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Abstract.  This paper proposes a new class of combinatorial 2-player games with
calculatable winning strategy. Our games are obtained as patchwork of the Sato-Welter
games. This paper gives the explicit formula of the Sprague-Grundy functions of the
games.
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1 Introduction

Since the beginning of combinatorial game theory, i.e. the 1930’s [7][3], winning strate-
gies have been studied. In this paper, we focus on impartial games [2], which are a
sort of 2-player games with perfect information. Winning strategies of impartial games
are analyzed by the Sprague-Grundy value. Since the Sprague-Grundy value is recur-
sively defined, it is very difficult to calculate the Sprague-Grundy value for most games.
Therefore, finding large classes for which it is possible to calculate the Sprague-Grundy
value is a very important issue. Typical examples of games possible to calculate the
Sprague-Grundy value by “good” algorithm are:

e Nim. See [1][2] for details.

e Sato-Welter game. This game is introduced by M. Sato [6] and C. P. Welter [8]
independently. See section 3 for definition and properties.

e Turning turtles. See section 4 for definition and properties. See [1] for further
details.

In [4], N. Kawanaka generalize these examples to d-complete posets, which are in-
troduced by R. A. Proctor [5]. In his setting,

¢ Sato-Welter game is a game on a shape (a Young diagram).

¢ Turning turtles is a game on a shifted shape (a shifted Young diagram).
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He has given a formula which calculates the Sprague-Grudy function over his games.
Unfortunately, his formula does not give a formula for individual d-complete posets.

In this paper, we focus on the class of insets, which is one of the classes of d-complete
posets. We define a game over insets — which we call the inset games — and a closed
formula for their Sprague-Grundy function. Our games are costructed as patchworks of
the Sato-Welter games.

This paper is organized as follows: Section 2 explains fundamental notions and def-
initions of games and the Sprague-Grundy values. Section 3 explains precise definition
of the Sato-Welter games. Section 4 explains precise definition of the turning turtles.
Section 5 explains our main results.

2  Preliminaries

2.1 Games

We begin by defining the games we concern with.

Definition 2.1. Let P be a set, and — a binary relation over P. For an element p € P, we put
a(p) :={q € P|p— q}. Thepair (P;—) is called a game if it satisfies:

1. Forany p € P, the set a(p) is finite;

2. There exists no infinite sequence

po,P1, P2, P3,..- pi€P

with
pi — piv1, 1=0,1,2,3,...

We call an element p of P a position, a(p) the option set at the position p. If a(p) = &,
then we say p is an ending position. Any position p = py € P can be interpreted as
an opening position of a 2-player game (in the usual sense of the word); two players
alternatively choose positions:

po — p1 (the first player’s move),
p1 — p2 (the second player’s move),
p2 — p3 (the first player’s move),

until one of them reaches an ending position p,. If n is odd (resp. even), we say the
first (resp. second) player wins. If (P;—) and (Q; —) are isomorphic to each other as
digraphs, then we say (P; —) is game-isomorphic to (Q; —).



Inset games 3

Example 2.2 (1-heap nim). Denote by IN the set of nonnegative integers. Then, the pair (IN; >)
is a game, where > denotes the ordinary order relation ‘greater than’. This game is called the
1-heap nim.

According to [7][3], we define:
Definition 2.3. For a game (P; —), let SG = SGp : P — IN be the map defined by
8G(p) =min (N\ {SG(q) eN|p>q}), (peP).

The map SG is called the Sprague-Grundy function of P. The value SG(p) is called the
Sprague-Grundy number (or Sprague-Grundy value) of p.

Example 2.4 (1-heap nim). The Sprague-Grundy function SG of the 1-heap nim (IN; >) is the
identity map:
SG(x) =x (x € N).

Propsition 2.5 ([7, 3]). Let (P; —) be a game and p € P. Then we have:
1. If SGp(p) = O, then, for any q € a(p), we have SGp(gq) > 0.
2. If SGp(p) > 0, then, for some q € «(p), we have SGp(q) = 0.
3. If p is an ending position, then we have SGp(p) = 0.
Remark 2.6. For a position p € P, the following two conditions are equivalent:
1. the position p has a winning strategy.
2. SGp(p) > 0.

Indeed, if the first player is at the position p with SGp(p) > 0. Then there exists a next position
q € a(p) with SGp(q) = 0. The strategic move p — q leads the first player to win, because any
next position r € a(q) chosen by the second player must be satisfying SGp(r) > 0.

2.2 Nim-Addition

Denote by Z the set of integers. We shall write the binary expression of an integer a € Z
as

a= [ai] = [ai]iEN = [ e, iy, 03,02, al/a()]-

For example, we have:

1=1+2+0+2>4+0+0 +---=[--001011],
~1=1+4+2+224+23 4244202 ... =] .. 111111],
—12=0+0+22+ 0 +2*+2°4 ... =[---110100].
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We recall the definition of Nim-addition @ in Z. For a = [a;], b = [b;], and ¢ = [¢;] in Z,
we write
adb=c

g a;+b;=c; (mod 2), i€ NN.
For example, we have
3@5=[--00011] @[ - - 00101] = [- - - 00110] = 6.
The system (Z; @) forms an abelian group with
a®a=0, forany ac Z.
Note that IN is an index 2 subgroup of (Z; ®). We have
(-1)®a=—a—1

Here, the symbol — denotes the inverse on the usual addition (the binary operation +).
For a € Z, we put
N(a) =a® (a—1).

We also put, fora,b € Z,

(a|b) =N(@a&b).
We have the following ([2, ch.13], [6], [8]).
Lemma 2.7. Let a,b,c € Z. We have:

1. If a is a multiple of 2! (t € IN), and is not a multiple of 2!, then

t+1
N(a) =[--011---1] =21 — 1.

2. N(a) is negative if and only if a = 0.
3. (a|b) =N(a—Db).
£ (a]b) = (a+elbte) = (amebeo).
5. If ¢ > 0 (resp. ¢ < 0), then we have

c—1 -1

a Y Yalh)=a—c (resp. ac Yy “(alh) :a—c>,
h=0 h=c

where the symbol ZGB denotes Nim-summation.
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2.3 Animating Functions

Following Conway [2], we call a function f : Z — Z of the form
fx)=---((((x®a)+b)Dc)+d)>---

an animating function. Clearly an animating function is a bijective map from Z to Z, and
its inverse is animating again. As is shown in [2], a function f is animating if and only

if it can be written as .

fO=xa Y " (x|m)®p (2.1)

i=1
with some «;, B € Z. Moreover, the expression (2.1) is unique as long as a1, &, ..., a, are
distinct. We denote by Anim(Z) the set of animating functions.
Some of the fundamental properties of animating functions are listed in the following;:

Lemma 2.8 (Sato [6] and Conway [2]). Let x,y € Z.

1. If f and g are elements of Anim(Z), then the composition f o ¢ and the inverse f~! are
elements of Anim(Z). (Hence (Anim(Z), o) forms a group.)

2. If f is an element of Anim(Z), then we have
(F) [fW) = (*|v),  (vy€2).

3. Ify = f(x) with f(x) given by (2.1), then the inverse x = f~(y) is given by
fl=ye L (v|f@)ep

Definition 2.9. A multivariate function E : Z" — Z is said to be animating if
1. Ei(x;) := E(x1,- -+ ,%j,- -+, Xn) is animating for each x;,
2. Eis symmetric in x1,- -+, Xp.

The set of animating functions over Z" is denoted by Anim(Z").
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3 The Sato-Welter Game

Definition 3.1. Fix an integer n > 1. Put
Py:={xCN||x|=n}.
For x,y € Py, we denote x— Yy if the following two coditions hold:
e xNy|l=n-1, e ifxex\yandy € y\x, theny < x.

We call the game (P,; — ) the Sato-Welter game with n balls.

The Sato-Welter game with 7 balls can be visually interpreted as follows: n balls are
lined up. At each move, a player moves one ball “(0)” leftwards to any empty box. The
player to make the last move wins.

Example 3.2. For a position x = {3,5} = | | | |O |O | - € P> of the Sato-Welter
game of 2 balls, the elements of the option set a(x) are:
Ba=]1 1O 11, _ —
2 -0 - Cor o T
CU=LOLOLTITE: oy 11T
o= T TT1T1t

Remark 3.3. By regarding a position x € P, of the Sato-Welter game as a beta number, we can
also regard x as Young diagrams. For exmaple, a position x = {3,5} € D, is regarded as a Young
diagram with partition (4,3).
Remark 3.4. The Sato-Welter game Py of 1 ball is game-isomorphic to the 1-heap nim.
For x = {x1,x2,- -+ ,xn} € Py, we put
o o
Pn(x) = Z X; Z (xi ‘x]').
i i<j

For x € P,, we have ¢,(x) > 0. Since ¢ is a symmetric function in x1, - - - , x,, we denote
Pn(X) = @n(x1,X2,- -, Xn).
Theorem 3.5 (Sato [6], and Welter [8]). The Sprague-Grundy function of the Sato-Welter game
(Pu; —> ) is given by

on(x), x € Py,
Example 3.6. For x = {3,5} € P, the Sprague-Grundy value ¢(x) is

P2(x) =3®56 (3|5) =5 #0.
Hence, the position x has a winning strategy. The (unique) winning move is:

{3,5}—a{3,2}.
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4 The Turning turtles

Definition 4.1. Put
Pog = J Pu="{J {(xSIN|x =n}. (4.1)
n:odd n:odd
For x € Py and y € Py, we denote x—py if

* n=m and x—,y, or e n=m+2and xDy.

We call the game (Pyz4; —p) the turning turtles.

The turning turtles can be visually interpreted as follows: Several turtles are lined
up. An odd number of them are awake and the others sleeping. At each move, a player
chooses two turtles with both hands and turns them over. The player is allowed to turn
“(O”(awake turtle) into “empty”(sleeping turtle) and also “empty” into “(0)”. However,
the turtle that he grabs with his right hand must be an awake turtle. The player to make
the last move wins.

Example 4.2. For a position x = {2,3,5} = [ | [OJO 10O] | - € Py of the turning
turtles, the elements of the option set a(x) are:
234=[] 0O [ [t (L35=L]0 O IO [t
23 =L1000 [ T[]t {035=0 [ O[Ot
2300 =0 [OOL [ [ [t Gry=LL T 1T TIO ] i
{215 =[O0 T O[T t--. Br=LLIIo T[]t
{205 =[O IO T [O[ T t--. 2y=L1 10 T 11713

Remark 4.3. By regarding a position x € P,y of the turning tutles as a strict partition, we can
also regard x as shifted Young diagrams. For exmaple, a position x = {2,3,5} € Pyyy is regarded
as a shifted Young diagram with strict partition (5,3,2).

For x = {x1,x2,- -+ ,xn} € Pogq, we put
PX):=x1Dx2 DB - D xp.
For x € Pygq, we have (x) > 0. See [1] for further details.
Theorem 4.4. The Sprague-Grundy function of the turning turltes (Poy4; —p) is given by
(x),  x € Po.
Example 4.5. For x = {2,3,5} € P,y;, the Sprague-Grundy value {(x) is
P(x) =2@365=4+#0.
Hence, the position x has a winning strategy. The (unique) winning move is:
{2,3,5}—p{2,3,1}.
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5 Main result

The definition 4.1 means the position set P,qq of turning turtles is a “patchwork” of
position sets P, of Sato-Welter games. This is our motivation of this study.

Definition 5.1. Fix an integer N > 2. Put
Py :=PyUP,.
Let n,m € {1, N}. For x € P, and y € Py, we denote x — y if
* n=m and x—py, or
en=Nm=1and xDYy.
We call the game (Py1; —) the inset game.

Remark 5.2. If N = 2,3, then this game is not new (see subsection 5.1, 5.2). For N > 4, this
game is new.

Example 5.3. For a position

x={1,245} = O[O OO | -~ €Ps

of our game with N = 4, the elements of option set u(x) are:

1,243y = [OOOOL | | -+, {0245} =0 O 100

H;
{1,2,4,0; = (OO [O] [ [t Gr=L1LII1TIA T
{1,235 =100 1O ] t--, W=LL]TIOo Tt
{1,205 =000 [ 1O | - r=L1IO T T 1]t
{1,0,4,5} = OOl [ [O[C] [ § W=LOL T T[]t

Remark 5.4. With a position x = {x1,X2,--- ,xn} € Py, the inset
n—1 Xy —(n—1)

can be associated, if n = N and x; < xp < --- < xN. If, on the other hand, n = 1, then we
attach the x1-chain.
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For x = {x1,x2,- -+ ,xx} € Py 1, we put

Y7 (<1 ona () @ on(x) n=N
PN (x) = i

X1 n=1

where x() = x\ {x;}. For x € Py 1, we have
PN (x) = 0. (5.1)
Now we can state the main result:
Theorem 5.5. The Sprague-Grundy function of the inset game (Py 1; —) is given by
¢N1 (X), X & PN,l-
A sketch of proof is given in the subsection 5.3.
Example 5.6. For x = {1,2,4,5} € Py1, the Sprague-Grundy value ¢41(x) is
Pa1(x) = (—1|93(2,4,5)) © (~1]93(1,4,5))
@ (—1]93(1,2,5) & (—1|93(1,2,4)) ® ¢4(1,2,4,5)
=(-1|0)@ (-1|7)® (-1 |1) ® (-1|4) ®6 = 10.

Hence, the position x has a winning strategy. The (unique) winning move is:

{1,2,4,5} — {0,1,4,5}.

51 Case N =2
Define an injection f : P,; — P, by

flxp o)) ={n+Lx+1)  f({a}) ={0x +1}.
It is straightforward to see the case N = 2:

Propsition 5.7. The map f is a game isomorphism from P, 1 to the image f(P>1). In particular,
for x € Py 1, we have ¢;1(x) = @2(f(x)).
Example 5.8. For a position

x={24t= ] 1O JO [ [ €Pa
of our game with N = 2, the elements of option set u(x) are:
e LI L oo
2uy=00 [ [T+t _
_ Oag=0 1 [ 1O [ ]t
20=0 10 [ []1¢t, W=TTTTO T T
(e I (O I I I

These positions correspond to the positions in Example 3.2.
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52 Case N =3

Define an injection f : P31 — Pyqq by

fxyx,031) = {x,x2,23), f({a}) = {x)-
It is straightforward to see the case N = 3:

Propsition 5.9. The map f is a game isomorphism from P51 to the image f(P51). In particular,
for x € P31, we have ¢31(x) = P(f(x)).

5.3 Sketch of proof of main theorem
We need the following two lemmata:
Lemma 5.10. Let x € Py 1 and h € IN. Then we have

1. if 0 < h < @n1(x), then the number of y € a(x) with ¢y 1(y) = h is odd. In particular,
there exists such a next position y of x with ¢n1(y) = h.

2. if h > ¢n1(x), then the number of y € a(x) with ¢n 1(y) = h is even (it may be zero).
We omit the proof of Lemma 5.10.
Lemma 5.11. Let x € Py and y € a(x). Then we have gy 1(x) # ¢n1(y).

Proof. Letx = {x1, -+ ,xp}and y = {y1, - ,Ym}-
Case x € Py and y € Py: We may assume that x; > y; and x; = y; (2 <i < N).
We have

N1 (x) © ona(y)
_ %@ ((—1 lon—1({x1, 22, an ) \ {xi})) )

N
&b . .
— -1 ‘(prl({yl,le. .. /xN} \ {xz})) DxX1ONn D Z ((xl ‘xz) D (]/1 ‘ z))

= i=2

Suppose ¢n1(x) = ¢n1(y). Then we have

N

N
Y (<1 ona{x, - v\ {x)) @ x @ gf (v1 [ x:)

=2

N N
=Y (1 onaa{yxa, ani\{xh)) @ @ g@ (1 | xi).

1:

Put

gi(x) == on-1({x,x2,- -, an P\ {xi}), (2<i<N).



Inset games 11

Then g; is an animating function. Put

N N
flx) = g@ (—1[gi(x)) @x @ g@ (x |x).

Then f is an animating function and f(x1) = f(y1). Since f is bijective, we have x; = y.
This contradicts our assumption. Hence, we have ¢n 1(x) # ¢n1(y).
Casex € Py and y € P;: Put

N
flx):=x® Z{EB (x \xj) ®on(x), (x€Z).
=
Then f is animating and we have
N
W =ye X lf=) @ v, yez) 52)

i=1
by Lemma 2.8 (3). Since

() = (0
N

— (0 X; D Z%@ (x; ‘x]-) e (pN(x))
j=

= (0] f(x:)),

e Y (x]x) e <pN<x>)
j#i

we have

¢na(x) =08 Z@ (0| f(xi)) ® @n(x). (5.3)

Hence, by (5.2) and (5.3), we have ¢ 1(x) = f1(0). Therefore,
N

0= flpna(¥) = ona(0) & Y7 (pna(x) |x1) & on ().

=1

~

Since the first term (by (5.1)) and the last terms are nonnegative in the right hand side
and x;’s are distinct, there exists no i such that ¢x1(x) = x;.
Case x € Py and y € P;: Then we have

PN1(X) =21 > Y1 = oNna(y)-
Hence, we have ¢ 1(x) # ¢n1(y)- O
By Lemma 5.10, Lemma 5.11 and induction, we have

SGPN,l (X) = ¢N,1(X)f (X S PN,l)-
This proves Theorem 5.5.
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