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Abstract. We define a family of varieties Yn,λ,s generalizing the type A Springer fibers,
whose cohomology rings have the structure of an Sn-module. We give an explicit pre-
sentation for the cohomology ring H∗(Yn,λ,s; Q), and we find an affine paving of Yn,λ,s
that is in bijection with a collection of partial row-strict fillings of a partition shape.
We also prove that the top cohomology groups of Yn,λ,s give a generalization of the
type A Springer correspondence to the setting of induced Specht modules. Further-
more, the special case Yn,(1k),k of our variety gives a new geometric realization of the
representation corresponding to the expression in the Delta Conjecture when t = 0.

Résumé. Nous introduisons une famille de variétés Yn,λ,s qui généralise les fibres
de Springer pour SLn, dont les anneaux de cohomologie sont des représentations de
Sn. Nous fournissons une présentation explicite pour ces anneaux de cohomologie,
ainsi qu’une pavage d’affines en bijection avec une collection de tableaux strictement
décroissants dans les lignes. Nous démontrons aussi que les groupes de cohomologie
de degré maximum de Yn,λ,s sont les représentations induites des représentations irré-
ductibles de Sn; ceci généralise la correspondance de Springer. De plus, pour λ = 1k,
la variété Yn,(1k),k fournit une réalisation géométrique nouvelle de la représentation
correspondant á l’expression de la conjecture delta pour t = 0.

Keywords: Springer fiber, cohomology, affine paving, Specht module, symmetric func-
tion, ordered set partition

1 Introduction

In this article, we introduce a family of varieties generalizing the Springer fibers. We
find an explicit presentation of their cohomology rings generalizing the one given by
Tanisaki for the cohomology ring of a Springer fiber [14]. This presentation coincides
with the graded ring introduced and studied by the first author [7]. As a special case,
our construction gives a new compact geometric realization of the expression in the Delta
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Conjecture in the case t = 0. We also prove a version of the Springer correspondence for
this family of varieties, showing that their top cohomology groups have the Sn-module
structure of an induced Specht module.

In the seminal work [13, 12], T.A. Springer introduced a family of varieties associated
to any complete flag variety G/B, called Springer fibers, that have remarkable connec-
tions to the representation theory of the corresponding Weyl group. Springer proved
that although the Weyl group does not act on a Springer fiber, it does act nontrivially
on the cohomology ring of a Springer fiber. In type A, the Weyl group is the symmet-
ric group Sn. Springer proved that the highest degree nonzero cohomology group of a
Springer fiber is an irreducible representation of Sn, and every irreducible representation
appears this way. This is known as the Springer correspondence. We note that the Sn-action
discussed in this paper differs from Springer’s original construction by tensoring with
the sign representation.

The graded Sn-module type of the cohomology ring of a Springer fiber was dis-
covered by Hotta and Springer [10]. Under the Frobenius characteristic map Frob that
associates a symmetric function to each Sn-module, the cohomology ring of a Springer
fiber is sent to the modified Hall–Littlewood symmetric function

Frob(H∗(Bλ; Q); q) = H̃λ(x; q2), (1.1)

where the q on the left-hand side keeps track of the grading of the cohomology ring. The
cohomology ring of a Springer fiber was made explicit by De Concini–Procesi [4] and
Tanisaki [14], who found quotient ring presentations for H∗(Bλ; Q). These presentations
generalize Borel’s theorem that the cohomology of Fl(n) is the type A coinvariant ring.
A detailed analysis of the graded Frobenius characteristic of the cohomology ring was
then given by Garsia and Procesi [5], who were inspired by these presentations.

The Delta Conjecture of Haglund–Remmel–Wilson [8], recently proved (in the rise
case) by D’Adderio and Mellit [3] and by Blasiak–Haiman–Morse–Pun–Seelinger [1],
gives a combinatorial formula for a symmetric function, ∆′ek−1

en(q, t), coming from the
theory of Macdonald polynomials. Since ∆′ek−1

en(q, t) is conjectured to be Schur-positive,
there is much interest in a natural algebraic or geometric construction of a (bigraded) Sn-
module whose Frobenius characteristic is ∆′ek−1

en(q, t). Haglund–Rhoades–Shimozono [9]
did this in the case t = 0 by constructing a graded ring Rn,k with a suitable Sn-action
whose graded Frobenius characteristic is ∆′ek−1

en(q, 0) (after a minor twist). The ring Rn,k
is defined as

Rn,k :=
Q[x1, . . . , xn]

〈xk
1, . . . , xk

n, en, en−1, . . . , en−k+1〉
(1.2)

and specializes to the type A coinvariant ring in the case n = k.
Pawlowski and Rhoades [11] gave a parallel geometric interpretation by exhibiting a

variety whose cohomology ring is Rn,k. They defined the space of spanning line arrange-
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ments, n-tuples of lines in Ck that span Ck,

Xn,k := {(L1, . . . , Ln) ∈ (Pk−1)n : L1 + · · ·+ Ln = Ck}. (1.3)

Unlike Springer fibers, which are closed subvarieties of Fl(n), the space Xn,k is an open
subvariety of the product space (Pk−1)n, and hence Xn,k is smooth and noncompact in
general. Pawlowski and Rhoades proved that

H∗(Xn,k; Q) ∼= Rn,k, (1.4)

thus giving a connection between the expression in the Delta Conjecture at t = 0 and
geometry.

Since the Poincare series recording the graded dimensions of the ring Rn,k is not
symmetric, then by Poincare duality, any complex variety whose cohomology ring is
isomorphic to Rn,k must either be noncompact or singular. In this article, we introduce
a compact and singular variety Yn,(1k),k, similar to a Springer fiber, whose cohomology
ring is the Haglund–Rhoades–Shimozono ring Rn,k. The space Yn,(1k),k is constructed
as a closed subvariety of a partial flag variety, and it naturally embeds into an iterated
projective bundle whose cohomology ring is isomorphic to the cohomology ring of the
product space (Pk−1)n. Furthermore, the variety Yn,(1k),k fits into a larger family of
varieties Yn,λ,s, indexed by integers n and s and partitions λ of size k ≤ n, that contains
the Springer fiber Bλ as a special case.

As our main result, we prove an explicit presentation of the ring H∗(Yn,λ,s; Q) as a
quotient of a polynomial ring, generalizing Tanisaki’s presentation for the cohomology
ring of a Springer fiber [14]. This presentation coincides with the graded ring Rn,λ,s
recently introduced by the first author [7]. As a consequence, we see that the cohomology
ring of Yn,λ,s has a graded Sn-module structure generalizing the classical one in the
Springer fiber case.

One of our main tools for proving our presentation of the cohomology ring is an
affine paving of Yn,λ,s, which allows us to compute the ranks of the cohomology groups.
The cells in our affine paving are in bijection with ordered set partitions (B1| · · · |Bs) of
[n] such that |Bi| ≥ λi. Equivalently, the cells are in bijection with certain row strict
fillings whose shape contains λ. The irreducible components of the variety Yn,λ,s are the
cell closures corresponding to row strict fillings in which the restriction of the labeling
to λ standardizes to a standard Young tableau and such that all of the labels not in λ are
in the lowest row.

We use results of the first author to prove a generalization of the Springer correspon-
dence to the setting of induced Specht modules. We show that for general s, the top
cohomology group of Yn,λ,s is isomorphic as an Sn-module to the irreducible Sk-module
Sλ induced up to Sn.

In Section 2, we recall the Springer fibers and their connections to representation
theory. In Section 3, we define the variety Yn,λ,s and state our main theorem, which
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is an explicit presentation of the cohomology ring of Yn,λ,s which allows us to define
an Sn-action on the cohomology ring. In Section 4, we construct an affine paving of
Yn,λ,s, which is one of our main tools in proving the presentation of the cohomology
ring. In Section 5, we prove our generalization of the Springer correspondence, and we
characterize the irreducible components of the variety Yn,λ,s. Finally, in Section 6 we list
some open problems.

2 Springer fibers

Given a partition λ of n, let N be a n× n nilpotent matrix whose Jordan block sizes are
recorded by λ. The Springer fiber associated to λ is

Bλ := {V• ∈ Fl(n) : NVi ⊆ Vi for all i ≤ n}. (2.1)

Springer proved that although Sn does not act on Bλ, it does act on the cohomology
ring of Bλ. We note that in this article, the action on the cohomology ring we con-
sider differs from the one originally constructed by Springer by tensoring with the sign
representation.

A remarkable property of this action is that the top nonzero cohomology groups of
Bλ give a geometric construction of the irreducible Specht modules.

Theorem 2.1 (Springer). In Lie type A there is a bijection, known as the Springer correspon-
dence, between Springer fibers and the irreducible Sn-modules, up to isomorphism. Specifically,
the top nonzero cohomology group of Bλ as an Sn-module is

H2n(λ)(Bλ; Q) ∼= Sλ, (2.2)

where

n(λ) := ∑
i

(
λ′i
2

)
= dimC(Bλ). (2.3)

Hotta and Springer [10] proved that the map on cohomology induced by the inclusion
Bλ ⊆ Fl(n),

H∗(Fl(n))→ H∗(Bλ), (2.4)

is surjective. Hence, the cohomology ring H∗(Bλ) is generated by the cohomology
classes xi = −c1(Ṽi/Ṽi−1). Here, we are abusing notation and writing Ṽi for the re-
striction of this vector bundle to Bλ.

There is an explicit presentation of H∗(Bλ) as a quotient ring extending Borel’s the-
orem that the cohomology ring of Fl(n) is isomorphic to the type A coinvariant ring [4,
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14]. For all i ≤ n, let pi(λ) = λ′n + λ′n−1 + · · · + λ′n−i+1, where λ′i = 0 for all i > λ1.
Given S ⊆ {x1, . . . , xn}, let ed(S) be the sum of all square-free products of variables in S
of degree d. The ideal Iλ and quotient ring Rλ are defined as follows,

Iλ := 〈ed(S) : |S| ≥ d > |S| − p|S|(λ)〉, (2.5)

Rλ := Q[x1, . . . , xn]/Iλ. (2.6)

Tanisaki [14] proved that there is an isomorphism of graded rings

H∗(Bλ; Q) ∼= Rλ (2.7)

given by identifying the cohomology class xi with the variable xi. For example, when
λ = (2, 1), then p1(λ) = 0, p2(λ) = 1, and p3(λ) = 3. Therefore, Iλ is generated by ed(S)
where 3 ≥ d > 0 and |S| = 3, or 2 ≥ d > 1 and |S| = 2, so

I(2,1) = 〈e1(x1, x2, x3), e2(x1, x2, x3), e3(x1, x2, x3), e2(x1, x2), e2(x1, x3), e2(x2, x3)〉. (2.8)

and H∗(B(2,1); Q) ∼= Q[x1, x2, x3]/I(2,1).

3 The variety Yn,λ,s

The variety Yn,λ,s is defined as follows. Fix integers 0 ≤ k ≤ n (with n > 0), a partition
λ ` k, and an integer s ≥ `(λ). Define m = k + s(n − k), and let Fl1,...,n(C

m) be the
partial flag variety of ascending chains of subspaces V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ Cm with
dimC(Vi) = i for all i.

Fix a nilpotent endomorphism N of Cm whose matrix has Jordan type Λ = (n −
k + λ1, n − k + λ2, . . . , n − k + λs), where λi := 0 for i > `(λ), see Figure 1. Define
Cλ := im(Nn−k), which a subspace on which N has Jordan type λ. We define the
following variety, which is our main object of study

Yn,λ,s := {V• ∈ Fl1,...,n(C
m) : NVi ⊆ Vi−1 for all i, and Vn ⊇ Cλ}. (3.1)

Throughout the paper, we fix a basis of Cm,

{ fi,j : i ≤ s, j ≤ λi + n− k}, (3.2)

such that N fi,j = fi,j−1 for all j > 1 and N fi,1 = 0. The set of vectors { fi,j} is called
a generalized eigenbasis of N, and the span of the vectors fi,j for a fixed i is called a
generalized eigenspace of N. Note that Cλ = span{ fi,j : j ≤ λi}.

Example 3.1. When k = n, then it can be checked that Yn,λ,s = Bλ for any s ≥ `(λ), so these
varieties generalize the Springer fibers.
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Λ = (n− k + λ1, . . . , n− k + λs) =

λ

n− k

s

Figure 1: The partition Λ representing the Jordan type of N.

Example 3.2. Let n = 5, λ = (2, 1), and s = 3. Then the generalized eigenbasis for the nilpotent
operator N can be visualized with the following diagram, where we label the cells in the ith row
of Λ by the vectors fi,n−k+λi , . . . , fi,1.

f1,3 f1,2 f1,1

f2,2 f2,1

f1,4

f2,3

f3,2 f3,1

f1,4
N
−→ f1,3

N
−→ f1,2

N
−→ f1,1

N
−→ 0

f2,3
N
−→ f2,2

N
−→ f2,1

N
−→ 0

f3,2
N
−→ f3,1

N
−→ 0

Notably, Cλ = span{ f1,1, f1,2, f2,1}, the span of the vectors contained in the bolded cells with
partition shape (2, 1). Then Y5,(2,1),3 is the variety of partial flags V• = (V1, V2, V3, V4, V5) ∈
Fl1,2,3,4,5(C

9) such that the following conditions hold:

NVi ⊆ Vi−1 for i ≤ 5, (3.3)
V5 ⊇ span{ f1,1, f1,2, f2,1}. (3.4)

For example, the partial flag

〈 f1,1〉 ⊂ 〈 f1,1, f1,2〉 ⊂ 〈 f1,1, f1,2, f3,1〉 ⊂ 〈 f1,1, f1,2, f3,1, f2,1〉 ⊂ 〈 f1,1, f1,2, f3,1, f2,1, f1,3〉.

is in Y5,(2,1),3.

Our main result is an explicit presentation of the cohomology ring H∗(Yn,λ,s; Q),
which coincides with the quotient ring Rn,λ,s introduced and studied by the first author
in [7], which we describe next. Given n, λ, and s as above, define

In,λ,s := 〈ed(S) : |S| ≥ d > |S| − p|S|(λ)〉+ 〈xs
i : 1 ≤ i ≤ n〉, (3.5)

Rn,λ,s := Q[x1, . . . , xn]/In,λ,s. (3.6)

Example 3.3. For example, when n = 4, λ = (2, 1), and s = 2, then I4,(2,1),2 is generated by x2
i

for i = 1, 2, 3, 4 and the polynomials ed(S) for S ⊆ {x1, . . . , x4} such that

d = 2 and |S| = 4,
d = 4 and |S| = 4,

d = 3 and |S| = 4,
d = 3 and |S| = 3.
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We have

I4,(2,1),2 = 〈x2
1, x2

2, x2
3, x2

4, e2, e3, e4, e3(x1, x2, x3), e3(x1, x2, x4), e3(x1, x3, x4), e3(x2, x3, x4)〉
= 〈x2

1, x2
2, x2

3, x2
4, x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4,

x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4,
x1x2x3x4, x1x2x3, x1x2x4, x1x3x4, x2x3x4〉.

Observe, this is not a minimal set of generators for I4,(2,1),2, since the e3 and e4 generators are
redundant.

Theorem 3.4. We have an isomorphism of graded rings

Rn,λ,s
∼= H∗(Yn,λ,s; Q), (3.7)

given by identifying xi with −c1(Ṽi/Ṽi−1).

Corollary 3.5. We have an isomorphism of graded rings

Rn,k
∼= H∗(Yn,(1k),k; Q), (3.8)

given by identifying xi with −c1(Ṽi/Ṽi−1).

Since the ring Rn,λ,s is symmetric in the xi variables, then by Theorem 3.4, the ring
H∗(Yn,λ,s; Q) has the structure of a graded Sn-module where Sn acts by permuting the
classes −c1(Ṽi/Ṽi−1). This action is a generalization of Springer’s representation on the
cohomology ring of a Springer fiber up to tensoring with the sign representation. By
Theorem 3.4, the graded Frobenius characteristic formulas for Rn,λ,s in [7] also give the
graded Frobenius characteristic of H∗(Yn,λ,s; Q).

Example 3.6. The graded Frobenius characteristic of H∗(Y4,(2,1),2; Q) ∼= R4,(2,1),2 is

Frob(H∗(Y4,(2,1),2; Q); q) = s(4) + q(s(4) + s(3,1)) + q2(s(3,1) + s(2,2)) (3.9)

in terms of Schur functions.

4 Affine paving

In this section, we illustrate one of the key tools used in the proof of Theorem 3.4, that
of an affine paving. We show that Yn,λ,s has an affine paving, and we use it to find the
ranks of the cohomology groups of Yn,λ,s.

Given a complex algebraic variety X, an affine paving of X is a sequence of closed
subvarieties

X0 ⊆ X1 ⊆ · · · ⊆ Xm = X (4.1)
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of X such that Xi \Xi−1 =
⊔

j Ai,j, where Ai,j
∼= Cai,j as varieties for some integers ai,j ≥ 0.

The affine spaces Ai,j are called the cells of the affine paving. When X is compact in
the analytic topology, an affine paving gives us a way of computing the ranks of the
cohomology groups.

Lemma 4.1. Suppose X is a compact complex algebraic variety that has an affine paving. If
Xi \ Xi−1 =

⊔
i,j Ai,j is the decomposition of X into cells, then

H2k(X) ∼= Z#{(i,j) : dimC(Ai,j)=k} (4.2)

H2k+1(X) = 0, (4.3)

for all k ≥ 0.

In the case X = Yn,λ,s, there is a filtration by closed subvarieties Y1
n,λ,s ⊆ Y2

n,λ,s ⊆
· · · ⊆ Ys

n,λ,s, defined as follows. Observe that ker(N) = spanC{ f1,1, . . . , fs,1}. Let F• be
the complete flag of ker(N) given by Fi = spanC{ f1,1, . . . , fi,1}. For i ≤ s, define

Yi
n,λ,s := {V• ∈ Yn,λ,s : V1 ⊆ Fi}, (4.4)

where Y0
n,λ,s := ∅. Since V1 ∈ ker(N) for all V• ∈ Yn,λ,s, we have Ys

n,λ,s = Yn,λ,s, so the
subspaces Yi

n,λ,s form a filtration of Yn,λ,s by closed subvarieties. The filtration Y•n,λ,s is an
affine paving, which follows by the next lemma and induction on n.

Lemma 4.2. There is an isomorphism of varieties

Yi
n,λ,s \Yi−1

n,λ,s
∼=
{

Ci−1 ×Yn−1,λ(i),s if 1 ≤ i ≤ `(λ)

Ci−1 ×Yn−1,λ,s if `(λ) < i ≤ s.
(4.5)

Here, λ(i) is the partition obtained from λ by subtracting 1 from the ith part of λ and then sorting
the parts.

Let Tn,λ,s be the set of partial fillings of the Young diagram of Λ = (n− k + λ1, n−
k + λ2, . . . , n− k + λs) with the labels [n] (without repetition), such that the labels in each
row are right justified and decrease from left to right, and the ith row contains at least
λi many labels. See Figure 2 for an example with n = 5, λ = (2, 1), and s = 3.

Example 4.3. Taking our basis of Ck, the cell in Figure 2 is (under one convention for cell
indexing) two-dimensional and given by the flags of the form

〈 f11〉 ⊆ 〈 f11, f12〉 ⊆ 〈 f11, f12, f31 + α1 f21 + α2 f13〉
⊆ 〈 f11, f12, f31 + α2 f13, f21〉
⊆ 〈 f11, f21, f31, f21, f13〉,

where α1 and α2 are arbitrary complex parameters.
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2 1

4

5

3

Figure 2: An example of a filling in the set T5,(2,1),3, which indexes the cells in the affine
paving of Y5,(2,1),3. The cell corresponding to this filling is not of maximal dimension
because the entries outside λ are not all in the bottom row and the λ entries are not
column-strict.

Lemma 4.4. The cells in the affine paving, defined inductively from Lemma 4.2, are in bijection
with Tn,λ,s.

With appropriate choices of the isomorphisms in Lemma 4.2 and indexing of the
cells of Yn,λ,s, it is possible to realize the affine paving as a restriction of the Schubert
decomposition of Fl1,...,n(C

m).

Lemma 4.5. Under an appropriate total ordering of the basis { fi,j} of Cm, the Schubert decom-
position of Fl1,...,n(C

m) restricts to an affine paving of Yn,λ,s upon intersecting the Schubert cells
with Yn,λ,s. Precisely, the nonempty intersections of the form Cw ∩Yn,λ,s, where Cw is a Schubert
cell, are the cells in an affine paving of Yn,λ,s that respects the isomorphisms in Lemma 4.2.

Proof of Theorem 3.4 (Sketch). First, we use the affine paving combined with Lemma 4.1 to
show that the dimensions of the graded pieces of H∗(Yn,λ,s; Q) and Rn,λ,s are the same.
Second, we show that the main theorem holds in the case λ = ∅,

H∗(Yn,∅,s; Q) ∼= Rn,∅,s =
Q[x1, . . . , xn]

〈xs
1, . . . , xs

n〉
. (4.6)

Third, we exhibit a surjective map on cohomology

Q[x1, . . . , xn]

〈xs
1, . . . , xs

n〉
∼= H∗(Yn,∅,s; Q) � H∗(Yn,λ,s; Q). (4.7)

Finally, by combining a dimension counting argument and results of Brundan and Os-
trik [2] on Spaltenstein varieties, we show that the kernel of the surjection in (4.7) is
generated by the polynomials ed(S) ∈ In,λ,s.

5 A Springer correspondence for induced Specht modules

In this section, we characterize the irreducible components of Yn,λ,s. In the case s > `(λ),
the number of irreducible components is equal to (n

k) · #SYT(λ).
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Given a subspace W ⊆ Cm such that NW ⊆ W, then N(W ∩ Cλ) ⊆ W ∩ Cλ. The
nilpotent operator N thus induces a nilpotent operator on the quotient space Cλ/(W ∩
Cλ), which we denote by N|Cλ/(W∩Cλ).

Suppose T is a filling of the Young diagram of λ with a k-element subset of [n] that
decreases from left to right across each row. Let T|n,...,n−i+1 be the restriction of T to
the cells containing the labels n, . . . , n − i + 1. Furthermore, let sh(T|n,...,n−i+1) be the
partition obtained by recording the row sizes of T|n,...,n−i+1 and then sorting them to
a partition. Given such a filling T that also decreases down each column, define the
following subset of Yn,λ,s,

YT
n,λ,s = {V• ∈ Yn,λ,s : N|Cλ/(Vi∩Cλ) has Jordan type sh(T|n,...,n−i+1) for all i}. (5.1)

Lemma 5.1. Each subvariety YT
n,λ,s is an irreducible locally-closed union of cells from the affine

paving. If s > `(λ), then each YT
n,λ,s is nonempty. If s = `(λ), then YT

n,λ,s is nonempty if and
only if for all i, if T does not contain i as a label then the labels up to i− 1 fill at least one row of
λ. Furthermore, if YT

n,λ,s is nonempty, then

dimC(YT
n,λ,s) = n(λ) + (n− k)(s− 1). (5.2)

The YT
n,λ,s give a partition of Yn,λ,s as we consider all possible choices for T.

Theorem 5.2. The space Yn,λ,s is equidimensional of dimension n(λ) + (n − k)(s − 1). In
particular, the closed subvarieties YT

n,λ,s for which YT
n,λ,s is nonempty (as described in Lemma 5.1)

form a complete set of irreducible components. In the case s > `(λ), there are (n
k) · #SYT(λ)

many irreducible components.

For each cell in the affine paving, the filling T can be obtained from the partial filling
of Λ by restricting the labeling to the upper right copy of λ contained in Λ, as depicted
in Figure 1.

Example 5.3. For the filling in Figure 2, the corresponding filling of λ is

2 1
4

,

and the Jordan types of the operators N|Cλ/(Vi∩Cλ) for i = 1, 2, 3, 4, 5 are

⊃ ⊃ ⊃ ∅ ⊃ ∅.

Notice that the filling was not column-strict; accordingly, the row lengths corresponding to the
Jordan type of N|Cλ/(V2∩Cλ) are (0, 1) (corresponding to the entry 4 ∈ λ), but become (1, 0) after
sorting.
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In the case s > `(λ), the irreducible components are naturally indexed by Standard
Young Tableaux on (n − k) ∪ λ. This indexing of irreducible components extends to
a representation theory statement on the top cohomology group of Yn,λ,s, generalizing
Springer’s theorem that the top cohomology group of a Springer fiber is a Specht mod-
ule.

Theorem 5.4. Let d = dim(Yn,λ,s) = n(λ) + (n− k)(s− 1), and consider Sk as the subgroup
of Sn permuting the elements of [k]. For s > `(λ), we have an isomorphism of Sn-modules

H2d(Yn,λ,s; Q) ∼= Ind↑Sn
Sk

(Sλ). (5.3)

For s = `(λ), we have

H2d(Yn,λ,s; Q) ∼= SΛ/(n−k)s−1
, (5.4)

the Specht module of skew shape Λ/(n− k)s−1.

In the case of s > `(λ), the proof follows by combining Theorem 3.4 and the fact that,
in this case, the top degree component of Rn,λ,s is isomorphic to Ind↑Sn

Sk
(Sλ) [6, Corollary

3.3.15]. In the case of s = `(λ), the proof follows by combining Theorem 3.4 with the
formula [7, Theorem 5.13] for Frob(Rn,λ,s; q) and then using bijective techniques to show
that the top degree component of this symmetric function is the skew Schur function
sΛ/(n−k)s−1(x).

6 Future work

The Sn-module structure of the cohomology of a Springer fiber, H∗(Bλ; Q), has several
constructions. One construction involves utilizing the Grothendieck–Springer resolution
and intersection cohomology, and it is known that this action is the same as the one
defined by permuting the cohomology classes −c1(Ṽi/Ṽi−1).

Problem 6.1. Find a generalization of the Grothendieck–Springer resolution, and realize the Sn-
module structure on H∗(Yn,λ,s; Q) defined in this article as a specialization of an Sn-action on an
intersection cohomology complex.

Problem 6.2. Find a generalization of the family of varieties Yn,λ,s to other Lie types such that
the top cohomology groups gives an induced module analogue of the Springer correspondence in
those types.
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