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The Universality of the Resonance Arrangement
and its Betti Numbers
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Abstract. The resonance arrangement An is the arrangement of hyperplanes which
has all non-zero 0/1-vectors in Rn as normal vectors. It is the adjoint of the Braid
arrangement and is also called the all-subsets arrangement. The first result of this
article shows that any rational hyperplane arrangement is the minor of some large
enough resonance arrangement.

Its chambers appear as regions of polynomiality in algebraic geometry, as generalized
retarded functions in mathematical physics and as maximal unbalanced families that
have applications in economics. One way to compute the number of chambers of any
real arrangement is through the coefficients of its characteristic polynomial which are
called Betti numbers. We show that the Betti numbers of the resonance arrangement
are determined by a fixed combination of Stirling numbers of the second kind. Lastly,
we develop exact formulas for the first two non-trivial Betti numbers of the resonance
arrangement.

Keywords: matroids, resonance arrangement, all-subsets arrangement, maximal un-
balanced families, Betti numbers

1 Introduction

1.1 The Resonance Arrangement

The main object considered in this article is the resonance arrangement:

Definition 1. For a fixed integer n ≥ 1 we define the hyperplane arrangement An as the reso-
nance arrangement in Rn by setting An := {HI | ∅ 6= I ⊆ [n]}, where the hyperplanes HI
are defined by HI := {∑i∈I xi = 0} .

The term resonance arrangement was coined by Shadrin, Shapiro, and Vainshtein in
their study of double Hurwitz numbers stemming from algebraic geometry [21]. Billera,
Billey, Rhoades, and Tewari proved that the product of the defining linear equations
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Figure 1: The resonance arrangement A3 projected onto the hyperplane H{1,2,3}. There
are 16 chambers visible and another 16 antipodal chambers hidden. Thus, A3 has 32
chambers in total.

of An is Schur positive via a so-called Chern phletysm from representation theory [2,
4]. Recently, Gutekunst, Mészáros, and Petersen established a connection between the
resonance arrangement and the type A root polytope [13].

The arrangement An is also the adjoint of the braid arrangement [1, Section 6.3.12]. It
was studied under this name by Liu, Norledge, and Ocneanu in its relation to mathe-
matical physics [17]. The relevance of the resonance arrangement in physics was also
demonstrated by Early in his work on so-called plates, cf. [9].

In earlier work, the arrangement An was called (restricted) all-subsets arrangement by
Kamiya, Takemura, and Terao who established its relevance for applications in psycho-
metrics and economics [14, 15].

A first contribution of this article is a universality result of the resonance arrangement
for rational hyperplane arrangements:

Theorem 2. Let B be any hyperplane arrangement defined over Q. Then B is a minor of
An for some large enough n, that is B arises from An after a suitable sequence of restriction
and contraction steps. Equivalently, any matroid that is representable over Q is a minor of the
matroid underlying An for some large enough n.

The proof is constructive and the size of the required An depends on the size of the
entries in an integral representation of B.

1.2 Chambers of An

The chambers of An are the connected components of the complement of the hyperplanes
in An within Rn. We denote by Rn the number of chambers of the arrangement An. The
arrangement A3 for instance has 32 chambers as shown in Figure 1.
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These chambers appear in various contexts, such as quantum field theory where
these regions correspond to generalized retarded functions [10]. Cavalieri, Johnson, and
Markwig proved that the chambers ofAn are the domains of polynomiality of the double
Hurwitz number [7]. Subsequently, Gendron and Tahar demonstrated the significance
of the chambers of the resonance arrangement in geometric topology [12].

Billera, Tatch Moore, Dufort Moraites, Wang, and Williams observed that the cham-
bers of An are also in bijection with maximal unbalanced families of order n + 1. These are
systems of subsets of [n + 1] that are maximal under inclusion such that no convex com-
bination of their characteristic functions is constant [3]. Equivalently, the convex hull of
their characteristic functions viewed in the n + 1-dimensional hypercube does not meet
the main diagonal. Such families were independently studied by Björner as positive sum
systems [5].

The values of Rn are only known for n ≤ 8, see for instance [22, A034997]. There is
no exact formula known for Rn. The work of Odlyzko and Zuev [18, 24] together with
the recent one by Gutekunst, Mészáros, and Petersen [13] gives the bounds

n2 − 10n2/ ln(n)− n + log2(n + 1) < log2(Rn) < n2 − 1, (1.1)

which in turn yields the asymptotic behavior log2(Rn) ∼ n2. Deza, Pournin, and Rako-
tonarivo obtained the improved upper bound of log2(Rn) < n2 − 3n + 2 + log2(2n +
8) [8].

Due to a theorem of Zaslavsky the number of chambers of any arrangement over R

equals the sum of all Betti numbers of the arrangement [23]. The Betti numbers can be
defined via the characteristic polynomial of an arrangement:

Definition 3. For any arrangement of hyperplanes A in Fn for any field F its characteristic
polynomial χ(A; t) is defined to be

χ(A; t) := ∑
S⊆A

(−1)|S|tr(A)−r(S),

where for any subset S ⊆ A we set r(S) := codim∩H∈SH. The absolute value of the coefficient
of tn−i in the characteristic polynomial χ(A; t) is called i-th Betti number. One always has
b0(A) = 1 and b1(A) = |A|.

In the case of a complex arrangement of hyperplanes, the Betti numbers coincide
with the topological Betti numbers of the complement of the arrangement Cn \ (∪H∈AH)
with coefficients in Q, cf. [19, Chapter 5] for an overview of the topological study of
arrangement complements.

A formula for χ(An; t) would also yield a formula for Rn. Unfortunately, there is
also no such formula known for χ(An; t). In fact, the polynomial χ(An; t) itself is only
known for n ≤ 7 as computed in [14].

https://oeis.org/A034997
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The next result of this article proves that the Betti numbers bi(An) for any fixed i > 0
can be computed for all n > 0 from a fixed finite combination of Stirling numbers of
the second kind S(n, k) which count the number of partitions of n labeled objects into k
non-empty blocks. The proof is based on Brylawski’s broken circuit complex [6].

Theorem 4. There exist some positive integers ci,k for all i ≥ 0 and i + 1 ≤ k ≤ 2i such that for
all n ≥ 1,

bi(An) =
2i

∑
k=1

ci,kS(n + 1, k).

Moreover, the constants ci,k are bounded by ci,k ≤ (2i−1
k−1 )

(k−1)!
i! .

The first two trivial cases of this theorem are

b0(An) = S(n + 1, 1), b1(An) = S(n + 1, 2).

One can obtain exact formulas for the higher Betti numbers bi(An) from Theorem 4 if one
knows bi(An) for all 1 ≤ n ≤ 2i since the matrix of Stirling numbers (S(n, k))n,k=1,...,2i is
invertible. Unfortunately, this already fails for b3(An) since χ(An; t) is only known for
n ≤ 7.

Analyzing the triangles in the broken circuit in detail we obtain exact formulas for
the first two non-trivial coefficients of χ(An, t), namely b2(An) and b3(An), in terms of
Stirling numbers of the second kind. That is, we determine the exact constants c2,k and
c3,k for all relevant k.

Theorem 5. For any n ≥ 1 it holds that

(i) b2(An) =2S(n + 1, 3) + 3S(n + 1, 4),

=
1
2
(4n − 3n − 2n + 1) and

(ii) b3(An) =9S(n + 1, 4) + 80S(n + 1, 5) + 345S(n + 1, 6)
+ 840S(n + 1, 7) + 840S(n + 1, 8),

=
1
4!
(4 · 8n − 15 · 6n + 15 · 5n − 14 · 4n + 18 · 3n − 7 · 2n − 1).

Example 6. Using Theorem 5 we can compute χ(A3; t) as

χ(A3; t) = t3 − 7t2 + 15t− 9.

Thus, the above mentioned result by Zaslavsky again yields R3 = 1 + 7 + 15 + 9 = 32.

Remark 7. The formula for b2(An) in Theorem 5 (i) was also found earlier by Billera (personal
communication).
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This article is an extended abstract of the full article [16] and it is organized as fol-
lows. After reviewing necessary definitions of matroids and their minors in Section 2
we will prove Theorem 2 in Section 3. Subsequently, we state the necessary facts on
broken circuit complexes in Section 4 and prove Theorem 4 in Section 5. For the proof
of Theorem 5 we refer to the full article [16].
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2 Matroids and their Minors

In this section we review some basics of matroids and their minors. Details can be found
in [20].

Definition 8. A matroid M is a pair (E, I) where E is a finite ground set and I is a non-empty
family of subsets of E, called independent sets such that

(i) for all A′ ⊆ A ⊆ E if A ∈ I then A′ ∈ I and

(ii) if A, B ∈ I with |A| > |B| then there exists a ∈ A \ B such that B ∪ {a} ∈ I .

Given some set finite set E and an r × E-matrix A with entries in some field F we
obtain a matroid M(A) on the ground set E whose independent sets are the columns
of A that are linear independent. A matroid M is called representable over a field F if
there exists an r× E-matrix A such that M = M(A).

An arrangement of hyperplanes A also gives rise to a matroid by writing the coeffi-
cients of a linear equation for each H ∈ A as columns in a matrix and applying the above
construction. Similarly, we also get a matroid M(A) underlying an arrangement A with
ground set A whose independent set are precisely those whose hyperplanes intersect
with codimension equal to the cardinality of the subset.

Definition 9. Let M = (E, I) be a matroid and S ⊆ E. Then one defines:

1. The restriction of M to S, denoted M|S, is the matroid on the ground set S with indepen-
dent sets {I ∈ I | I ⊆ S}.
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2. Assume that S is independent in M. Then, the contraction of M by S, denoted M/S, is
the matroid on the ground set E \ S with independent sets {I ⊆ E \ S | I ∪ S ∈ I}.

A matroid N is called a minor of M if N arises from M after a finite sequence of restrictions and
contractions.

Minors play a central role in the theory of matroids. For instance, Geelen, Gerards
and Whittle announced a proof of Rota’s conjecture which asserts that matroid repre-
sentability over a finite field can be characterized by a finite list of excluded minors [11].

The restriction of a representable matroid to some subset S is again representable by
the same matrix after removing the columns that are not in S. The following lemma
establishes a similar connection for contractions of representable matroids. This also
motivates the term minor of a matroid as it corresponds to a minor of a matrix in the
representable case.

Lemma 10 ([20, Proposition 3.2.6]). Let E be some finite set and A an r× E matrix over a field
F. Suppose e ∈ E is the label of a non-zero column of A. Let A′ be the matrix arising from A
through row operations by pivoting on some non-zero element in the column e. Let A′/e be the
matrix A′ where one removes the row and column containing the unique non-zero entry in the
column e. Then,

M(A)/e = M(A′)/e = M(A′/e).

3 Universality of the Resonance Arrangement

Let M be a matroid of rank r and size n that is representable over Q. Thus after scaling,
we can assume that there is a r × n matrix A with entries in Z that represents M. Let
a1, . . . , an ∈ Zr be the column vectors of the matrix A. The vectors ai can be expressed as
a sum of positive and negative characteristic vectors. Given that such a representation is
usually not unique, we fix one choice of m+

i , m−i ∈N and Pi
j , Ni

k ⊆ [r] for all 1 ≤ j ≤ m+
i

and 1 ≤ k ≤ m−i such that

ai =
m+

i

∑
j=1

χPi
j
−

m−i

∑
k=1

χNi
k
. (3.1)

We work in the extended vector space

QN := Qr ×Qm−1 ×Qm+
1 ×Qm+

1 × · · · ×Qm−n ×Qm+
n ×Qm+

n ,

for some appropriate N ∈ N. Hence, the vectors a1, . . . , an naturally live in the first
factor Qr of QN. We fix the standard basis of QN as

e1, . . . , er, e1,−
1 , . . . , e1,−

m−1
, e1,+

1 , . . . , e1,+
m+

1
, e1,++

1 , . . . , e1,++
m+

1
, . . . .
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Now, we describe a construction which will be used in the proof in Theorem 2. To
this end, we define 0/1-vectors v1, . . . , vn which will eventually represent the matroid M
after contracting several other 0/1-vectors. We define for each 1 ≤ i ≤ n:

vi :=
m+

i

∑
j=1

ei,++
j +

m−i

∑
k=1

ei,−
k ,

ri,−
k :=χNi

k
+ ei,−

k for 1 ≤ k ≤ m−i ,

ri,+
j :=χPi

j
+ ei,+

j for 1 ≤ j ≤ m+
i ,

ri,++
j :=ei,+

j + ei,++
j for 1 ≤ j ≤ m+

i .

We collect these vectors in the sets V := {v1, . . . , vn} and

R := {ri,−
k , ri,+

j , ri,++
j | 1 ≤ i ≤ n, 1 ≤ k ≤ m−i and 1 ≤ j ≤ m+

i }.

Before presenting the proof of Theorem 2, we give an example of this construction.

Example 11. Consider the vectors a1 := (1,−2,−1)T and a2 := (−1, 0,−1)T in Z3. They can
be expressed as a1 = χ{1} − χ{2,3} − χ{2} and a2 = −χ{1,3}.

Thus, m−1 = 2, m+
1 = 1, m−2 = 1, and m+

2 = 0. The above construction yields the following
column vectors in Q8 depicted in the left matrix below. The matrix on the right arises from the
one on the left after suitable row operations as described below in the proof of Theorem 2.

v1 r1,−
1 r1,−

2 r1,+
1 r1,++

1 v2 r2,−
1

0 0 0 1 0 0 1
0 1 1 0 0 0 0
0 1 0 0 0 0 1
1 1 0 0 0 0 0
1 0 1 0 0 0 0
0 0 0 1 1 0 0
1 0 0 0 1 0 0
0 0 0 0 0 1 1



 



1 0 0 0 0 −1 0
−2 0 0 0 0 0 0
−1 0 0 0 0 −1 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
−1 0 0 1 0 0 0
1 0 0 0 1 0 0
0 0 0 0 0 1 1



. (3.2)

All columns apart from v1, v2 became standard basis vectors and removing those columns together
with all rows apart from the first three yields the matrix with columns a1, a2.

Proof of Theorem 2. First, we assemble the vectors in R and V to a matrix as in the matrix
on the left hand side of Equation (3.2).

Now, we perform row operations on this matrix to ensure that all columns corre-
sponding to vectors in R are standard basis vectors. To this end, we apply the following
steps for all 1 ≤ i ≤ n:
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1. We pivot on the entry in row ei,−
k and column ri,−

k for each 1 ≤ k ≤ m−i .

2. Lastly, we pivot on the entry in row ei,s
j and column ri,s

j for each 1 ≤ j ≤ m+
i and

each s ∈ {+,++}.

By construction and Equation (3.1), this procedure yields a matrix as on the right hand
side of Equation (3.2).

Therefore, we obtain the matrix A by removing all columns corresponding to vectors
in R and all rows apart from the first r ones. Hence, Lemma 10 implies that the ma-
troid M equals the matroid of the resonance arrangement AN restricted to V ∪ R and
contracted by R, that is M is a minor of the matroid of AN.

4 The Broken Circuit Complex

A tool to compute the Betti numbers of an arrangement is the broken circuit complex:

Definition 12. Let A be any arrangement and fix any linear order < on its hyperplanes. A
circuit of A is a minimally dependent subset. A broken circuit of A is a set C \ {H} where C is
a circuit and H is its largest element (in the ordering <). The broken circuit complex BC(A)
is defined by

BC(A) := {T ⊂ A | T contains no broken circuit}.

Its significance lies in the following result:

Theorem 13 ([6]). Let A be any arrangement in a vector space Fn for some field F with a fixed
linear order < on its hyperplanes. Then for any 1 ≤ i ≤ n it holds that

bi(A) = fi−1(BC(A)),

where fi is the f -vector of the broken circuit complex.

For the rest of the article we will study the broken circuit complex of the resonance
arrangement An. Each subset of I ⊆ [n] can be encoded as a binary number ∑i∈I 2i. This
gives rise to a natural ordering of the hyperplanes in An which we will use as to obtain
its broken circuit complex. In the subsequent proofs we will identify a hyperplane HA
with its defining subset A or its corresponding characteristic vector χA if no confusion
arises.

5 Proof of Theorem 4

Throughout this section we use the following notation: Taking all possible intersections
of the sets in an i-tuple (A1, . . . , Ai) of pairwise different non-empty subsets of [n] yields
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a partition π = {P1, . . . , Pk} of [n + 1] into k blocks with i + 1 ≤ k ≤ 2i (the block
containing n + 1 exactly contains all elements of [n] which are not contained in any of
the sets Aj for 1 ≤ j ≤ i). In other words, the partition π is the common refinement of
the two-block partitions (A1, [n + 1] \ A1), . . . , (Ai, [n + 1] \ Ai). We order the blocks in
the partition π by their binary representation as detailed above; in particular we have
n + 1 ∈ Pk.

Moreover, the tuple (A1, . . . , Ai) together with the partition π defined above deter-
mines a map

f : [k− 1]→ P([i]) \ {∅},
` 7→ {j ∈ [i] | P` ⊆ Aj},

Note that this map is injective since the sets in the tuple (A1, . . . , Ai) are assumed to be
pairwise different. Furthermore, there exists for every j ∈ [i] some ` ∈ [k− 1] such that
j ∈ f (`) since Aj is assumed to be non-empty. We call a map satisfying this last property
weakly surjective. Moreover, we call a map f : [k− 1] → P([i]) \ {∅} that is injective and
weakly surjective an (i, k)-prototype.

Conversely, given any partition π = {P1, . . . , Pk} of [n + 1] and a (i, k)-prototype f
we obtain an i-tuple (A1, . . . , Ai) which we denote by A f ,π by setting for 1 ≤ j ≤ i

Aj :=
⋃
`∈I f

j

P`,

where we define I f
j := {` ∈ [k− 1] | j ∈ f (`)} for 1 ≤ j ≤ i. Since f is weakly surjective

by definition of an (i, k)-prototype these sets Aj are non-empty for all 1 ≤ j ≤ i. We call
these sets the building blocks of f .

In total, this construction gives a bijection between i-tuples of pairwise different non-
empty subsets of [n] and pairs of (i, k)-prototypes together with partitions of [n + 1] into
k blocks with i + 1 ≤ k ≤ 2i.

Now the main observation is the following. Whether an i-tuple A f ,π is a broken
circuit depends only on the prototype f but not on the partition π:

Proposition 14. In the above notation, let f : [k − 1] → P([i]) \ {∅} be an (i, k)-prototype.
Assume there exists a partition π = {P1, . . . , Pk} of [n + 1] such that the i-tuple A f ,π =
(A1, . . . , Ai) is a broken circuit of An (in the order induced by the binary representation).

Let π̃ = {P̃1, . . . , P̃k} be any partition of [ñ + 1] for some ñ ≥ 1 into k non-empty parts.
Then the i-tuple A f ,π̃ = (Ã1, . . . , Ãi) is also a broken circuit of Añ.

Proof. By assumption, the tuple A f ,π = (A1, . . . , Ai) is a broken circuit. Thus, there exists
some C ⊆ [n] and λ1, . . . , λi ∈ R∗ such that

i

∑
j=1

λjχAj = χC, (5.1)
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and Aj < C for all 1 ≤ j ≤ i.
This implies that C is also a union of the first k− 1 parts of the partition π, that is there

exists some IC ⊆ [k− 1] such that C =
⋃
`∈IC

P`. Hence, we can rewrite Equation (5.1) as

i

∑
j=1

λj ∑
`∈I f

j

P` = ∑
`∈IC

P`, (5.2)

Subsequently, the fact Aj < C yields I f
j < IC for all 1 ≤ j ≤ i where I f

j are the building
blocks of the prototype f and the order is the one induced by the binary representation
of subsets of [k− 1].

Now consider the partition π̃ of [ñ + 1]. Using the building block IC of C we can
define a corresponding subset of [ñ] by setting C̃ :=

⋃
`∈IC

P̃`. Thus, Equation (5.2)
implies

i

∑
j=1

λj ∑
`∈I f

j

P̃` = ∑
`∈IC

P̃`.

Therefore, the tuple (Ã1, . . . , Ãi, C̃) is a circuit of Añ. Using the fact I f
j < IC we obtain

again Ãj < C̃ for all 1 ≤ j ≤ i which completes the proof that A f ,π̃ is a broken circuit
in Añ.

In light of Proposition 14 we can subdivide prototypes into two sets. We call those
which contain a broken circuit for some partition, and thus for all partitions, broken
prototypes. Otherwise, we call a prototype functional.

Proof of Theorem 4. As explained above, any i-tuple of subsets of [n] can be obtained
from an (i, k)-prototype and a partition π of [n + 1] into k blocks with i + 1 ≤ k ≤ 2i.
Theorem 13 then implies that we can compute the Betti number bi(An) for any i ≥ 0
through functional prototypes and partitions. We correct the fact that the latter yields
ordered tuples unlike the elements in the broken circuit complex by multiplying the Betti
numbers bi(An) by i! in the following computation:

bi(An)i! =|{X = (A1, . . . , Ai) | Aj ∈ P([n]) \ {∅}, Aj 6= Aj′ for all j 6= j′ and

X does not contain a broken circuit}|

=
2i

∑
k=i+1

|{A f ,π | f functional (i, k)-prototype and

π partition of [n + 1] into k blocks}|

=
2i

∑
k=i+1

|{functional (i, k)-prototypes}|S(n + 1, k).
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This already proves that for each i ≥ 0 the Betti number bi(An) can be computed by
a combination of Stirling numbers which is independent from n. This settles the first
claim of the theorem.

For the second claim, note that the above argument shows

ci,k =
|{functional (i, k)-prototypes}|

i!
,

for all i ≥ 1 and i + 1 ≤ k ≤ 2i. Bounding the number of functional (i, k)-prototypes by
the number of all injective functions f : [k− 1]→ P([i]) \ {∅} immediately yields for all
i ≥ 1 and i + 1 ≤ k ≤ 2i

ci,k ≤
(

2i − 1
k− 1

)
(k− 1)!

i!
.
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