ′j

∏
t=2

[x + λt − 1− `+ t]
[x + λt − `+ t]

 .

By induction hypothesis the parenthetical on the RHS above is qλ2 [x]F(x− 1; λ̃)/F(x; λ̃)
where λ̃ = (λ2, . . . , λ`). Using λ̃t = λt+1 for the reindexing we obtain the result.

2.2 q-hit numbers

The q-hit numbers are defined in terms of the q-rook numbers by a change of basis. Let
(a; q)k = ∏k−1

i=0 (1− aqi) denote the q-Pochhammer symbol.

Definition 2.4 ([13, Def. 3.1, Prop. 3.5]). For λ inside an n× m board, we define the q-hit
polynomial of λ by

n

∑
i=0

Hm,n
i (λ)xi :=

q−|λ|

[m− n]!

n

∑
i=0

Ri(λ) [m− i]!(−1)iqmi−( i
2)(x; q)i, (2.2)

where the coefficients Hm,n
i (λ) are the q-hit numbers associated to λ.

Notation 2.5. For square boards with m = n, we denote the q-hit number by Hm
j (λ).

Remark 2.6. For the case n = m, Garsia–Remmel defined q-hit numbers H̃n
k (λ) by the relation

n

∑
i=0

H̃n
i (λ)xi =

n

∑
i=0

Ri(λ)[n− i]!
n

∏
k=n−i+1

(x− qk). (2.3)

One can show that the Garsia–Remmel q-hit numbers and our q-hit numbers differ by a power of
q, namely H̃n

k (λ) = q|λ|−knHn
k (λ) (see [6, Appendix]).

For the case of square boards, Garsia and Remmel showed that H̃n
k (λ) are in N[q].

Later, Dworkin [7] and Haglund [11] found different Mahonian statistics on rook place-
ments that realize the polynomials H̃j(λ). Guay-Paquet [9] defined the rectangular q-hit
numbers using a statistic similar to Dworkin’s statistic in [7] that we define next.

Definition 2.7 (Statistic for the q-hit numbers). Let λ be a partition inside an n×m board.
Given a placements p of n nonattacking rooks on a n × m board, with exactly j inside λ, let
stat(p) be the number of cells c in the n×m board such that (i) there is no rook in c, (ii) there is
no rook above c on the same column, and either, (iii) if c is in λ then the rook on the same row of
c is in λ and to the right of c or (iv) if c is not in λ then the rook on same row of c is either in λ

or to the right of c.
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Remark 2.8. Intuitively, Dworkin’s statistic stat(p) is the number of remaining cells in the
n×m board after: wrapping this board on a vertical cylinder and each rook of p cancels the cells
South in its column and the cells East in its row until the border of λ.

Theorem 2.9. Let λ be a partition inside an n×m board and j = 0, . . . , n then
Hm,n

j (λ) = ∑p qstat(p), where the sum is over all placements p of n non-attacking rooks on a
n×m board, with exactly j rooks inside λ.

The proof of this result is included in [6, Appendix]. Moreover, for each partition λ,
the statistic stat(·) is Mahonian. This results follows readily from Definition 2.4.

Corollary 2.10. Let λ be a partition inside an n×m board, then
n

∑
j=0

Hm,n
j (λ) = [m]n.

Example 2.11. Consider the partition λ = (6, 3, 3, 1) inside a 6× 8 board. In Figure 1, we
present an example of a placement p of two rooks on λ with inv(p) = 7 and an example of a
placement p′ of six rooks on the 6× 8 board with two hits on λ and stat(p′) = 13.

λ
n

m

λ λ
e

λ \ e λ/e

Figure 1: Left: Example of the statistics of a q-rook number and a q-hit number. Right:
Example of the deletion and contraction of the board of a partition λ.

We finish this section with some results for q-hit numbers. First, we give a dele-
tion/contraction relation. Given a shape λ and a corner cell e in λ, λ\e denotes the
shape obtained after deleting the cell e in λ, and λ/e denotes the shape obtained after
deleting in λ the row and column containing e. See Figure 1 for an example.

Lemma 2.12. We have the following deletion/contraction relation:

Hm,n
j (λ) = Hm,n

j (λ\e) + q|λ/e|−|λ|+j+m−1
(

Hm−1,n−1
j−1 (λ/e)− qHm−1,n−1

j (λ/e)
)

. (2.4)

The next results show the relation between the q-hit numbers when we change the
dimensions of the board.

Lemma 2.13. Let λ be a partition inside an n×m board. Then, Hm,n
j (λ) = 1

[m−n]! Hm,m
j (λ).

Lemma 2.14. Let λ be a partition inside an (n− 1)×m board. Then,

Hm,n
j (λ) = [m + 1− n] Hm,n−1

j (λ). (2.5)
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1

m

λ

m+ 1

m+ n

3

2

q3 q1 q1 q2 q2 q0

Figure 2: Left: an abelian Dyck path λ inside an n×m board. Top right: the paths for
λ = (2, 1), and for the rectangles 30, 31, 32 inside a 2× 3 board. Bottom right: the six
placements of 2 rooks in 2× 3 divided by how many rooks “hit” (2, 1) (in gray) and
the associated statistic to each rook placement.

Finally, we give formulas for q-hit numbers for rectangular shapes and omit their
standard proofs.

Proposition 2.15. HN
k (mj) = q(N−j−m+k)k [m]k [N − j]!

[N −m]j−k [j]j−k

[j− k]!
.

Proposition 2.16. Hm,n
r ((m− 1)k) = 0 for 0 ≤ r ≤ k− 2, Hm,n

k−1((m− 1)k) = [k][m− 1]n−1,
and Hm,n

k ((m− 1)k) = qk[m− k][m− 1]n−1.

3 The Guay-Paquet q-hit identity

In this section we sketch our main result, a proof of Theorem 1.3 using q-rook theory.
We start by giving an example of this elegant identity.

Example 3.1. For λ = (2, 1) inside a 2× 3 board, looking at Figure 2, we see that H3,2
0 (λ) =

q0 = 1, H3,2
1 (λ) = 2q + 2q2, H3,2

2 (λ) = q3. One can verify that

X21(x, q) =
1

[3][2]

(
X30(x, q) + (2q2 + 2q)X31(x, q) + q3X32(x, q)

)
,

We consider the chromatic symmetric functions in variables x1, . . . , xM and each
monomial appearing as a particular assignment of the variables (i.e. colors) to the ver-
tices. That is, the vertices 1, . . . , N = m + n are colored {1, . . . , M}. For simplicity, we
denote by XN

λ (M) the chromatic symmetric polynomial XG(λ)(x1, . . . , xM; q) where the
graph G(λ) has N vertices. We will use induction on both M and n, m when necessary,
driven by the following recursion.
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Lemma 3.2. For λ ⊂ m× n we have the following recursion

Xm+n
λ (M) =Xm+n−1

λ (M− 1) + xM

m+n

∑
i=1

qm+n−i−λ′i Xm+n−1
λ/i (M− 1)

+ x2
M ∑

(i,j)∈λ

qi−1+(m+n−j−λ′j)Xm+n−2
λ/(i,j) (M− 1),

where λ/(i, j) is the partition obtained by removing row i and column j from λ, and λ/i means
we remove from λ column i, for i = 1, . . . , m or row m + n− i + 1, for i = m + 1, . . . , m + n.

Proof. In the abelian case, the graph G(λ) consists of a clique with vertices {1, . . . m},
a clique with vertices {m + 1, . . . , m + n} and a bipartite graph in between with edges
(i, m + j) for each (i, j) in λ. So a coloring of this graph has at most two vertices of the
same color. If the colors used are in {1, . . . , M}, there are three cases for the color M:

1. No vertex is colored M, this term contributes Xm+n−1
λ (M− 1) to Xm+n

λ (M).
2. Only one vertex is colored M. Suppose this vertex is in column j (from left) and

row i = N − j (from top to bottom). It creates ascents with all vertices above it but
not in λ, giving N − j − λ′j ascents. Deleting this vertex corresponds to deleting
its row and column (only one would be a row/column of λ) and we get a graph
on N − 1 vertices with shape λ/j (deleting row N − j, column j or row j, column
N − j). These terms contribute xM ∑j qN−j−λ′j Xλ/j(M− 1).

3. Two vertices are colored M. Suppose that one is in column j and the other one is in
row i, necessarily with (i, j) ∈ λ. The ascents they contribute are N− j− λ′j + i− 1.
We can remove these two vertices, by removing row i and column j from λ and
decreasing N by 2. These terms contribute x2

M ∑(i,j) qN−j−λ′j+i−1XN−2
λ/(i,j)(M− 1).

For rectangular shapes λ = (mk), Lemma 3.2 gives the following recursive expansion.

Lemma 3.3.

Xm+n
mk (M) = Xm+n

mk (M− 1) + xM

(
qn−k[m]Xm+n−1

(m−1)k (M− 1) + [k]Xm+n−1
mk−1 (M− 1)

+qk[n− k]Xm+n−1
mk (M− 1)

)
+ x2

Mqn−k[k][m]Xm+n−2
(m−1)k−1(M− 1).

Proof. This follows by carefully applying Lemma 3.2 to the shape λ = mk, since λ/i is
either (m− 1)k or mk−1 and λ/(i, j) = (m− 1)k−1.

Proof of Theorem 1.3. Translating Theorem 1.3 into chromatic symmetric polynomials, we
want to prove that for every M we have

Xλ(M) =
1

[m]n

n

∑
j=0

Hm,n
j (λ) · Xmj(M). (3.1)
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We apply Lemma 3.3 to each term Xmj(M) appearing in the right hand side of the
formula in (3.1). We also apply Lemma 3.2 and the induction hypothesis to the left
hand side of the formula in (3.1), i.e. to Xλ(M). Then, we obtain an expression where
both sides are written in terms of Xm+n

mk (M− 1), xMXm+n−1
mk (M− 1), xMXm+n−1

(m−1)k (M− 1)

and x2
MXm+n−2

(m−1)k (M− 1). The term at x0
M corresponds to the coefficient of Xm+n

mk (M− 1),

which is 1
[m]n

Hm,n
k (λ) on both sides by induction on M. For the linear term, matching

the coefficients of xMXm+n−1
(m)k (M− 1) and xMXm+n−1

(m−1)k (M− 1) separately, is equivalent to
two q-hit identities we need to prove:

m

∑
i=1

qm+n−i−λ′i Hm−1,n
k (λ/(m + n− i, i)) = [m− n]Hm,n

k (λ)qn−k, (3.2)

[m− n + 1]
m+n

∑
i=m+1

qm+n−i−λ′i Hm,n−1
k (λ/(m + n− i, i)) = Hm,n

k (λ)qk[n− k] + Hm,n
k+1(λ)[k + 1].

(3.3)

Finally, the quadratic term x2
MXm+n−2

(m−1)k (M− 1) corresponds to the q-hit identity:

qk ∑
(i,j)∈λ

qi+(m−j−λ′j)Hm−1,n−1
k (λ/(i, j)) = [k + 1]Hm,n

k+1(λ). (3.4)

By Definition 2.4, we translate these three identities involving q-hit numbers into three
identities involving q-rook numbers that are in Lemma 3.4. These identities complete
the proof of Theorem 1.3.

Lemma 3.4. The q-hit identities (3.2), (3.3), and (3.4) are equivalent, in that order, to:
m

∑
j=1

qm−jRk(λ/j) = Rk(λ)[m− k]− Rk+1(λ)(qm − qm−k−1), (3.5)

n

∑
i=1

qi−1+λi Rk(λ/i) = ([n]− [k])Rk(λ), (3.6)

∑
(i,j)∈λ

qi−j+λi Rk(λ/(i, j)) = q[k + 1]Rk+1(λ). (3.7)

We give the proof of the first relation (3.5). The arguments for the other two relations
have a similar flavor.

Proof of (3.5). Let ` = `(λ). Multiplying on both sides by [x]`−i and summing over
i = 0, . . . , `, the claimed relation is equivalent to the generating function identity:

m

∑
j=1

qm−jF(x; λ/j) = ∑
i

Ri(λ)
(
[m− i][x]`−i − (qm − qm−i)[x]`−i+1

)
= [m + x− `]F(x; λ)− qm[x]F(x− 1; λ),
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where F(x; λ) is as in (2.1) and we used the observation that

[m− i][x]`−i − (qm − qm−i)[x]`−i+1 = [x]`−i[x + m− `]− qm[x]`−i+1.

We have that

F(x; λ/j) =
λ′j

∏
i=1

[x + λi − 1− `+ i]
`

∏
i=λ′j+1

[x + λi − `+ i] = F(x; λ)

λ′j

∏
i=1

[x− 1 + λi − `+ i]
[x + λi − `+ i]

.

Using Lemma 2.3, we have that since λ/j = λ if j > λ1,

m

∑
j=1

qm−jF(x; λ/j) = F(x; λ)

(
[m− λ1] + qm−λ1

m

∑
j=1

qλ1−j
λ′j

∏
i=1

[x− 1 + λi − `+ i]
[x + λi − `+ i]

)
= F(x; λ)

(
[m− λ1] + qm−λ1 [x− `+ λ1]− qm−λ1qλ1 [x]

F(x− 1; λ)

F(x; λ)

)
= F(x; λ)[x− `+ λ1 + m− λ1]− qm[x]F(x− 1; λ),

as desired.

4 The Abreu–Nigro expansion in the elementary basis

In this section we show that Guay-Paquet’s identity (Theorem 1.3) is equivalent to
Abreu–Nigro’s identity presented (Theorem 1.2). We start by giving a proof of Abreu–
Nigro’s identity for rectangular shapes.

Lemma 4.1 (Abreu–Nigro’s formula for rectangles).

Xmk(x, q) = [k]!Hm+n−k
k (mk) · em+n−k,k +

k−1

∑
r=0

qr [r]! [n + m− 2r] Hm+n−r−1
r (mk) · em+n−r,r.

In order to prove this case of the Abreu–Nigro identity we need the following result.

Lemma 4.2 (Guay-Paquet formula for rectangles).

[m]Xm+n−1
(m−1)k = qk[m− k]Xmk + [k]Xmk−1 . (4.1)

Proof. By Theorem 1.3 for the shape λ = (m− 1)k ⊂ n×m and the formula for the q-hit
numbers Hm,n

r ((m− 1)k) from Proposition 2.16 we obtain

X(m−1)k =
1

[m]n
qk[m− 1]k[m− k]n−kXmk +

1
[m]n

[k][m− 1]k−1[m− k]n−kXmk−1 ,

[m]X(m−1)k = qk[m− k]Xmk + [k]Xmk−1 .
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Proof sketch of Lemma 4.1. We use induction on m and k. For the base case, note that
Xm0 = [m + n]!em+n = Hm+n

0 (m0)em+n. By Lemma 4.2 we have that

Xmk =
1

qk[m− k]

(
[m]X(m−1)k − [k]Xmk−1

)
.

Next, we use the induction hypothesis on X(m−1)k and Xmk−1 , Proposition 2.15 for the
hit numbers of rectangles, and routine simplifications to verify the desired formula for
Xmk .

We are now ready to prove that the Guay-Paquet’s identity and Abreu–Nigro’s follow
from each other. As a corollary, we obtain a new proof of the latter.

Proof of Theorem 1.2. Applying Lemma 4.1 to the RHS of the formula in Theorem 1.3, we
obtain that

1
[m]n

n

∑
j=0

Hm,n
j (λ) · Xmj(x, q) =

1
[m]n

n

∑
j=0

Hm,n
j (λ)

(
[j]!Hn+m−j

j (mj) · em+n−j,j

)

+
1

[m]n

n

∑
j=0

Hm,n
j (λ)

(
qr

j−1

∑
r=0

[r]! [n + m− 2r] Hm+n−r−1
r (mj) · em+n−r,r

)
.

Now, switching the summation order, we have that

1
[m]n

n

∑
j=0

Hm,n
j (λ) · Xmj(x, q) =

n

∑
r=0

em+n−r,r
1

[m]n
[r]!Hm+n−r

r (mr)Hm,n
r (λ)

+
n−1

∑
r=0

em+n−r,r
1

[m]n

(
qr

n

∑
j=r+1

[r]! [n + m− 2r] Hm+n−r−1
r (mj)Hm,n

j (λ)

)
.

Thus, we need to show that for r = k = `(λ),

[m]n Hm+n−k
k (λ) = Hm+n−k

k (mk)Hm,n
k (λ) + qk

n

∑
j=k+1

[n + m− 2k] Hm+n−k−1
k (mj)Hm,n

j (λ),

and for r < k = `(λ),

[m]n qr [n + m− 2r] Hm+n−r−1
r (λ) = Hm+n−r

r (mr)Hm,n
r (λ)

+ qr
n

∑
j=r+1

[n + m− 2r] Hm+n−r−1
r (mj)Hm,n

j (λ).

After using Proposition 2.15, these two relations are equivalent to the following identities
relating q-hit numbers of λ in square boards and rectangular boards. Finally, the Abreu-
Nigro expansion for Xλ(x, q) follows now from Lemma 4.3.
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Lemma 4.3. Let λ be a partition inside an n×m board and k = `(λ), then[
m− k
n− k

]
Hm+n−k

k (λ) = qk(n−k) [m + n− 2k]m−k Hm,n
k (λ). (4.2)

For 0 ≤ r < k, we have[
m− r
n− r

]
Hm+n−r−1

r (λ) = qr(n−r−1) [m + n− 2r− 1]m−r−1 Hm,n
r (λ)

+
n

∑
j=r+1

qr(n−1−j)
[

j
r

]
[m + n− r− j− 1]m−r

[n− r]
Hm,n

j (λ). (4.3)

Proof sketch of Lemma 4.3. Each identity follows by using Definition 2.4 to rewrite both the
LHS and RHS in terms of q-rook numbers Rj(λ) and showing the resulting expressions
are equal via routine q-factorial manipulations.

We remark that there is a more interesting proof using the deletion/contraction for-
mula in Lemma 2.12 on both sides of each relation, the rectangle-resizing identity in
Lemma 2.14, and induction.

5 Open problems

Since our proof of Theorem 1.3 uses q-rook theory, it would be interesting to find a
bijective proof of this result relating colorings with rook placements.

There are other rules for the elementary basis expansion of Xλ(x, q). In particu-
lar, Cho–Huh [5] give an expansion in terms of P-tableaux of shape 2j1m+n−2j such
that there is no s ≥ j + 2 such that (ai,1, as,1) ∈ λ for all i ∈ {` + 1, . . . , s − 1}. Let
cm,n

j (q) := ∑T qinvG(λ)(T), where the sum is over such tableaux (see [14, Sec. 6]). It would
be interesting to find a weight-preserving bijection that shows that

cm,n
j (q) =

{
[j]!Hm+n−j

j (λ) if j = `(λ),

qj[j]![m + n− 2j]Hm+n−j−1
j (λ) if j < `(λ).
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