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Orbit harmonics and cyclic sieving: a survey

Jaeseong Oh*

Department of Mathematical Sciences, Seoul National University

Abstract. Orbit harmonics is a tool in combinatorial representation theory which pro-
motes the (ungraded) action of a linear group G on a finite set X to a graded action of
G on a polynomial ring quotient. The cyclic sieving phenomenon is a notion in enu-
merative combinatorics which encapsulates the fixed-point structure of the action of a
finite cyclic group C on a finite set X in terms of root-of-unity evaluations of an auxil-
iary polynomial X(q). In this survey, we present a variety of sieving results obtained
by applying orbit harmonics.
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1 Introduction

We survey recent works ([16], [14], [15]) on the application of orbit harmonics to cyclic
sieving phenomena. The orbit harmonics comes from the idea to model a finite set X
geometrically as a finite point locus in a complex space. The relevant algebra has roots
in (at least) the work of Kostant [11]. The idea of providing CSPs using orbit harmonics
has been implicitly used in [2], [5], and [20]. Rhoades and the author gave this idea in an
explicit and unified way in [16]. The author applied this idea to the complex reflection
group G(r, 1, n) to obtain sieving results concerning twisted rotations on colored words
[14]. Extending the work in [16] to diagonal orbit harmonics, the author has provided a
‘tri-CSP’ for matrices [15] by using the work of Garsia and Haiman [7].

Let X be a finite set with an action of a finite cyclic group C = 〈c〉 and ω =
exp(2πi/|C|). Let X(q) ∈ Z≥0[q] be a polynomial with nonnegative integer coefficients.
The triple (X, C, X(q)) exhibits the cyclic sieving phenomenon [19] if for all r ≥ 0 we have

|Xcr | = |{x ∈ X : cr · x = x}| = X(ωr) = [X(q)]q=ωr . (1.1)

More generally, if we have a finite set X with a action of product C1 × · · · × Cm of m
cyclic groups, and a polynomial X(q1, . . . , qm) of m variables satisfy similar condition in
Equation (1.1), then we say the triple (X, C1 × · · · × Cm, X(q1, . . . , qm)) exhibits the m-ary
cyclic sieving phenomenon (biCSP for m = 2 and triCSP for m = 3).
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Although ostensibly in the domain of enumerative combinatorics, the most desired
proofs of CSPs are algebraic. In this survey, we present a systematic way to prove sieving
results using orbit harmonics and provide various instances of CSPs.

The remainder of this survey is organized as follows. In Section 2 we give back-
ground. In Section 3, we describe how orbit harmonics gives a new perspective on the
classical results of Springer and Morita-Nakajima. In Section 4 we provide a sieving
generating theorem (Theorem 4.1) and apply this to various combinatorial loci to prove
instances of CSPs. In Section 5, we consider diagonal orbit harmonics and obtain a new
sieving result regarding (q, t)−Kostka polynomials and enumeration of matrices with
certain symmetries.

2 Background

2.1 Symmetric Functions

We denote by Λ =
⊕

d≥0 Λd the graded ring of symmetric functions in an infinite vari-
able set x = (x1, x2, . . . ) over the ground field C(q, t). Here Λd consists of symmetric
functions of homogeneous degree d. Two important elements of Λd are the homogeneous
and elementary symmetric functions

hd(x) := ∑
i1≤···≤id

xi1 · · · xid and ed(x) := ∑
i1<···<id

xi1 · · · xid .

By restricting hd(x) and ed(x) to a finite variable set xn = {x1, . . . , xn}, we obtain the
homogeneous and elementary symmetric polynomials hd(xn) and ed(xn).

Bases of Λn are indexed by partitions of n. For a partition λ ` n, we let

hλ(x), eλ(x), sλ(x), Q̃λ(x; q) and H̃λ(x; q, t)

denote the associated homogeneous symmetric function, elementary symmetric function, Schur
function, Hall–Littlewood symmetric function, and Macdonald symmetric function. For any
partition λ = (λ1 ≥ λ2 ≥ · · · ) of n the h-, e- and Schur functions are defined by

hλ(x) := ∏
i≥1

hλi(x), eλ(x) := ∏
i≥1

eλi(x) and sλ(x) := ∑
T∈SSYT(λ)

xT,

where SSYT(λ) denotes the set of semistandard tableaux of shape λ. The (modified)
Macdonald polynomial H̃λ(x; q, t) are the basis of Λn defined by so called triangularity
and normalization axioms (see [9] for example). The (modified) Hall–Littlewood symmet-
ric function Q̃λ(x; q) is given by a specialization Q̃λ(x; q) = H̃λ(x; 0, q).
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2.2 Representation theory of Sn

Irreducible representations of the symmetric group Sn are in one-to-one correspondence
with partitions λ ` n. We let Sλ denote the irreducible module corresponding to λ. If
V is any finite-dimensional Sn-module, there are unique multiplicities cλ so that V ∼=⊕

λ`n cλSλ. The Frobenius image of V is the symmetric function

Frob(V) := ∑
λ`n

cλsλ(x).

If V is graded (or bigraded) Sn-module as V =
⊕

d≥0 Vd (or V =
⊕

d,e≥0 Vd,e) the
graded Frobenius image is the symmetric function over C(q, t) given by

grFrob(V; q) := ∑
d≥0

Frob(Vd)qd (or grFrob(V; q, t) := ∑
d,e≥0

Frob(Vd,e)qdte).

2.3 Complex reflection groups

A finite subgroup W ⊆ GLn(C) is a reflection group if it is generated by reflections.
A complex reflection group W acts on the polynomial ring C[xn] := C[x1, . . . , xn] by
linear substitutions. Let 〈C[xn]W+ 〉 ⊆ C[xn] be the ideal generated by the subspace of
W-invariants with vanishing constant term. The coinvariant ring attached to W is the
quotient RW := C[xn]/〈C[xn]W+ 〉. The ring RW also has a graded W-module structure.

For any irreducible W-module U, the fake degree polynomial f U(q) is the graded mul-
tiplicity of U in the coinvariant ring. That is, we define

f U(q) := ∑
d≥0

mU,dqd

where mU,d is the multiplicity of U in the degree d piece (RW)d of RW .
An element c ∈ W is regular if it possesses an eigenvector v ∈ Cn which has full W-

orbit. Such an eigenvector v is called a regular eigenvector. For example when W = Sn,
an element in W is a regular if and only if it is a power of an n-cycle or an (n− 1)-cycle.

2.4 Orbit harmonics

Let X ⊆ Cn be a finite set of points which is closed under the action of W × C where
W ⊆ GLn(C) is a (finite) complex reflection group, and C is a finite cyclic group acting
on Cn by root-of-unity scaling. Let I(X) := { f ∈ C[xn] : f (v) = 0 for all v ∈ X}
be the ideal of polynomials in C[xn] which vanish on X. Since X is finite, Lagrange
Interpolation affords a C-algebra isomorphism

C[X] ∼= C[xn]/I(X) (2.1)
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where C[X] is the algebra of all functions X → C. Since X is W × C-stable, (2.1) is also
an isomorphism of ungraded W × C-modules.

For any nonzero polynomial f ∈ C[xn], let τ( f ) be the highest degree component of
f . That is, if f = fd + · · ·+ f1 + f0 with fi homogeneous of degree i and fd 6= 0, we set
τ( f ) := fd. Given our locus X with ideal I(X) as above, we define a homogeneous ideal
T(X) by

T(X) := 〈τ( f ) : f ∈ I(X), f 6= 0〉 ⊆ C[xn].

The ideal T(X) is the associated graded ideal of I(X) and is often denoted gr I(X). From
the construction, T(X) is homogeneous and stable under W × C. The isomorphism (2.1)
extends to an isomorphism of W × C-modules

C[X] ∼= C[xn]/I(X) ∼= C[xn]/T(X) (2.2)

where C[xn]/T(X) has the additional structure of a graded W × C-module on which C
acts by scaling in each fixed degree.

The procedure X ; C[xn]/T(X) which promotes the (ungraded) locus X to the
graded module C[xn]/T(X) is known as orbit harmonics. The terminology comes from the
seminal work of Garsia and Haiman [6] in which they studied point sets that were ‘orbits’
of reflection group actions where there is a correspondence between coinvariant and
‘harmonic’ space. The general procedure of X ; C[xn]/T(X) is known as deformation
to the normal cone and this also can be applied to prove sieving results as noted in Vic
Reiner’s talk [18]. Nevertheless, we prefer to call this procedure orbit harmonics because
we choose finite set X to be orbits of reflection group actions.

3 Theorems of Springer and Morita–Nakajima

Before applying orbit harmonics to prove sieving results, we state representation-theoretic
results of Springer [21] and Morita-Nakajima [13], which will be useful in our combina-
torial work. We explain how orbit harmonics may be used to prove these results.

3.1 Springer’s theorem on regular elements

Let W ⊆ GLn(C) be a complex reflection group and let c ∈ W be a regular element
with regular eigenvector v ∈ Cn whose eigenvalue is ω ∈ C×. Let C = 〈c〉 be the
cyclic subgroup of W generated by c. We regard the coinvariant ring RW as a graded
W ×C-module, where W acts by linear substitutions and the generator c ∈ C sends each
variable xi to ωxi.

Theorem 3.1 (Springer [21]). Consider the action of W × C on W given by (u, cr) · w :=
uwc−r. Then C[W] is isomorphic to RW as an ungraded W × C-module.
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Proof. We describe an argument of Kostant [11] using orbit harmonics. We let C act on
Cn by the rule c ◦ v′ := ω−1v′ for all v′ ∈ Cn. The corresponding action of C on C[xn] by
linear substitutions sends xi to ωxi for all i. We may regard Cn as a W × C-module in
this way.

Define the Springer locus to be the W-orbit of the regular eigenvector v of c:

W · v := {w · v : w ∈W} ⊆ Cn

The locus W · v is closed under the action of W and ◦-action of C. We may regard
W · v as a W × C-set. The regularity of v shows that the map w 7→ w · v furnishes a
W × C-equivariant bijection

W ∼−→W · v

where the action of W × C on W is as in Theorem 3.1.
Chevalley [4] proved that there exist algebraically independent W-invariant poly-

nomials f1, . . . , fn of homogeneous positive degree such that C[xn]W = C[ f1, . . . , fn].
Furthermore, we have isomorphisms of ungraded W-modules

RW = C[xn]/〈 f1, . . . , fn〉 ∼= C[W].

The W-invariance of fi implies that fi − fi(v) ∈ I(W · v) and taking the top degree
component gives fi ∈ T(W · v). On the other hand,

dim(C[xn]/〈 f1, . . . , fn〉) = dim C[W] = |W| = |W · v| = dim(C[xn]/T(W · v)),

so we have 〈 f1, . . . , fn〉 = T(W · v).
Finally, orbit harmonics furnishes isomorphisms of ungraded W × C-modules

RW = C[xn]/〈 f1, . . . , fn〉 = C[xn]/T(W · v) ∼= C[W · v] ∼= C[W]

where the last isomorphism used the W × C-equivariant bijection (3.1).

3.2 A theorem of Morita–Nakajima via orbit harmonics

In this subsection we consider the case of the symmetric group W = Sn. We fix a weak
composition µ = (µ1, . . . , µk) of n with k parts where µi = µi+a for all i with subscripts
interpreted modulo k. Let c be a fixed generator of the cyclic group Zk/a. Morita and
Nakajima proved [13] a variant of Springer’s theorem as follows.

Let Wµ be the family words w1 . . . wn over the alphabet [k] in which the letter i ap-
pears µi times. The set Wµ carries an action of Sn ×Zk/a where Sn acts by subscript
permutation and Zk/a acts by c : w1 · · ·wn 7→ (w1 + a) · · · (wn + a) where letter values
are interpreted modulo k. Extending by linearity, the space C[Wµ] is a Sn×Zk/a-module.
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Let Iµ ⊆ C[xn] be the Tanisaki ideal attached to the composition µ and let Rµ :=
C[xn]/Iµ be the corresponding Tanisaki quotient ring. The ring Rµ is a graded Sn-module
which has several descriptions ([22], [8]). One way to describe this module is via orbit
harmonics as follows.

Let α1, . . . , αk ∈ C be distinct complex numbers. We have Iµ = T(Wµ) as ideals in
C[xn] by considering the set Wµ ⊆ Cn as a point locus under the following identification

w1 . . . wn ↔ (αw1 , . . . , αwn).

The orbit harmonics interpretation of Rµ was used by Garsia and Procesi [8] to derive

grFrob(Rµ; q) = Q̃µ(x; q).

Let ω := exp(2aπi/k) be a primitive (k/a)th root-of-unity. We extend the graded
Sn-action on Rµ to a graded Sn ×Zk/a-action by letting the distinguished generator
c ∈ Zk/a scale by ωd in homogeneous degree d.

Theorem 3.2. (Morita-Nakajima [13, Theorem 13]) We have an isomorphism of ungraded Sn×
Zk/a-modules

C[Wµ] ∼= Rµ.

The proof in [13] involves tricky symmetric function manipulations involving the
Hall–Littlewood polynomials Q̃µ(x; q) when q is a root of unity, and relies on further
intricate symmetric function identities due to Lascoux-Leclerc-Thibon [12]. Orbit har-
monics gives an easier and more conceptual proof.

4 Cyclic sieving generating theorem

The ‘generating theorem’ for sieving results in [16] is as follows. The heart of the proof
comes from the isomphism (2.2) and Springer’s theorem (Theorem 3.1).

Theorem 4.1. Let W ⊆ GLn(C) be a complex reflection group, C′ = 〈c′〉 be the subgroup of W
generated by a regular element c′, and ω := exp(2πi/k). Let C = 〈c〉 be a cyclic group of order
k and consider the action of W × C on Cn where c scales by ω and W acts by left multiplication.
Let X ⊆ Cn be a finite point set that is closed under the action of W × C.

1. Suppose that the isomorphism type of the degree d ≥ 0 piece of C[xn]/T(X) is given by

(C[xn]/T(X))d
∼=

⊕
U∈Irr(W)

U⊕mU,d .

The triple (X, C× C′, X(q, t)) exhibits the bicyclic sieving phenomenon where

X(q, t) = ∑
U∈Irr(W)

∑
d≥0

mU,dqd f U∗(t).
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2. Let G ⊆ W be a subgroup. The set X/G of G-orbits in X carries a natural C-action and
the triple (X/G, C, X(q)) exhibits the cyclic sieving phenomenon where

X(q) = Hilb((C[xn]/T(X))G; q).

Remark 4.2. Note that if we have

grFrob(C[xn]/T(X); q) = ∑
λ`n

cλ(q)sλ,

then the Hilbert series of G-invariant space for W = Sn, for G = Cn a cyclic group generated by
a long cycle (1, 2, . . . , n), and for G = Hn/2 a hyperoctahedral group, respectively are given by

Hilb((C[xn]/T(X)Sn ; q) = c(n)(q),

Hilb((C[xn]/T(X))Cn ; q) = ∑
λ`n

cλ(q)aλ,0,

Hilb((C[xn]/T(X))Hn/2 ; q) = ∑
λ`n

λ:even

cλ(q),

where aλ,0 is the number of standard tableaux of shape λ with major index 0 modulo n.

4.1 The functional loci

The loci considered in this section correspond to arbitrary, injective, and surjective func-
tions between finite sets inspired by Rota’s Twelvefold Way.

Definition 4.3. Given integers n and k, set ω := exp(2πi/k). We define the following three
point sets in Cn closed under the action of Sn ×Zk, where Zk scales by ω:

Xn,k := {(a1, . . . , an) : ai ∈ {ω, ω2, . . . , ωk}}
Yn,k := {(a1, . . . , an) ∈ Xn,k : a1, . . . , an are distinct}
Zn,k := {(a1, . . . , an) ∈ Xn,k : {a1, . . . , an} = {ω, ω2, . . . ωk}}

The table below summarizes combinatorial objects for sieving results obtained by
exploiting Theorem 4.1 of each functional locus Xn,k, Yn,k, and Zn,k.

Xn,k Yn,k Zn,k

G = Sn WComp(n, k) ([n]k ) Comp(n, k)

G = Cn necklaces necklaces with distinct letters necklaces with all letters used

G = H n
2

graphs graphs with degree ≤ 1 graph without an isolated vertex
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4.2 Other combinatorial loci

4.2.1 Springer locus

In this subsection we return to the setting of an arbitrary complex reflection group W ⊆
GLn(C) acting on Cn. We fix a regular element c ∈ W with regular eigenvector v ∈ Cn

and corresponding regular eigenvalue ω ∈ C, so that c · v = ωv. We also let C := 〈c〉 be
the subgroup of W generated by c.

Let W-orbit W · v = {w · v : w ∈ W} ⊆ Cn be the Springer locus. Subsection 3.1
shows that the Springer locus is closed under the action of the group W × C, where W
acts by its natural action on Cn and C acts by the rule c : v′ 7→ ωv′ for all v′ ∈ Cn. (Note
that this is different from the ◦-action c ◦ v′ := ω−1v′ of C considered in Subsection 3.1.)
By the discussion in Subsection 3.1 and Theorem 4.1, we have the following.

Theorem 4.4. Let c, c′ ∈ W be regular elements and let C = 〈c〉, C′ = 〈c′〉 be the cyclic
subgroups which they generate. The product of cyclic groups C × C′ acts on W by the rule
(c, c′) · w := c′wc. The triple (W, C × C′, W(q, t)) exhibits the bicyclic sieving phenomenon
where

W(q, t) := ∑
U

f U(q) f U∗(t)

and the sum is over all (isomorphism classes of) irreducible W-modules U.

Theorem 4.4 is a result of Barcelo, Reiner, and Stanton [3, Thm. 1.4]. In [3] the
polynomial W(q, t) is referred to as a bimahonian distribution.

4.2.2 The Tanisaki Locus

Throughout this subsection, we fix a weak composition µ = (µ1, . . . , µk) of n into k
parts which satisfies µi = µi+a for all i, where indices are interpreted modulo k. If
ω := exp(2πi/k), define the Tanisaki locus Xµ ⊆ Cn by

Xµ := {(α1, . . . , αn) : αj = ωi for precisely µi values of j}.

As discussed in Subsection 3.2, Garsia-Procesi [8] proved that T(Xµ) is the Tanisaki ideal
and grFrob(C[xn]/T(Xµ); q) = Q̃µ(x; q). We have the following bicyclic sieving result.

Theorem 4.5. Let Wµ be the set of length n words w1 . . . wn of content µ. The set Wµ carries an
action of Zn ×Zk/a, where Zn acts by word rotation and Zk/a acts by adding a to each letter
modulo k. The triple (Wµ, Zn ×Zk/a, X(q, t)) exhibits the bicyclic sieving phenomenon, where

Xµ(q, t) = ∑
λ`n

K̃λ,sort(µ)(q) f λ(t)

and sort(µ) is the partition obtained by sorting the parts of µ in weakly decreasing order.

Theorem 4.5 was proven in the unpublished work of Reiner and White. A proof of
Theorem 4.5 in full generality using Theorem 3.2 is in [20].
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4.2.3 Colored locus

The complex reflection group G(r, 1, n) ≤ GLn(C) is a group of n× n monomial matrices
whose nonzero entries are ζ i for some i, where ζ := e

2πi
r ∈ C. Irreducible representa-

tions of G(r, 1, n) are in one-to-one correspondence with r-tuple λ• = (λ(0), . . . , λ(r−1))
of partitions with total size |λ(0)|+ · · ·+ |λ(r−1)| = n. We denote the irreducible repre-
sentation corresponding to λ• by Sλ• . Let ΛG(r,1,n) := Λ⊗r be rth tensor of the symmetric
function ring Λ (with variables x(i)’s). For any finite-dimensional G(r, 1, n)-module V,
there extists unique multiplicity cλ• for each λ• so that V ∼=

⊕
λ•`n cλ•Sλ• . The Frobenius

image of V is defined by

FrobG(r,1,n)(V) := ∑
λ•`n

cλ•sλ•(x) ∈ ΛG(r,1,n),

where sλ•(x) = sλ(0)(x(0)) · · · sλ(r−1)(x(r−1)). We define grFrobG(r,1,n) in a usual way.
Suppose that a finite set X ⊆ Cn is invariant under the action of Sn × Ck, where Sn

acts on X by permuting coordinates and a generator c ∈ Ck acts on X by kth root of unity
scaling. Then a r-colored version of X,

Colr(X) := {(ζc1 x
1
r
1 , . . . , ζcn x

1
r
n} : (x1, . . . , xn) ∈ X, c1, . . . , cn ∈ {0, 1, . . . , r− 1}}

is invariant under action of G(r, 1, n) × Ckr, where G(r, 1, n) acts by left multiplication
and Ckr acts by scaling a krth root of unity. Then we have the following equivalence as
ungraded G(r, 1, n)× Ckr-modules

C[Colr(X)] ∼= C[x1, . . . , xn]/ Colr(T(X)),

where Colr(T(X)) is the image of T(X) under rth power ring homomorphism given
by xk 7→ xr

k. If we can calculate graded Frobenius image of C[xn]/ Colr(T(X)), then
applying Theorem 4.1 gives a sieving result involving ‘colored words’.

For example, let X = {(1, 1, . . . , 1)} ⊆ Cn be a set with a single element (with Sn ×
C1-action). Then Col2(X) = {(a1, . . . , an)|ai ∈ {−1, 1}} can be regarded as the set BWn
of binary words of length n. By a graded Frobenius character formula (Proposition 9
[17]) and usual fact for a plethystic substitution, we have

grFrobG(2,1,n)(C[xn]/ Col2(T(X)); q) = grFrob(C[xn]/T(X); q2)[x(0) + qx(1)]

= s(n)[x
(0) + qx(1)] =

n

∑
k=0

qks(n−k)(x
(0))s(k)(x

(1)).

By Theorem 4.1 and a formula for fake degree polynomial f λ•(q) for G(r, 1, n) in [3],
we conclude that the polynomial

BWn(q, t) :=
n

∑
k=0

qktk
[

n
k

]
t2
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provides a biCSP for binary words where one cyclic group acts by twisted rotation
(a1, . . . , an) 7→ (−an, a1, . . . , an−1) and the other cyclic group Z2 acts by (a1, . . . , an) 7→
(−a1, . . . ,−an). These two actions reflect the action of a regular element of G(r, 1, n)
and the action of scaling a root of unity on Col2(X). This gives a desired representation
theoretic proof of the sieving result for twisted rotation on binary words in [1]. More
examples concerning sieving results coming from orbits of G(r, 1, n) will be provided in
[14].

5 Diagonal orbit harmonics and cyclic sieving

In this section, we consider diagonal orbit harmonics. To be precise, suppose a finite set
X ⊆ C2n is invariant under the action of Sn × C× C′, where Sn acts diagonally, i.e.

σ · (x1, . . . , xn, y1, . . . , yn) = (xσ(1), . . . , xσ(n), yσ(1), . . . , yσ(n)),

and the cyclic group C acts on x coordinates by scaling a root of unity and the cyclic
group C′ acts on y coordinates by scaling a root of unity. Let I(X) be the vanishing
ideal in C[xn, yn] and T(X) be the homogeneous ideal obtained by applying top degree
homogeneous part in both x and y variables,

T(X) := 〈τy(τx( f )) : f ∈ I(X), f 6= 0〉.

Then we have the following equivalence as W × C× C′-modules.

C[X] ∼= C[xn, yn]/T(X) (5.1)

A sieving generating theorem for diagonal orbit harmonics can be obtained by using a
similar argument in the proof of Theorem 4.1 [15, Thm. 3.1]. We provide an application
of this idea.

To each partition µ of n, one associates a bigraded Sn-module called the Garsia–
Haiman module as follows. An injective tableau T of shape µ ` n is a filling of cells of µ by
integers 1, 2, . . . , n. For each injective tableau T, we assign a point pT ∈ C2n by letting ith

and (n + i)th coordinates of pT record the position of i in T:

pT = (ωxT(1), . . . , ωxT(n), ζyT(1), . . . , ζyT(n)),

where xT(i) and yT(i) are x and y coordinates of i in T (in a French notation), ω is `(µ)th

root of unity and ζ is µth
1 root of unity. The point locus Xµ possesses a natural Sn action

that acts diagonally on Xµ. Combining results in [7] and [10], we can conclude that the
graded Frobenius image of C[xn, yn]/T(Xµ) is the Macdonald polynomial H̃µ(x; q, t).

To provide an instance of CSP, consider a rectangular partition µ = (ab). The set
Xµ ⊆ C2n has not only Sn action but also C × C′ action, where a cyclic group C of
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order a acts by scaling ω to the first n coordinates and a cyclic group C′ of order b acts
scaling ζ to the last n coordinates. Note that the set X(ab) can be identified with the set
of b× a matrices where each of 1, 2, . . . , ab is used once as entry. Moreover, under this
correspondence, Sn × C × C′ action on X(ab) corresponds to the permutation action on
entries, rotation action on columns, and rotation action on rows. Applying isomorphism
(5.1) gives

C[xn, yn]/T(X(ab))
∼= C[X(ab)]

as Sn × C× C′ modules and by applying Springer’s theorem, we have the following.

Theorem 5.1. Let X(ab) be the set of b× a matrices of content of entries (1ab). The product of
cyclic groups Za ×Zb ×Zab acts on X by column rotation, row rotation and adding 1 modulo
ab to each entry. Then the triple (X(ab), Za ×Zb ×Zab, X(ab)(q, t, z)) exhibits triCSP, where

X(ab)(q, t, z) = ∑
λ`ab

K̃λ,(ab)(q, t) f λ(z).

If we apply a similar argument in [20], one can obtain tri-cyclic sieving phenomena
of a× b matrices of content ν with ν has a cyclic symmetry (See [15] for details).
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