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Hurwitz numbers for reflection groups
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Abstract. We give formulas for the number of transitive reflection factorizations of a
parabolic quasi-Coxeter element in a Weyl group or complex reflection group, gener-
alizing the Hurwitz formulas for the symmetric group.
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1 Introduction

In the late 19th century, Hurwitz (an early disciple of Riemann surface theory) was the
first to recognize that the structure of Riemann surfaces with finitely many branch points
is intrinsically combinatorial. In particular, he showed in [12] that they are determined
via (classes of) factorizations of the identity in the symmetric group Sn. In the same
work [12, § 7], he gave a complete analysis for the case of genus-0 surfaces with all but
one branch points being simple. In combinatorial terms, these correspond to minimum-
length transitive factorizations τ1 · · · τk = σ of a given element σ in Sn in transpositions
τi, with transitivity referring to the natural action of the group 〈τi〉ki=1 on the set [n] :=
{1, . . . , n}. If λ = (λ1, · · · , λc) is the cycle structure of σ, in which case it is easy to
see that k = n + c − 2, Hurwitz’s celebrated formula for the number H0(λ) of such
factorizations has a beautiful product structure

H0(λ) = (n + c− 2)! · nc−3 ·
c

∏
i=1

λ
λi
i

(λi − 1)!
. (1.1)

In particular, for factorizations of the identity, this gives H0(1n) = (2n− 2)! · nn−3. These
(single) Hurwitz numbers of genus 0 also count certain connected planar graphs embedded
in the sphere (planar maps; see, e.g., [16]).

In the 1980s, work of Stanley [19] and Jackson [13] rekindled the interest in the enu-
meration of factorizations in Sn even if, at the time, they were unaware of the topological
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context. In a different vein, the next few decades saw the emergence of Coxeter com-
binatorics; one of its main breakthroughs was the realization that theorems about Sn
are often shadows of more general results that hold for all reflection groups W. In our
context of factorizations, this means replacing transpositions with reflections τi ∈W.

The intersection of these two areas has witnessed a lot of research activity recently
[4, 5, 17], especially for factorizations of Coxeter elements c ∈ W, generalizing the long
cycle case λ = (n). In general, however, analogs of (1.1) have been hard to find, not least
because it is unclear how to define transitivity in reflection groups. In Sn, transitivity
corresponds to the connectedness of the map or Riemann surface, both of which have
no analogs for W.

An equivalent way to interpret this notion of transitivity is to require that the factor-
ization cannot be realized in any proper Young subgroup of Sn. This approach is valid
for arbitrary reflection groups W, where we will thus say that τ1 · · · τk = g is a transitive
reflection factorization of an element g ∈ W, if the τi are reflections and they generate the
whole group W. We are particularly interested in the “genus-0" case, where the number
k of terms is minimum for the element g. We call this number k the transitive reflection
length of g and denote it by `tr

R(g) (leaving the symbol `R(g) to stand for the usual re-
flection length of g, which does not require transitivity of the factorization). We write
Ftr

W(g) for the number of such minimum length transitive reflection factorizations of g.
In this work we establish (essentially) uniform formulas for these counts Ftr

W(g),
which then might be called W-Hurwitz numbers. They generalize the previously men-
tioned Hurwitz formulas to any Weyl group W (see also § 4 for the complex case) and
any parabolic quasi-Coxeter element g ∈ W (this is a wide class of elements which for
example contains all g ∈ Sn). Partial results for the “higher genus” case appear in § 5.

There are many combinatorial approaches to the proof and interpretation of the Hur-
witz formulas (e.g., [3, 11]). In particular, Duchi–Poulalhon–Schaeffer [7] give a bijective
proof where the term nc−3 in (1.1) roughly counts certain trees on the c-many cycles of
g ∈ Sn. Our main Theorem 1.1 indicates that something similar happens for all reflec-
tion groups W. Those trees are replaced by the collection RGS(W) of (length-n) reflection
generating sets of W, and a relative version RGS(W, g) (see § 2). For the special case that
g = id ∈W, Thm. 1.1 for instance implies the formula

Ftr
W(id) = (2n)! · |RGS(W)| · 1

I(W)
, (1.2)

where n = rank(W) and I(W) is the connection index of the Weyl group W. Indeed,
for Sn, the collection RGS(Sn) corresponds precisely to the nn−2 trees on [n] and since
I(Sn) = n, this gives a direct generalization of the Hurwitz number H0(1n) of (1.1).

Among elements g ∈ W, the parabolic quasi-Coxeter ones have a unique decompo-
sition g = g1 · g2 · · · gm that generalizes the cycle-type decomposition of permutations
and where each gi is a quasi-Coxeter element of some irreducible parabolic subgroup of
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W (see § 2). We write Fred(gi) for the number of reduced (i.e., of minimum length, and
thereby not transitive unless `R(gi) = n) reflection factorizations of gi. These quantities
are analogs of the numbers λ

λi−2
i in Sn and are described in § 2; they are all given by

product formulas. With these notations, our main theorem is as follows.

Theorem 1.1. For a Weyl group W, and any parabolic quasi-Coxeter element g ∈ W with
decomposition g = g1 · g2 · · · gm, the number Ftr

W(g) of minimum-length transitive reflection
factorizations of g is given by the formula

Ftr
W(g) = `tr

R(g)! · |RGS(W, g)| ·
I(Wg)

I(W)
·

m

∏
i=1

Fred(gi)

`R(gi)!
, (1.3)

where `tr
R(g) is the transitive reflection length of g, Wg is the smallest parabolic subgroup con-

taining g, and I(W) and Fred(gi) are as above.

The result for reducible groups follows easily from the case of irreducible groups
that we prove in Section 3. In Section 4 we generalize (conjecturally unless g = id) Theo-
rem 1.1 to all well-generated complex reflection groups. The appearance of the quantity
|RGS(W, g)| in the formula (1.3) seems very reasonable, but it cannot be explained on
a purely naive basis. In particular, the number of subsets of the terms in a minimum-
length transitive reflection factorization of g that belong to RGS(W, g) is not constant,
already in Sn and for the identity g = id.

2 Quasi-Coxeter elements and reflection generating sets

In this abstract, we present Thm. 1.1 in the level of generality of Weyl groups (even
though it can be further extended, see § 4). These are finite subgroups W of GL(Rn),
generated by euclidean reflections, that further admit the W-equivariant, essential, root
lattice Q and coroot lattice Q̌ (see the classical reference [14]). They have an assortment
of related objects; in particular, roots α ∈ Q and coroots α̌ ∈ Q̌, and a weight lattice P
defined as the dual lattice to Q̌. There is an inclusion Q ⊂ P and the index I(W) :=
[P : Q] is an important invariant of W, known as its connection index; it agrees with the
determinant of the Cartan matrix

[
(αi, α̌j)

]
i,j for a set of simple roots {αi}. Weyl groups

are classified in three infinite families Sn+1 = An, Bn, Dn, where n is the rank of the
group, and five exceptional cases E6, E7, E8, F4, and G2. The corresponding connection
indices are n + 1, 2, 4 for the infinite families and 3, 2, 1, 1, 1 for the exceptional groups.

Our main Theorem 1.1 extends the Hurwitz formulas (1.1) to the collection of parabolic
quasi-Coxeter classes in Weyl groups W. To define those, recall first that a standard
parabolic subgroup WI of W is any subgroup generated by a subset {si}i∈I of the sim-
ple generators of W and that any subgroup conjugate to some WI is simply called a
parabolic subgroup of W. An element g ∈ W is then called parabolic quasi-Coxeter if it
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has a minimum-length reflection factorization g = t1 · · · t`R(g) whose terms {ti} generate
a parabolic subgroup of W, and it is called quasi-Coxeter if they generate all of W. To
justify the name, notice that Coxeter elements (products of the simple generators {si} in
any order, and their conjugates) are always quasi-Coxeter. Similarly, parabolic Coxeter
elements are parabolic quasi-Coxeter. To see finally that Theorem 1.1 fully generalizes
the Hurwitz formulas, notice that in Sn all reflection subgroups are parabolic, therefore
all elements are parabolic quasi-Coxeter elements.

Quasi-Coxeter elements were introduced by Voigt [21] and rediscovered and gener-
alized to the parabolic case by Baumeister et al. [1]. Both works considered the Hurwitz
action on reduced (i.e., minimum-length) reflection factorizations of elements g ∈W and
showed that it is transitive if and only if g is parabolic quasi-Coxeter. The sizes of these
Hurwitz orbits, equivalently the numbers Fred(g) of reduced reflection factorizations of
g, were computed by Kluitmann and Voigt [15], independently by Stump (private com-
munication); below we give them only for the infinite families. It was observed that they
all factor as products of small primes and a uniform formula for them has been proposed
by the first author [6]. In the groups Sn and Bn the only quasi-Coxeter classes are the
Coxeter ones, but in Dn we have bn

2 c classes denoted by Dk,n−k which contain Coxeter
elements of the Bk × Bn−k reflection subgroups of Bn (viewing Dn as a subgroup of Bn).

g Sn Bn Dk,n−k

Fred(g) nn−2 nn 2 · (n− 1) ·
(

n− 2
k− 1

)
· kk · (n− k)n−k

Table 1: Enumeration of reduced reflection factorizations for quasi-Coxeter elements.

For any element g of W, we write Wg for its parabolic closure, i.e., the smallest parabolic
subgroup that contains it. The group Wg can be written as a product Wg = W1× · · ·×Wm
of irreducible components. Gobet [9] defined a generalization of the cycle-decomposition
of permutations and showed that parabolic quasi-Coxeter elements have a unique such
decomposition g = g1 · g2 · · · gm where each gi is quasi-Coxeter for Wi. The number
Fred(g) of reduced reflection factorizations of g will be a product of the Fred(gi) and a
multinomial coefficient, thus also a product of small primes.

For a Weyl group W of rank n, we will call any set of n reflections that generate
W, a reflection generating set of W and we will write RGS(W) for the collection of such
sets. Every reduced reflection factorization of a parabolic quasi-Coxeter element g can be
minimally extended to a reflection generating set of W [1, Prop. 6.2], which then allows
for a relative version of this notion. For each such g, we define the collection RGS(W, g)
of relative reflection generating sets for g as (R stands for the set of reflections of W)

RGS(W, g) :=
{

S ⊂ R : |S| = n− `R(g) such that 〈S, Tg〉 = W
}

, (2.1)
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where Tg is any set of reflections that make up a reduced reflection factorization of g.

Genus-1 Hurwitz numbers

Formula (1.1) is for the (single) Hurwitz numbers of genus 0. In general, the genus-g
Hurwitz numbers Hg(λ) count transitive factorizations τ1 · · · τk of a given element σ in
Sn of cycle type λ into k = n + c + 2g− 2 transpositions τi. In addition to the product
formula for H0(λ), the genus-1 numbers H1(λ) have a closed formula that we will use
in the proof of our main theorem. Let ei denote the ith elementary symmetric function.

Lemma 2.1 (Goulden-Jackson [10]). For λ = (λ1, . . . , λc),

H1(λ) =
1
24

(n + c)!

(
c

∏
i=1

λ
λi
i

(λi − 1)!

)(
nc − nc−1 −

c

∑
i=2

(i− 2)!nc−iei(λ)

)
.

In particular H1(1n) = 1
24(2n)!(nn − nn−1 −∑n

i=2 (
n
i )(i− 2)!nn−i).

3 Main results

In order to enumerate minimum-length reflection factorizations, it is necessary first to
understand the length at which these factorizations occur. Our first result gives a for-
mula for the transitive reflection length of parabolic quasi-Coxeter elements.

Proposition 3.1. Suppose that w is a parabolic quasi-Coxeter element in a Weyl group W of
rank n. Then the transitive reflection length of w is given by the formula

`tr
R(w) = 2n− `R(w) = n + dim fix(w).

Proof. Fix any element w of a Weyl group W and any transitive reflection factorization
of w of minimum length, and let ` = `R(w) be the reflection length of w. We have by
[18, Cor. 1.4] that there is another transitive factorization

w = r1 · · · r` · r`+1 · r−1
`+1 · · · r`+k · r−1

`+k (3.1)

of the same length `tr
R(w) = `+ 2k. The factors r1, · · · , r`+k in this second factorization

must also generate W, so `+ k ≥ n. Therefore

`tr
R(w) = `+ 2k = 2(`+ k)− ` ≥ 2n− `R(w).

On the other hand, since w is parabolic quasi-Coxeter, we have by [1, Prop. 6.2] that
there is some length-` reflection factorization w = r1 · · · r` of w that can be extended
to a length-n factorization w′ = r1 · · · r` · r`+1 · · · rn of some element w′ in which the
factors generate the group W. Then w = r1 · · · r` · r`+1 · r−1

`+1 · · · rn · r−1
n is a reflection

factorization of w of length `+ 2(n− `) = 2n− `R(w) whose factors generate W, and
consequently `tr

R(w) ≤ 2n− `R(w).
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We prove now our Theorem 1.1, enumerating transitive reflection factorizations of
parabolic quasi-Coxeter elements in Weyl groups. We split the proof into two parts: we
first handle the classical types An, Bn, and Dn, and then separately the exceptional types.
We sketch the proof in types An and Dn; the proof of type Bn is similar.

Sketch of proof of Theorem 1.1 in classical types

Type A: As we have mentioned before, in type A all elements are parabolic quasi-
Coxeter. We start with some g ∈ Sn of cycle type λ = (λ1, · · · , λc) and we first look at
the right side of (1.3). By Prop. 3.1, we have that `tr

R(g) = n + c− 2. The set RGS(Sn, g)
can be described via trees on the c-many cycles of g: after adding a reduced factorization
of g to a relative generating set, the total set of transpositions will give a tree on [n]. Since
there are λi · λj possible edges between the ith and jth cycles, each tree on [c] appears

with total multiplicity ∏c
i=1 λ

deg(Ti)
i . Now the weighted Cayley theorem implies that

|RGS(Sn, g)| = ∑
T a tree on [c]

c

∏
i=1

λ
deg(Ti)
i = λ1 · · · λc · (λ1 + · · ·+ λc)

c−2 =
(
∏ λi

)
· nc−2.

Moreover, the parabolic subgroup corresponding to g is just a Young subgroup of type
Sλ := Sλ1 × · · · × Sλc , which means that its connection index is I(Sλ) = λ1 · · · λc.
Finally, we have ∏ Fred(gi) = ∏c

i=1 λ
λi−2
i corresponding to minimum-length reflection

factorizations of the cycles gi of g. Multiplying all these quantities together gives exactly
the expression of formula (1.1) for H0(λ), which is by definition the left side of (1.3).

Type D: We represent the elements in Dn as signed permutations acting on ±i, i =
1, . . . , n. Any element g in Dn is a product of disjoint cycles. Such cycles are positive or
negative depending on if the number of sign changes in the cycle is even or odd. Given
an element g in Dn, the projection π(g) in Sn is the permutation obtained by removing
the signs from the entries. Following Zaslavsky [22], one may think of sets of reflections
in type D as the edges of a signed graph.

The group Dn has two types of parabolic subgroups: those of the form Sλ for λ ` n,
and those of the form Dk ×Sλ for λ ` n− k. The parabolic quasi-Coxeter elements for
the first type have all cycles positive, while those of the second type have exactly two
negative cycles. We consider the second case first.

Suppose that g has two negative cycles and c− 2 positive cycles, and the two negative
cycles have sizes k1, k2 (with k1 + k2 = k). We have in this case that `R(g) = n− c + 2
and therefore `tr

R(g) = n + c − 2, which is also the length of a shortest transitive Sn-
factorization of the projection π(g). It follows that the projection into Sn of a shortest
transitive factorization of g produces a shortest transitive factorization of π(g). Fix a
subset of factors in such a factorization that form a spanning tree on [n]. It is not
difficult to see that we may choose the signs on the other c − 1 factors independently,
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and the signs on the n− 1 fixed edges will be uniquely determined by the choices and the
requirement to be a factorization of g. It follows immediately in this case that the left side

of (1.3) is equal to 2c−1 ·H0(λ+ k1 + k2) = 2c−1 · (n+ c− 2)! · nc−3 · k
k1
1 kk2

2
(k1−1)!(k2−1)! ∏

λ
λi
i

(λi−1)! .
Still considering the same element g with two negative cycles, we move to the right

side of (1.3). A relative generating set of reflections for such an element g must induce a
connected graph when taken together with a shortest reflection factorization of g. Taking
the contraction of such a graph with respect to the factors in the shortest factorization,
we see that the factors in the relative generating set form a tree whose c − 1 vertices
are the c− 2 positive cycles of g and a single vertex for the two negative cycles, where
an edge connected to a vertex C has |C| choices of endpoint in that cycle. Thus, taking
account of sign, we have |RGS(Dn, g)| = 2c−2 ∑T a tree on [c−1] ∏c−2

i=1 λ
deg(i)
i · kdeg(c−1). By

the weighted Cayley theorem, this simplifies to

2c−2 · (λ1 + . . . + λc−2 + k)c−3 · k ·∏
i

λi = 2c−2 · nc−3 · k ·∏
i

λi.

For this element g we have I(Wg)

I(W)
= 4 ∏i λi

4 . Finally, since there are 2 (k−1)!
(k1−1)!(k2−1)! k

k1
1 kk2

2
shortest factorizations of a quasi-Coxeter element in Dk whose cycles have lengths k1

and k2 (see Table 1), we have ∏ Fred(gi) = 2 (k−1)!
(k1−1)!(k2−1)! k

k1
1 kk2

2 ·∏
c−2
i λ

λi−2
i . Plugging

these factors in to the right side of (1.3) gives exactly the value Ftr
W(w) computed in the

previous paragraph.
Finally, suppose that g has c cycles, all positive. Thus `R(g) = n − c. Since the

minimum-length reflection factorizations of g are precisely the same as those restricted
to its parabolic subgroup, we have ∏ Fred

Dn
(gi) = ∏ Fred

Sn
(gi) = ∏c

i λ
λi−2
i . A relative gen-

erating set must consist of c edges and induce a connected signed graph when taken
together with the a shortest reflection factorization of g. Taking the contraction of such
a graph with respect to the factors in the shortest factorization, the transposition-like
factors in the relative generating set form a signed “unicycle”: a connected graph with
c vertices (the cycles of g) and c edges, where again the edges are weighted so that an
edge connected to cycle Ci has |Ci| = λi choices of endpoint in that cycle. Moreover, in
the unique cycle in this graph, the number of negatively signed transpositions must be
odd (otherwise, all reflections belong to a subgroup conjugate to Sn). We may count
such graphs as follows: if the cycle is a loop, with both endpoints in cycle Ci, then it
may be chosen in (λi

2 ) ways, while the rest of the set forms a signed weighted tree on c
vertices. Thus, the contribution from this case is

2c−1nc−2 ∏
i

λi ·∑
i

(
λi

2

)
= 2c−2nc−2(−n + ∑

i
λ2

i )∏
i

λi.

Otherwise, the cycle has some length k ≥ 2. Let the vertices in the cycle be indexed by
S = {s1, . . . , sk} ∈ ([c]k ). Contracting the edges of the cycle gives a signed weighted tree
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on c− k + 1 vertices, of weights {λi : i 6∈ S} ∪ {λs1 + . . . + λsk}. This weighting has the
feature that the generating functions by weights for the relevant trees and unicycles are
closely related: they differ by a factor of 2k−2(k− 1)! · (λs1 · · · λsk)

2, where the first factor
accounts for the number of different ways of inserting a signed cycle while the second
factor accounts for the weights from adding the edges of the cycle. By the weighted
Cayley theorem, the generating function for the trees is precisely

(λs1 + . . .+λsk) ·∏
i 6∈S

λi · (λ1 + . . .+λc)
c−k−1 · 2c−k = (λs1 + . . .+λsk) ·∏

i 6∈S
λi · nc−k−1 · 2c−k,

and consequently the generating function for the unicycles in this case is

(λs1 + . . . + λsk)λs1 · · · λsk · 2
c−2(k− 1)!nc−k−1 ∏

i
λi.

Thus

|RGS(Dn, g)| = 2c−2 ∏
i

λi

(
− nc−1 +

c

∑
k=1

(k− 1)!nc−k−1 ∑
S∈([c]k )

(λs1 + . . . + λsk)λs1 · · · λsk

)

= 2c−2 ∏
i

λi

(
− nc−1 +

c

∑
k=1

(k− 1)!nc−k−1m21k−1(λ)
)

,

where mµ(λ) is the monomial symmetric function in the variables λ. Now m2,1k−1 = ek,1 −
(k + 1)ek+1, and since e1(λ) = n the right side of the last expression becomes

2c−2 ∏
i

λi

(
− nc−1 +

c

∑
k=1

(k − 1)!nc−kek(λ) −
c

∑
k=1

(k − 1)!(k + 1)nc−k−1ek+1(λ)
)

.

The first term of the first sum in this expression is nc−1e1(λ) = nc. Separating this term
and combining the remaining terms with the second sum gives

|RGS(Dn, g)| = 2c−2 ∏
i

λi

(
nc − nc−1 −

c

∑
k=2

(k− 2)!nc−kek(λ)
)

,

so for this g the entire right side of (1.3) is

(n + c)!
(n− c)!

·
(

n− c
λ1 − 1; · · · ; λc − 1

)
·∏

i
λ

λi
i · 2

c−4
(

nc − nc−1 −
c

∑
k=2

(k− 2)!nc−kek(λ)
)

.

This is exactly 3 · 2c−1 · H1(λ), where we used the formula for H1(λ) in Lemma 2.1.
Now we consider the left side of equation (1.3), still in the case that g is an element of

Dn with all positive cycles. Projecting a transitive factorization of g into Sn, we produce
a connected transposition factorization having n+ c factors of a permutation π(g) whose
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transitive reflection length (in Sn) is n + c− 2. That is, it is a genus-1 transitive factoriza-
tion in the symmetric group. The number of such factorizations is H1(λ). Moreover, each
of these may be lifted by assigning appropriate signs to a transitive factorization of g in
Dn in the same number of ways; accounting simultaneously for the requirements that
the product is g and the reflections generate Dn, this number turns out to be 3 · 2c−1.

Sketch of computer proof of Theorem 1.1 for the exceptional types

For the exceptional Weyl groups G2, F4, E6, E7, and E8, we prove our main theorem by
direct calculation of both sides of (1.3) via SageMath and CHEVIE [8, 20]. It turns out
that the most efficient way to do this will further count transitive reflection factorizations
of arbitrary length. We follow the traditional approach via representation theory and the
lemma of Frobenius [4, § 4] to first determine the exponential generating functions of
not necessarily transitive reflection factorizations of an element g:

FW(g; t) := ∑
N≥0

#{(τ1, . . . , τN) ∈ RN : τ1 · · · τN = g} · tN

N!
. (3.2)

They can be computed as a finite sum of exponentials via the formula [4, (4.3)]

FW(g; t) =
1
|W| · ∑

χ∈Ŵ

χ(1) · χ(g−1) · exp
(

χ(R)
χ(1)

· t
)

,

where Ŵ denotes the set of irreducible (complex) characters of W (these are produced
by CHEVIE, which realizes reflection groups via their permutation action on roots) and
χ(R) := ∑τ∈R χ(τ). Any factorization enumerated in (3.2) will be transitive for the
group W ′ := 〈τ1, . . . , τN〉 generated by its elements. Then, a simple inclusion-exclusion
argument gives us the corresponding generating functions for transitive factorizations:

F tr
W(g; t) = ∑

g∈W ′⊂W
µ(W, W ′) · FW ′(g; t), (3.3)

where we sum over all reflection subgroups W ′ of W (that contain g) ordered by reverse
inclusion. Having established the generating function F tr

W(g; t), and since it remains a
finite sum of exponentials, we can immediately calculate its leading term, which equals
Ftr

W(g) ·
(
t`

tr
R(g)/`tr

R(g)!
)
. To compute finally the quantity |RGS(W, g)| of (1.3), we consider

all possible (n− `R(g))-subsets of the set of reflections in W \Wg and check whether they
extend an arbitrary reflection factorization of g to a reflection generating set of W.

4 Generalization to complex reflection groups

There is significant evidence that our Theorem 1.1 extends naturally to all well-generated
complex reflection groups (finite subgroups of GL(Cn) generated by n unitary reflec-
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tions). The quantity |RGS(W, g)| is replaced by a statistic on the relative generating sets
that in the case of Weyl groups always equals I(Wg)/I(W). To introduce this statistic,
we need an analog of roots, but we will not require that they form a W-equivariant col-
lection. That is, for each reflection τ of W and its unique ζ 6= 1 eigenvalue, we pick any
nonzero element ρτ of the ζ-eigenspace of τ. We further normalize their lengths, defined
via the standard Hermitian inner product (·, ·), to satisfy (ρ, ρ) = 2 for all roots ρ.

Definition 4.1. The Grammian determinant GD(ρ) of a set of roots ρ := {ρi} is

GD(ρ) := det
(
〈ρi, ρj〉

)
ij.

In a Weyl group W, we may simultaneously consider roots ρ, coroots ρ̌, and normalized
roots ρ̃, satisfying (ρ̃, ρ̃) = 2 as above. Now, [2, Cor. 1.2] shows that roots ρi and coroots
ρ̌i that correspond to a reflection generating set of W always form Z-bases of the root
and coroot lattices Q and Q̌ respectively. This forces that det

(
〈ρi, ρ̌j〉

)
i,j = I(W), which

then further implies that GD(ρ̃) = I(W) since det
(
〈ρi, ρ̌j〉

)
i,j = det

(
〈ρ̃i, ρ̃j〉

)
i,j. The

following result, which has a proof very much analogous to the work in § 3, is then a
direct generalization of the case g = id, displayed in (1.2), of Theorem 1.1.

Theorem 4.2. For a well-generated complex reflection group W of rank n, the number of minimum-
length transitive reflection factorizations of the identity id ∈W is given by

Ftr
W(id) = (2n)! · ∑

{τi}∈RGS(W)

1
GD(ρτ)

,

where the sum is over all subsets of n reflections {τi} that generate W and ρτi is a root for τi.

When W is not a Weyl group, this is a non-trivial sum and the numbers GD(ρτ) that
appear are not constant. For instance, in H3, there are two “generalized" Coxeter classes
related by a reflection automorphism; generating sets that correspond to factorizations
of elements from one class have Grammian determinant 3 +

√
5, while the others have

Grammian determinant 3−
√

5. Notice here that the cummulative contribution of two
such sets paired by the automorphism is a rational number 1

3+
√

5
+ 1

3−
√

5
= 3

2 . Generating
sets corresponding to the third quasi-Coxeter class satisfy GD(ρ) = 2.

There is in fact a similar full generalization of Theorem 1.1 for well generated groups,
but we have not completed our work on it. We state it here as a conjecture.

Conjecture 4.3. If W is a well-generated complex reflection group and g a parabolic quasi-
Coxeter element in W with decomposition g = g1 · · · gm, then

Ftr
W(g) = `tr

R(g)! ·
m

∏
i=1

Fred(gi)

`R(gi)!
· ∑
{τi}∈RGS(W,g)

GD(ρg)

GD(ρτ ∪ ρg)
,

where ρτ denotes the set of roots associated with a relative generating set τ = {τi} and ρg
corresponds to a fixed reduced reflection factorization of g.
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5 Higher genus counts in the infinite family

As discussed in Section 3, the proof for the exceptional types gives in (3.3) the complete
enumeration for transitive factorizations of arbitrary length. In this section, we study the
analogous generating functions for the infinite family G(m, p, n) of complex reflection
groups. The generating functions are defined as F tr

W(g; t) := ∑N≥0 Ftr
W(g, N) · tN/N!

where Ftr
W(g, N) is the number of length-N transitive reflection factorizations of g ∈ W.

The following theorem expresses F tr
W(g; t) for elements g in G(m, p, n) with only weight-

0 cycles in terms of the generating functions of the symmetric group Sn = G(1, 1, n).

Theorem 5.1. For an element g ∈ G(1, 1, n) ⊂ G(m, p, n), we have

F tr
G(m,p,n)(g; t) =

1
(m/p)n−1 · F

tr
G(p,p,n)

(
g; (m/p) · t

)
· F tr

G(m/p,1,1)(id; nt), (5.1)

F tr
G(m,m,n)(g; t) = mc−1 ∑

d|m
µ(m/d) · d2−c−n · F tr

G(1,1,n)(g; dt), (5.2)

where c is the number of cycles of g and µ is the number-theoretic Möbius function.

The proof is similar to that presented for type D in Section 3: there is a natural projec-
tion map that sends any reflection factorization in G(m, p, n) to a factorization in Sn as a
product of transpositions. Each of these factorizations may be lifted back to G(m, p, n) in
a predictable number of ways. In G(m, p, n) with p < m, the lifting must account for the
introduction of diagonal reflections (the analogues of sign-change reflections in type B),
giving rise to the term corresponding to the cyclic group G(m/p, 1, 1); in G(m, m, n), the
lift must generate the full G(m, m, n) and not any subgroup G(d, d, n) for d | m, leading
to the Möbius inversion.
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