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Abstract. We prove a conjectured asymptotic formula of Kuperberg from the repre-
sentation theory of the Lie algebra G2. Given a non-negative sequence (an)n≥1, the
identity B(x) = A(xB(x)) for generating functions A(x) = 1 + ∑n≥1 anxn and B(x) =
1+∑n≥1 bnxn determines the number bn of rooted planar trees with n vertices such that
each vertex having i children can have one of ai distinct colors. Kuperberg (J. Algebr.
Combin., 1996) proved that this identity holds in the case that bn = dim InvG2(V(λ1)

⊗n),
where V(λ1) is the 7-dimensional fundamental representation of G2, and an is the
number of triangulations of a regular n-gon such that each internal vertex has degree
at least 6. Moreover, he observed that lim supn→∞

n
√

an ≤ 7/B(1/7). He conjectured
that this estimate is sharp, or in terms of power series, that the radius of convergence
of A(x) is exactly B(1/7)/7. We prove this conjecture by introducing a new criterion
for sharpness in the analogous estimate for general power series A(x) and B(x) sat-
isfying B(x) = A(xB(x)). Moreover, by way of singularity analysis performed on a
recently-discovered generating function for B(x), we significantly refine the conjecture
by deriving an asymptotic formula for the sequence (an).

1 Introduction

In this extended abstract, we prove a conjectured asymptotic estimate [11, Conj. 8.2]
for an integer sequence arising in the representation theory of the Lie algebra G2. The
criterion we develop to prove this result applies to a wide class of generating functions
satisfying a classic combinatorial identity from the theory of rooted planar trees. Fur-
thermore, we significantly refine the conjectured estimate. A full-length article version
of this paper is forthcoming, in which the proofs sketched in this version will be fully
detailed.
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1.1 Kuperberg’s conjecture

Let a0 = 1, and for each positive integer n, let an denote the number of triangulations of
a regular n-gon, such that the minimum degree of each internal vertex is 6. The sequence
begins

(an)
∞
n=0 = 1, 0, 1, 1, 2, 5, 15, 50, 181, 697, . . .

and is indexed in the On-Line Encyclopedia of Integer Sequences (OEIS, [13]) by A059710.
Next, let b0 = 1, and for each positive integer n let bn denote the dimension of the vector
subspace of invariant tensors in the n-th tensor power of the 7-dimensional fundamental
representation of the exceptional simple Lie algebra G2. The sequence begins

(bn)
∞
n=0 = 1, 0, 1, 1, 4, 10, 35, 120, 455, 1792, . . .

and is indexed in OEIS as A059710.
The sequence (bn) is known to have a combinatorial interpretation as the number

of lattice walks in the dominant Weyl chamber of the root system for G2 that start and
end at the origin, subject to certain constraints on the steps [16]. This type of model is
not unique to G2 or this particular representation; if V is any irreducible representation
of any complex semi-simple Lie algebra L, there is a similar lattice walk model for the
dimension of the space of L-invariant n-tensors over V (see e.g. [8, Thm. 5]).

Now let A(x) = 1 + ∑∞
n=1 anxn and B(x) = 1 + ∑∞

n=1 bnxn be the ordinary generating
functions for (an)∞

n=0 and (bn)∞
n=0, respectively. In [11, Section 8], Kuperberg proved the

following remarkable identity of formal power series:

B(x) = A(xB(x)). (1.1)

Kuperberg also observed that B(x) has radius of convergence 1/7, that B (1/7) < ∞,
and that by (1.1), A(x) has radius of convergence at least (1/7)B (1/7), a constant whose
numerical value he estimated to be approximately 6.811. He conjectured that this bound
is in fact an equality.

Conjecture 1.1 (Kuperberg, 1996 [11]).

lim sup
n→∞

n
√

an = 7/B(1/7) .

The lim sup is actually a limit (see Section 3). We prove here that this conjecture is
true and explicitly identify the value of the constant 7/B(1/7). Moreover, we improve
the exponential growth term to establish a true asymptotic formula for (an), and we
derive a full asymptotic expansion for (bn). The precise result is as follows.
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Theorem 1.2. Let A(x) and B(x) be as above. Define constants ρ, K, and M by:

ρ =
7

B(1/7)
(1.2)

K =
4117715

√
3

864π
≈ 2627.6 (1.3)

M =
4
√

3
421875π

(
8575π − 15552

√
3

2592
√

3− 1429π

)7

≈ 1721.0 (1.4)

Then we have the following:

(a) Kuperberg’s conjecture is true. As n→ ∞,

an = ρn+o(n). (1.5)

(b) Value of ρ. The constant ρ has the explicit value

ρ =
5π

8575π − 15552
√

3
≈ 6.8211. (1.6)

(c) Asymptotic expansion of bn. As n→ ∞, the sequence (bn) grows asymptotically as

bn = K
7n

n7

(
1 +O

(
1
n

))
. (1.7)

Furthermore, there exists a computable sequence of rational numbers (κi)
∞
i=7, with κ7 = Kπ/

√
3,

such that as n→ ∞,

bn ∼
7n
√

3
π

∞

∑
i=7

κi

ni . (1.8)

(d) Asymptotic formula for an. Conjecture 1.1 admits the following refinement. As n→ ∞,

an = M
ρn

n7

(
1 +O

(
log n

n

))
. (1.9)

We also show the following, as a consequence of Theorem 1.2(b) and Lemma 2.1
below.

Corollary 1.3. The generating functions A(x) and B(x) from Theorem 1.2 are not algebraic.

The sequences (an) and (bn) have been studied by various authors since Kuperberg’s
conjecture; see for instance [16] and the recent [1].
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1.2 A criterion for sharpness

Our proof of Theorem 1.2 will rely on several ideas that are far more general in their
applicability than the case of the specific generating functions A(x) and B(x), and are
of independent interest. Specifically, Conjecture 1.1 can be viewed as an asymptotic
enumeration problem in the combinatorial theory of rooted trees, as (1.1) is a classic
identity that encodes the recursive nature of these structures (see Section 2).

In general, if A(x) = 1+∑n≥1 anxn and B(x) = 1+∑n≥1 bnxn are ordinary generating
functions having non-negative coefficients such that an ≥ 1 eventually, and they satisfy
(1.1), then the inequality rB(r) ≤ R holds, where R and r are the radii of convergence
of A(x) and B(x) respectively (see Lemma 2.1). It is natural then to ask when equality
holds. We address this question in Section 2 and eventually arrive at a criterion for
equality in the estimate rB(r) ≤ R. A simplified version of this criterion reads as follows.

Theorem 1.4 (Criterion for sharpness, simplified version). With A(x), B(x), R, and r as in
the preceding paragraph, assume that an ≥ 0 for all n ≥ 1 and that an ≥ 1 eventually. Then

bnrn 6= Θ(n−3/2) as n→ ∞ =⇒ R = rB(r) .

Conjecture 1.1 will follow from this criterion, since a formula from the character
theory of Lie algebra representations will lead us to the preliminary estimate bn/7n =
Θ(n−7) for the sequence (bn) in Conjecture 1.1 (see Section 3). For the full criterion,
including some technical details, see Theorem 2.4 in Section 2.

Also of general interest is the “singularity analysis” discussed in Section 4, by which
we study a new representation from [1] for the generating function B(x) in Conjecture
1.1 and prove the remaining parts of Theorem 1.2. The fact that rB(r) = R leads to subtle
analysis in the application of known methods, namely the “transfer theorems" of Flajolet
and Odlyzko [6], when compared to the typical case rB(r) < R.

Acknowledgements

The author would like to thank Dan Romik, Greg Kuperberg, Michael Drmota, Hamilton
Santhakumar, and the FPSAC referees for helpful conversations and new ideas.

2 Simply generated trees

2.1 Basic definitions and analytic properties

Let A(x) = 1 + ∑n≥1 anxn and B(x) = 1 + ∑n≥1 bnxn be two power series satisfying
(1.1). It will be useful to set y(x) := xB(x), whence the coefficient sequence (yn)∞

n=1 of
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y(x) = ∑n≥1 ynxn is given by yn = bn−1 for n ≥ 1 and the identity (1.1) can be rewritten
as

y(x) = xA(y(x)). (2.1)

This identity has a well-known interpretation in the theory of trees. A planar rooted
tree is an undirected acyclic graph, equipped with a distinguished node and an embed-
ding in the plane, so that distinct subtrees dangling from the same node are ordered
amongst themselves. If A(x) = 1 + ∑n≥1 anxn, where the an’s are non-negative integers,
and y(x) = ∑n≥1 ynxn is related to A(x) by (2.1), then yn is the number of planar rooted
trees with n nodes, including the root, such that for each i ≥ 1, an internal node with i
children can be colored with one of ai colors. In fact, given (an)n≥1, the unique solution
(yn)n≥1 to (2.1) is found by the Lagrange Inversion Formula [15, Ch. 5.4], which also
implies that the yn’s are non-negative if the an’s are, even if they are not integers. A
family of trees is commonly called simply generated (see [12], where this nomenclature
appears to have been introduced) if the number of trees in the family is enumerated by
a generating function y(x) that satisfies (2.1) for some A(x) of the above form.

The article [3] contains several examples of (2.1) and a concise explanation of some
fundamental asymptotic results, including that the Catalan numbers occur as the se-
quence (yn)∞

n=1 when A(x) = 1/(1− x), and in that case yn ∼ π−
1
2 4n−1n−

3
2 as n → ∞.

Generalizations of (2.1) and statistical analysis of parameters associated to trees, such as
the number of leaves, is also discussed. The text [7, Sec. VI.7, VII.3, VII.4] contains a
broad treatment of the analytic framework for (2.1) as a functional equation, including
asymptotic results by way of singularity analysis applied to several natural tree examples
from the literature.

While the identity (2.1) is a priori just a relationship of formal power series, it will
be abundantly fruitful to view it as a functional equation of analytic maps. We will call
a sequence of real numbers (an)n≥1 admissible if an ≥ 0 for all n, an ≥ 1 eventually, and
lim supn→∞

n
√

an < ∞. Then it is relatively straightforward to verify the following facts.

Lemma 2.1. For admissible (an)n≥1, let y(x) = ∑n≥1 ynxn be the unique solution to (2.1), with
radius of convergence r. Let R be the radius of convergence of A(x). Then the following are true:

1. The identity (2.1) holds on Ω = {x : |x| < r}, as an identity of the analytic functions A
and y defined by their respective power series.

2. y extends continuously to the boundary ∂Ω, and (2.1) remains valid there.

3. 0 < r < y(r) ≤ R ≤ 1 .

4. A does not vanish on y(Ω) \ {0}.

5. The function ψ(z) := z
A(z) is analytic on y(Ω) and satisfies

ψ′(z) =
A(z)− zA′(z)

A(z)2 =
1−∑∞

n=1 an(n− 1)zn

A(z)2 . (2.2)
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6. y : Ω→ y(Ω) is a biholomorphism, and ψ(y(z)) = z for z ∈ Ω.

The proof amounts to complex calculus, and all the details will be in the full-length
article. There are more general conditions than “admissible" to obtain similar analytic
properties, but our choice simplifies the exposition and describes Kuperberg’s triangu-
lations as well as many natural combinatorial examples.

As a consequence of the lemma and (1.6), we obtain a simple proof of Corollary 1.3:

Proof of Corollary 1.3. Observe that y(1/7) = 1/ρ. If F(A(z), z) = 0 for F a bivariate
polynomial with integer coefficients, then 0 = F(A(1/ρ), 1/ρ) = F(7/ρ, 1/ρ) = 0, by
(2.1). This is absurd since 1/ρ is transcendental, which also implies directly that B(x) is
transcendental.

2.2 Full sharpness criterion and a proof of Theorem 1.4

The following new theorem provides a way to check that the radius of convergence of
the function A in (2.1) is as small as possible, namely equal to y(r).

Theorem 2.2. Suppose that (an)n≥1 is admissible, and the generating functions A(x) = 1 +

∑∞
n=1 anxn and y(x) = ∑∞

n=1 ynxn satisfy (2.1). If y(r) < R, then A(x)− xA′(x) vanishes at
x = y(r).

Proof. Assume that y(r) < R. Then A is analytic on an open disk, which we call E, that
is centered at y(r) and contained in the disk {z : |z| < R}. By Lemma 2.1, A(y(r)) =
y(r)/r > 0 (as mentioned above, Lagrange Inversion [15, Ch. 5.4] implies that yn ≥ 0),
so we may assume, by replacing E with a smaller open disk if necessary, that A does
not vanish on E, and hence that ψ is analytic on y(Ω) ∪ E. If we assume further, toward
showing a contradiction, that A(y(r)) − y(r)A′(y(r)) 6= 0, then ψ′(y(r)) 6= 0, by (2.2).
It follows that ψ is locally invertible at y(r). That is, after possibly replacing E with
a smaller open disk centered at y(r), the map ψ|E : E → ψ(E) is a homeomorphism,
with an analytic inverse map ψ|−1

E . Since r is a boundary point of Ω, we see that ∅ 6=
ψ(y(Ω) ∩ E) ⊂ Ω ∩ ψ(E). By the injectivity of ψ|E, one sees that y and ψ|−1

E agree on
the open set ψ(y(Ω) ∩ E), and hence on the larger set Ω ∩ ψ(E) as well, by analytic
continuation. Thus, the map ψ|−1

E serves as an analytic continuation of y to ψ(E). Since
r ∈ ψ(E), this contradicts a fact known as Pringsheim’s Theorem [9, Thm. 5.7.1], which
asserts that an analytic function with non-negative real coefficients and a finite radius
of convergence necessarily has a singularity at the point where the boundary of its disk
of convergence intersects [0, ∞). This is the contradiction we sought, and the proof is
complete.

If we phrase the theorem in a slightly weaker form by replacing the consequent with
the statement that A(x) − xA′(x) = 0 for some x in (0, R), then the converse is well-
known to be true, and it follows from Theorem 2.3(1) below. Theorem 2.3 contains even
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deeper asymptotic information than that, however, in particular regarding the subexpo-
nential (i.e. polynomial) growth rate of (yn). This, it turns out, will be instrumental in
proving Theorem 1.2, as it shows how information about the growth of (yn) can certify
that A(z)− zA′(z) does not vanish on (0, R), and hence, by Theorem 2.2, that y(r) = R.

Theorem 2.3 (Meir, Moon, 1978 [12]). Suppose that A(x) = 1 + ∑∞
n=1 anxn and y(x) =

∑∞
n=1 ynxn (with radii of convergence R and r, respectively) satisfy (2.1), with (an) admissible.

If there exists τ ∈ (0, R), such that A(τ)− τA′(τ) = 0, then the following are true.

(1) y(x) has radius of convergence r = τ/A(τ), and y(r) = τ < R.

(2) The coefficient sequence (yn)∞
n=1 satisfies the following asymptotic estimate:

yn =
C

rnn3/2 (1 +O(n
−1)) =

C · A′(τ)n

n3/2 (1 +O(n−1)),

as n→ ∞, where C =
√

A(τ)
2πA′′(τ) .

Combining Theorems 2.2 and 2.3, we obtain the following dichotomy.

Theorem 2.4 (Criterion for sharpness, full version). Suppose that A(x) = 1 + ∑n≥1 anxn

and y(x) = ∑n≥1 ynxn (with radii of convergence R and r, respectively) satisfy (2.1), with (an)
admissible. Then exactly one of the following is true:

(1) A(x)− xA′(x) is non-vanishing for x ∈ (0, R), in which case R = y(r).

(2) R > y(r) = τ, where τ is the unique solution to A(τ) − τA′(τ) = 0 on (0, R), and
yn = Cr−nn−3/2(1 + o(1)) as n→ ∞, for some constant C > 0.

In particular, the absence of the n−3/2 factor in the asymptotic expansion of yn cer-
tifies that the inequality y(r) ≤ R is actually equality, so Theorem 1.4 is an immediate
corollary.

3 Proof of Conjecture 1.1

Henceforth, let A(x) = 1 + ∑∞
n=1 anxn and B(x) = 1 + ∑∞

n=1 bnxn be as in Theorem 1.2.
Recall that 1/7 is the radius of convergence of B(x) and y(x) and that ρ := 7/B(1/7) =
1/y(1/7), and let R denote the radius of convergence of A(x). It’s not hard to show that
(an)n≥1 is an increasing sequence and that R < ∞, so that we may apply the criterion in
Theorem 1.4 (or 2.4). In order to do so, we must check that bn/7n 6= Θ(n−3/2).

Proposition 3.1. The sequence (bn)∞
n=0 satisfies the following asymptotic equivalence: As n →

∞,

bn ∼ K
7n

n7 ,

where K = 4117715
√

3
864π ≈ 2627.6 .
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In the introduction we described a lattice walk model in which the bn’s denote the
number of n-step excursions that start and end at the origin. This is encoded in the
following formula from character theory [10, p.15]: bn is given as the coefficient of xnyn

in the Laurent polynomial WMn, where

M(x, y) = 1 + x + y + xy + x2y + xy2 + (xy)2,

and

W(x, y) = x−2y−3(x2y3 − xy3 + x−1y2 − x−2y + x−3y−1 − x−3y−2

+ x−2y−3 − x−1y−3 + xy−2 − x2y−1 + x3y− x3y2).

Proposition 3.1 can be proved by approximating the value

bn =
1

(2πi)2

∮ ∮ [
W(z1, z2) ·M(z1, z2)

n · 1
(z1z2)n+1

]
dz1 dz2

in a standard manner, for contours passing through a “saddle-point" of the integrand.
The proposition indicates by Theorem 1.4 that R = 1/ρ, i.e. lim supn→∞

n
√

an = ρ .
It is not hard to show from the definition of (an) that log an + log am ≤ log an+m, which
implies by a lemma attributed to Fekete [4] that limn→∞ n

√
an= supn∈N

n
√

an. This limit
must be ρ, and (1.5) then follows directly.

4 Proof of Theorem 1.2 (b)-(d)

We record here a “transfer theorem" of Flajolet and Odlyzko [6], which allows one to
transfer asymptotic growth estimates of a function f near a singularity to asymptotic
growth estimates of the function’s Taylor coefficients ( fn)n≥0. The whole process is
sometimes called “singularity analysis." Assume the following setup: f is a function
analytic at the origin, with radius of convergence R > 0 and Taylor expansion f (z) =

∑∞
n=0 fnzn, and f can be continued analytically to a “Delta-domain" around the disk of

convergence of f . Such a domain is denoted by ∆R and defined to be any open set of the
form

{z : |z| < R + ε, |Arg(z− R)| > θ},
for some ε > 0 and some θ ∈ (0, π/2). The following statement combines Theorem 2
and Corollary 2 from [6]. Here and in the sequel, the principal branch of the logarithm
is denoted by log.

Theorem 4.1 (Flajolet, Odlyzko, 1990). Suppose F(z) = g(z) + f (z), where f and g are
analytic on {z : |z| < R}, and furthermore that f (z) is analytic in a Delta-domain ∆R and
satisfies

f (z) = O
(
(1− z/R)α(log(1− z/R))γ

)
,
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as z → R in ∆R, for α, γ ∈ R. Then as n → ∞, the Taylor coefficients (Fn), ( fn), and (gn), of
F, f , and g, satisfy

Fn = gn + fn = gn +O
(

n−α−1(log n)γ

Rn

)
.

The theorem is most meaningful when gn is known explicitly and has asymptotically
larger order than fn. We apply it now to get asymptotic estimates for (an) and (bn), with
γ = 1 in both cases.

4.1 Evaluation of ρ and analytic continuation of B

In the recent paper [1, p. 8] is given the following remarkable closed formula for the
generating function B in terms of hypergeometric series.

Theorem 4.2 (Bostan, Tirrell, Westbury, Zhang, 2019).

B(z) =
1

30z5

[
R1(z) · 2F1

(
1
3

,
2
3

; 2; φ(z)
)
+ R2(z) · 2F1

(
2
3

,
4
3

; 3; φ(z)
)
+ 5P(z)

]
, (4.1)

where

R1(z) = (z + 1)2(214z3 + 45z2 + 60z + 5)(z− 1)−1,

R2(z) = 6z2(z + 1)2(101z2 + 74z + 5)(z− 1)−2,

φ(z) = 27(z + 1)z2(1− z)−3,

P(z) = 28z4 + 66z3 + 46z2 + 15z + 1.

Evaluating at z = 1/7 and using standard identities for the 2F1 hypergeometric func-
tion, one obtains (1.6). In deriving formula (4.1), the authors of [1] demonstrate that B
is the solution of a linear differential equation of the form B′′′ + a2B′′ + a1B′ + a0B = 0,
where the coefficients ai, i = 0, 1, 2, are rational functions with poles at 0,−1/2,−1, and
1/7. 1 From this fact, and since B is expressed on Ω = {z : |z| < 1/7} by a convergent
power series and is analytic near z = −1 (by (4.1) and φ(−1) = 0), the theory of differen-
tial equations implies that B can be continued analytically and uniquely along any path
avoiding the set {−1/2, 1/7} (see e.g. [14, p.119]). For example, B has a unique analytic
continuation to the simply-connected doubly slit plane

Ω̃ = C \
(
(∞,−1/2] ∪ [1/7, ∞)

)
.

In particular, B extends to a Delta-domain around Ω. In order to apply Theorem 4.1 to
(bn), we must first determine the singular nature of B near 1/7. This is our next step.

1 As a consequence, they confirm a conjectured third-order linear recurrence relation (with quadratic
coefficients in n) for (bn).



10 Robert Scherer

4.2 Singular expansion of B and asymptotics of (bn)

Lemma 4.3 ([17]). For constants a, b ∈ R+ and a variable z satisfying |1− z| < 1, we have

2F1(a, b; a + b + 1, z) = Ca,b + Sa,b(z) + log(1− z) · Ta,b(z), (4.2)

with the following definitions:

Ca,b :=
Γ(a + b + 1)

Γ(a + 1)Γ(b + 1)
,

Ta,b(z) :=
Γ(a + b + 1)

Γ(a)Γ(b)
·
(

∞

∑
k=0

[
(a + 1)k(b + 1)k

k!(k + 1)!
· (1− z)k+1

])
,

and

Sa,b(z) :=
Γ(a + b + 1)

Γ(a)Γ(b)
·
(

∞

∑
k=0

[
(a + 1)k(b + 1)k

k!(k + n)!
· ck · (1− z)k+1

])
,

where ck = ψ0(a + k + 1) + ψ0(b + k + 1)− ψ0(k + 1)− ψ0(k + 2), for the digamma function
ψ0 = Γ′/Γ, and (q)k = q(q + 1) · · · (q + k− 1) is the rising Pochhammer function.

Using the lemma we can expand the hypergeometric functions in (4.1), obtaining

B(z) = f (z) + log(1− φ(z))g(z), (4.3)

for |1− φ(z)| < 1, where

f (z) =
1

30z5

[
R1(z)

(
C1

3 , 2
3
+ S 1

3 , 2
3
(φ(z))

)
+ R2(z)

(
C2

3 , 4
3
+ S 2

3 , 4
3
(φ(z))

)]
+ P(z),

and
g(z) =

1
30z5

[
R1(z)

(
T1

3 , 2
3
(φ(z))

)
+ R2(z)

(
T2

3 , 4
3
(φ(z))

)]
.

Adopting the change of variable Z = 1− 7z and expanding f and g in powers of Z, one
can deduce the following singular expansion of B, with K as defined in Theorem 1.2.

Proposition 4.4. As z→ 1/7 in Ω̃,

B(z) = p(Z)− K
6!

Z6 log Z + Z7H2(Z) + Z7H1(Z) log Z , (4.4)

where H1(Z) and H2(Z) are power series with positive radii of convergence and non-zero con-
stant terms, and p(Z) is a degree-six polynomial with p(0) = y(1/7) = 1/ρ.

Theorem 4.1 applies to (4.4) with F = B, g = p(Z) − K
6! Z

6 log Z, γ = 1, α = 7,
R = 1/7, and f = Z7H1(Z) log Z + Z7H2(Z) = O(Z7 log Z). The Taylor coefficients
of g can be computed exactly by noting that for n > 7, the nth Taylor coefficient of
(1− x)6 log(1− x) is −6!/[n · (n− 1) · · · (n− 6)]. Then (1.7) follows, and by computing
higher order coefficients of B(z), the asymptotic series (1.8) can also be verified. Actually,
Theorem 4.1 alone would give O(log n/n) as the error term in (1.7), but computing the
very next term in the asymptotic series shows that the error is O(1/n).
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4.3 Singular expansions of ψ and A near 1/ρ, and asymptotics of (an)

To estimate the growth of (an) by Theorem 4.1, we must analyze A near the singularity
y(1/7) = 1/ρ. Before that we will determine the singular nature of ψ, which was defined
in Lemma 2.1, where we also saw that (y ◦ ψ)|y(Ω) = Id|y(Ω). Defining Λ := {z : |z| <
1/ρ}, which contains y(Ω), we start with the following extension lemma.

Lemma 4.5. The function ψ is analytically continuable to a Delta-domain ∆1/ρ around Λ. Fur-
thermore,

(y ◦ ψ)|∆1/ρ
= Id |∆1/ρ

.

Proof sketch. We outline the main ideas of the proof. First, from the estimate A(y(1/7)) =
7y(1/7) ≈ 1.03, one deduces that ∑n≥1 anz <1 for z ∈ Λ, so that A is non-vanishing on
Λ, and ψ extends analytically to Λ and continuously to ∂Λ. A similar estimate using
(2.2) shows that ψ′ extends continuously to Λ and does not vanish there.

With these preliminary considerations in mind, one argues that ψ(Λ) ⊂ Ω̃. This
follows from the next two claims, which can be verified by standard complex calcu-
lus: (1) If z ∈ Λ \ R, then ψ(z) ∈ R; and (2) ψ maps [−1/ρ, 1/ρ] bijectively onto
[ψ(−1/ρ), 1/7] ⊂ (−1/2, 1/7].

Since ψ(Λ) ⊂ Ω̃ we see that y is analytic on ψ(Λ). Moreover, by permanence of the
identity (y ◦ ψ)|y(Ω) = Id|y(Ω), we have (y ◦ ψ)|Λ = Id|Λ. To extend this identity to a
Delta-domain ∆1/ρ around Λ, it remains to show that ψ is analytic there. Geometrically,
the main idea is that since y′(1/7) > 0 the map y acts near 1/7 approximately as a
dilation, and hence is invertible near 1/7 in Ω̃, with a local inverse that extends ψ to a
region of the form Dλ,δ := {z : |z− y(1/7)| < λ, | arg(z− y(1/7))| > δ}, for some small
λ > 0 and some δ ∈ (0, π/2). To finish extending ψ to ∆1/ρ, it suffices by compactness of
the set ∂Λ \ Dλ,δ to provide analytic continuations of ψ around all points in an arbitrary
finite subcollection of ∂∆ \ {1/ρ}. To this end one can use the local inverse of y about
an arbitrary point in ψ(∂Λ) \ {1/7}, as it is easy to check that y′ does not vanish there.
Having extended ψ to a Delta-domain ∆1/ρ by patching together local inverses of y,
we should check that y is a global inverse to ψ on ∆1/ρ. One need only observe that
ψ(∆1/ρ) ⊂ Ω̃, by construction. It follows that y is analytic on ψ(∆1/ρ), and (y ◦ ψ)|∆1/ρ

=

Id|∆1/ρ
, by the principle of permanence.

As we have just seen, the fact that y(r) = R in the notation of Theorem 2.4 leads to
rather subtle analysis when compared to the much more common situation of y(r) < R,
in which case A and ψ are a priori analytic in a neighborhood of y(r), which makes more
transparent the analytic continuation of y. For a similar argument to ours in the sharp
case y(r) = R, carried out in another context, see [5], particularly Section 4.

Lemma 4.5 provides analytic preconditions to rigorously justify a “bootstrapping
procedure" (discussed in [2, Ch. 2]) that locally inverts y near 1/7, up to an asymptot-
ically negligible error term. The main thrust of the method can be shown by example:
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Consider the equation y = x + x2 + x2 log x. Then x ∼ y, as x, y → 0, and log y =
log x+ log(1+ x+ x log x) = log x+O(x log x). It follows that log x = log y+O(y log y).
Since x = y− x2 + x2 log x, we obtain x2 = y2 +O(y3 log y). Plugging back into the orig-
inal equation, this yields

x = y− y2 − y2 log y +O(y3 log y).

The proof of the next proposition is similar, just more involved. Let V = 1− ρz.

Proposition 4.6. ψ(z) admits the following singular expansion: as z→ y(1/7) in ∆1/ρ,

ψ(z) = γ(V) + CV6 log V +O(V7 log V), (4.5)

where C = M/(49 · 6!) with M as in (1.4), and γ(V) is a degree-six polynomial with γ(0) =
1/7. Furthermore, the error term ψ(z)− γ(V)− CV6 log V is analytic in ∆1/ρ.

We should turn this result into a statement about A. Since ψ vanishes at 0 and is in-
jective on ∆1/ρ, by Lemma 4.5, ψ doesn’t vanish on ∆1/ρ \ {0}. Thus, A(z) = z/ψ(z) also
extends analytically to ∆1/ρ. By manipulating (4.5) and justifying the steps analytically,
the singular expansion of A(z) near 1/ρ = y(1/7) is found to be the following.

Proposition 4.7. A(z) admits the following singular expansion: as z→ y(1/7) in ∆1/ρ,

A(z) = η(V)− 49C
ρ

V6 log(V) +O(V7 log V), (4.6)

where η is a degree-seven polynomial. The error term A(z) + (49C/ρ)V6 log V − η(V) is
analytic in ∆1/ρ.

By Theorem 4.1 and the Taylor expansion of (1 − x)6 log(1 − x) mentioned after
Proposition 4.4, we see that (4.6) implies (1.9), which proves Theorem 1.2. The com-
plete proofs in this section are a bit technical, and they will be fully detailed in the
full-length version.
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