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Abstract. Beaton, Owczarek and Xu (2019) studied generating functions of Kreweras
walks and of reverse Kreweras walks in the quarter plane, with interacting boundaries.
They proved that for the reverse Kreweras step set, the generating function is always
algebraic, and for the Kreweras step set, the generating function is always D-finite.
However, apart from the particular case where the interactions are symmetric in x
and y, they left open the question of whether the latter one is algebraic. Using com-
puter algebra tools, we confirm their intuition that the generating function of Kreweras
walks is not algebraic, apart from the particular case already identified.

Résumé. Beaton, Owczarek et Xu (2019) ont étudié les séries génératrices des marches
avec interactions de type Kreweras et Kreweras renversé dans le quart de plan. Pour
le modèle de Kreweras renversé, ils ont prouvé que la série génératrice est toujours
algébrique, et pour le modèle de Kreweras, que la série génératrice est toujours D-
finie. Cependant, mis à part le cas particulier où les interactions sont symétriques en
x et y, ils ont laissé ouverte la question de savoir si cette dernière est algébrique. En
utilisant du calcul formel, nous confirmons leur intuition que la série génératrice des
marches de Kreweras n’est jamais algébrique, mis à part le cas particulier déjà identifié.

Keywords: Enumerative combinatorics, generating functions, lattice paths, Kreweras
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1 Introduction

It is always interesting to know whether a generating function is D-finite, because D-
finiteness gives easy access to a lot of useful information about the series. It is also
interesting to know whether a D-finite series is algebraic, because algebraicity gives
access to even more useful information or makes more efficient algorithms applicable.
Every algebraic series is D-finite but not vice versa, and it is a notoriously difficult
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problem to decide for a given D-finite power series whether it is algebraic or not [16,
§4(g)]. There exists an algorithm for deciding whether a given linear differential equation
has only algebraic solutions [15]. This algorithm can be generalized in order to compute,
for a given linear differential operator L, another operator Lalg, whose solution space is
spanned by the algebraic solutions of L [14]. The operator Lalg can then be used to decide
if a specific solution y of L(y) = 0 is algebraic or transcendental. However, the algorithm
for computing Lalg is very expensive, and to our knowledge it was never implemented.

A popular and simple check is to inspect the asymptotic behaviour of the coefficient
sequence: if it has the form cφnnα with α ∈ Z<0, then the series is transcendental [6].
However, this condition is only necessary but not sufficient. The purpose of this paper is
to highlight a less popular condition which is also necessary but not sufficient, and which
can be tried in cases where the asymptotic test fails. The method consists in finding
(using computer algebra) a closed form expression of the input D-finite function, and in
proving (also using computer algebra) that the function has a logarithmic singularity.

Our method is an illustration of the guess-and-prove paradigm, which is classically
used to prove algebraicity [3]: one guesses an algebraic equation, then post-certifies it.
Transcendence is a more difficult task, as one needs to prove that no algebraic equation
exists. However, if one can still guess a differential equation, and solve it in explicit form,
then the explicit solution can lead to transcendence proofs. This is the methodology pro-
moted here. In order to facilitate its application to other examples, we include a detailed
description of the required computer algebra calculations for Maple and Mathematica1.

As a concrete example, we consider a power series that appears in a recent study of
restricted lattice walk models with interacting boundaries. A model is determined by a
step set S ⊆ {−1, 0, 1}2 \ {(0, 0)} and consists of walks in the quarter plane N2 starting
at (0, 0). For each step set S, Beaton et al. [1, 2] are interested in the generating func-
tions Q(a, b, c; x, y; t) ∈ Q[[a, b, c, x, y, t]], where [ahbvcuxkyltn]Q is the number of walks of
length n starting at (0, 0) ending at (k, l), with h visits of the horizontal axis (excluding
the origin), v visits of the vertical axis (excluding the origin), and u visits of the origin.
Among other things, they show that the generating function is algebraic for the step set
{ , , } (known as reverse Kreweras), and that the generating function is D-finite for
the step set { , , } (known as Kreweras). They conjecture that this latter series is
not algebraic, and this is what we will prove here. More precisely, we will show:

Theorem 1.1. Let Q(a, b, c; x, y; t) ∈ Q[a, b, c][[x, y, t]] be the generating function counting
Kreweras walks with interacting boundaries, restricted to the quarter plane. The generating
function Q(a, b, c; x, y; t) is not algebraic over Q(a, b, c, x, y, t).

Furthermore, for values a, b, c ∈ Q with c 6= 0, the generating function Q(a, b, c; x, y; t) ∈
Q[[x, y, t]] is algebraic over Q(x, y, t) if and only if a = b.

1Also available online: http://www.algebra.uni-linz.ac.at/research/kreweras-interacting
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2 Notations and the kernel equation

We first recall some notations used in this paper. Whenever possible, we follow the
notations used in [2]. Let R be an integral domain with fraction field K. We denote:

• R[t] the ring of polynomials in t with coefficients in R;

• K(t) the field of rational functions in t with coefficients in K, which is the fraction
field of R[t];

• R[t, 1/t] the ring of Laurent polynomials in t with coefficients in R;

• R[[t]] the ring of formal power series in t with coefficients in R.

Given f (t) ∈ K((t)), we denote by [tn] f the coefficient of tn in f (t), so that f (t) =

∑n∈Z([tn] f )tn. We denote by [t>] f the sum of the terms of f with positive exponents,
that is, [t>] f = ∑n∈Z>0

([tn] f )tn.
We denote by R[t]〈∂t〉 the Ore algebra of differential operators in t with polynomial

coefficients. It is a non-commutative ring, and it has a left-action on the rings above,
given by ∂t( f ) = ∂ f

∂t .
Those definitions can be iterated to extend them to multiple variables, and we group

together the brackets when applicable: for example R[[x, y]] is the ring of formal power
series in x, y with coefficients in R, and given f ∈ R[[x, y]], we denote by [x>y0] f the
sum of terms in f with positive degree in x and degree 0 in y.

For h, v, u, k, l, n ∈ Z, we denote by qh,v,u;k,l;n the number of walks of length n which:

• start at (0, 0) and end at (k, l);

• never leave the upper-right quadrant {(x, y) ∈ Z2 : x ≥ 0, y ≥ 0};
• visit the horizontal boundary (excluding the origin) {(x, y) ∈ Z2 : x > 0, y = 0}

exactly h times;

• visit the vertical boundary (excluding the origin) {(x, y) ∈ Z2 : x = 0, y > 0}
exactly v times;

• visit the origin u times (not counting the starting point).

The associated generating function Q(a, b, c; x, y; t) is defined as

Q(a, b, c; x, y; t) = ∑
n

tn ∑
k,l

xkyl ∑
h,v,u

qh,v,u;k,l;nahbvcu.

Note that, since there are only finitely many walks of a given length, for each n, the two
innermost sums define a polynomial. Hence Q(a, b, c; x, y; t) lives in Q[a, b, c, x, y][[t]] ⊂
Q[a, b, c][[x, y, t]]. For shortness, we shall write Q(x, y) := Q(a, b, c; x, y; t). In particular,
Q(0, 0) is the generating function counting interacting walks ending at (0, 0), Q(x, 0) is
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the generating function counting interacting walks ending on the horizontal axis and
Q(0, y) is the generating function counting interacting walks ending on the vertical axis.

Finally, we denote by Qi,j = Qi,j(a, b, c; t) := [xiyj]Q(x, y) ∈ Q[a, b, c][[t]] the generat-
ing function counting interacting walks ending at point (i, j). The coefficient of tn in Qi,j

is a polynomial in a, b, c, and its coefficient for the monomial ahbvcu is exactly qh,v,u;k,l;n.
The elements a, b, c are called weights associated respectively to the horizontal bound-

ary (excluding the origin), the vertical boundary (excluding the origin) and the origin.
Given a step set S ⊆ {−1, 0, 1}2 \ {(0, 0)}, the step generator S is

S(x, y) = ∑
(i,j)∈S

xiyj ∈ Q[x, 1/x, y, 1/y].

We denote by

• A(x, y) = ∑(i,−1)∈S xiy−1 the step generator for the steps going southwards;

• B(x, y) = ∑(−1,j)∈S x−1yj the step generator for the steps going westwards;

• G(x, y) = x−1y−1 if (−1,−1) ∈ S and 0 otherwise, the step generator for the steps
going south-westwards.

The kernel of the step set is K(x, y) = 1− tS(x, y) ∈ Q[t, x, 1/x, y, 1/y].
The kernel equation is a functional equation satisfied by the generating function

counting walks restricted to the quarter plane.

Theorem 2.1 ([2, Theorem 1]). For a lattice walk restricted to the quarter-plane, starting at the
origin, with weights a (resp. b) associated with vertices on the x-axis excluding the origin (resp.
the y-axis excluding the origin), and weight c associated with the origin, the generating function
Q(x, y) satisfies the following functional equation

K(x, y)Q(x, y) =
1
c
+

1
a
(a− 1− taA(x, y)) Q(x, 0) +

1
b
(b− 1− tbB(x, y)) Q(0, y)

+

(
1

abc
(ac + bc− ab− abc) + tG(x, y)

)
Q(0, 0). (2.1)

3 Main result and the power series Θ

We consider specifically the Kreweras step set S = {(1, 1), (−1, 0), (0,−1)}. By exhaus-
tive enumeration, the generating function Q(a, b, c; x, y; t) ∈ Q[a, b, c, x, y][[t]] starts

1 + xy t +
(

x2y2 + ax + by
)

t2 +
(

x3y3 + (a + 1)x2y + (b + 1)xy2 + ac + bc
)

t3 + · · · .

For instance, at length 3, the walk (0, 0) → (1, 1) → (2, 2) → (3, 3) corresponds to the
term a0b0c0x3y3t3 = x3y3t3, as it does not touch any of the axes after leaving the origin,
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while the walk (0, 0) → (1, 1) → (1, 0) → (0, 0), corresponds to a1b0c1t3x0y0 = act3,
as after leaving the origin it touches the positive horizontal axis once, it returns to the
origin once, but does not touch the positive vertical axis.

The main result of this paper is that Q is not algebraic (Theorem 1.1). In order to
prove it, we define

Θ = [x>y0]

(
(x− y)(x2y− 1)(xy2 − 1)

xyK(x, y)

)
, (3.1)

where K(x, y) = 1 − t
(
xy + x−1 + y−1). We will prove that Θ is not algebraic. The

connection between Θ and Q comes from the following lemma.

Lemma 3.1 ([2, Lemma 10]). There exist Laurent polynomials β, βx,0, β0,x, β0,0, β1,0, β2,0, β3,0 ∈
Q[t, 1/t, x, 1/x], such that

β + βx,0Q(x, 0) + β0,xQ(0, x) + β0,0Q(0, 0) + β1,0Q1,0 + β2,0Q2,0 + β3,0Q3,0

= t3 a− b
c

(ab− (ab− ac− bc + abc)Q(0, 0))Θ. (3.2)

Proof. It is a straightforward transposition of [2, Lemma 10], by observing that with the
notations therein, θ = t3 a−b

c abΘ and θ0,0 = t3 a−b
c (ab− ac− bc + abc)Θ.

4 Transcendence of Θ

For α, β, γ ∈ Q and −γ /∈N, the hypergeometric series 2F1
(

α, β
γ ; t

)
is defined as

2F1

(
α, β

γ
; t
)

:=
∞

∑
n=0

(α)n(β)n

(γ)n

tn

n!
∈ Q[[t]],

where (u)n denotes the Pochhammer symbol (u)n = u(u+ 1) · · · (u+ n− 1) for n ∈N. It
satisfies the differential equation

(
t2 − t

)
y′′ (t) + ((α + β + 1)t− γ) y′ (t) + αβ y (t) = 0.

Theorem 4.1. The power series Θ defined in (3.1) admits the following closed form representa-
tion:

Θ(t; x) = A1(t; x) + A2(t; x)
∫ t

0
A3(s; x)T(s; x)ds,

where

A0 =

√
1− 2t

x
− (4x3 − 1)

t2

x2 , A1 =
1

6xt3 −
x3 − 1
2x2t2 +

2− 3x3

6x3t
+

tx3 + 2t− x
6t3x2 A0,

A2 =
x2(x− tx3 − 2t)

3t3 A0, A3 =
1

(tx3 + 2t− x)2(4t2x3 − (x− t)2)A0
,

T = (3t− x)x 2F1

(
−1/3,−2/3

1
; 27t3

)
+ 4t(2tx3 + t− x) 2F1

(
−1/3, 1/3

2
; 27t3

)
.



6 A. Bostan, M. Kauers, and T. Verron

The power series A0, A1, A2 and A3 are algebraic, and the power series T is transcendental. In
particular, Θ is transcendental.

Proof. We prove that Θ is equal to C := A1 + A2
∫

A3T, in four steps:

1. use creative telescoping [5, 11] to obtain a differential operator Lct ∈ Q(x, t)〈∂t〉
annihilating Θ;

2. verify that Lct annihilates C;
3. find r ∈ N such that if s ∈ Q(x)[[t]] is a power series solution of Lct and s = 0

mod tr, then s = 0;
4. verify that Θ and C, both power series solution of Lct, are equal modulo tr and so

they are actually equal.

For the first step, define

Θ0(t; x, y) =
(x− y)(x2y− 1)(xy2 − 1)

xyK(x, y)
∈ Q(x, y, t)

so that Θ = [x>y0]Θ0. In order to bring the problem to a form suitable to creative
telescoping algorithms, we encode the coefficient extractions as residues. Extracting the
constant coefficient in y is immediate: for any F ∈ Q[x, 1/x, y, 1/y][[t]], as by definition,

[y0]F(t; x, y) = Resy=0

(
F(t; x, y)

y

)
∈ Q[x, 1/x][[t]].

For extracting the positive part, we follow [4, Theorem 3]: for any F ∈ Q[x, 1/x][[t]],

[x>]F(t; x) = Resz=0

[
1
z

F(t; z)
x
z

1− x
z

]
∈ Q[x][[t]].

So composing the two, we get

Θ(t; x) = Resz=0 Resy=0

[
1
yz

Θ0(t; z, y)
x
z

1− x
z

]
. (4.1)

An annihilator for this can now be computed using creative telescoping, for example,
using the Mathematica package HolonomicFunctions [10], with the following:

(* In Mathematica *)

<< "HolonomicFunctions.m"

Theta0 = (x-y)*(x^2*y-1)*(x*y^2-1)/(x*y*(1-t*(1/x+1/y+x*y)))

Theta0z = Theta0 /. x -> z

Lct = First[First[CreativeTelescoping[

First[CreativeTelescoping[Theta0z/z/y * (x/z)/(1-x/z),

Der[y], {Der[z],Der[t]}]],

Der[z], {Der[t]}]]]
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This yields an operator Lct ∈ Q(x, t)〈∂t〉 of order 6, which annihilates Θ.
Checking that Lct annihilates C is a straightforward computation with a computer

algebra software. For instance, in Maple, the following command evaluates to 0:

# In Maple

with(DEtools);

simplify(eval(diffop2de(Lct, [Dt,t], y(t)), y(t) = C));

For the last step, we need to look at a basis of power series solutions of Lct. Computer
algebra software can again be used to compute (truncations of) elements in such a basis.
For instance, this can be done with the following lines in Maple.

# In Maple

Order := 8;

sols := formal_sol(Lct,[Dt,t]);

# Keep only the power series solutions

sols := select(s -> type(series(s,t=0),'taylor'), sols);

The output shows that the set of power series solutions is a Q(x)-vector space of di-
mension 2 spanned, after a change of basis bringing the first terms to echelon form,
by

s0 = 1 + xt2 + t3 + O(t4),

s1 = t +
1− x3

x
t2 +

1
x2 t3 + O(t4).

So a power series solution of Lct is entirely determined by its coefficients of degree 0
and 1, and in particular knowing a power series modulo t2 is enough.

Finally, checking that the first two coefficients of C and Θ are equal is again a straight-
forward computation. For instance, again using Maple:

# In Maple

map(normal,series(C,t,5));

series(Theta,t,2);

returns the same result −x2 + O(t2). This allows to conclude that Θ = C.
For the second statement of the theorem, note that A0, A1, A2 and A3 are algebraic by

closure properties of algebraic functions. The proof of the fact that T is transcendental
combines human observation and computer algebra. First, observe that if T(t; x) was
algebraic, then by closure properties so would be T(t; 3t), which has only one hyperge-
ometric term, and thus H(t) = 2F1

(−1/3,1/3
2 ; t

)
would be algebraic. But it is straightfor-

ward to verify that this cannot be the case, either by a lookup in Schwarz’s classification
of algebraic 2F1’s [13], or simply by observing that the minimal-order linear differential
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equation
(
9t2 − 9t

)
H′′ (t) + (9t− 18) H′ (t)− H (t) = 0 of H has solutions which cannot

be algebraic because one of them has logarithms in its local expansion at 0.
Finally, it follows that Θ is also transcendental, again by closure properties: if Θ was

algebraic, so would be
∫ t

0 A3(s; x)T(s; x)ds, and so would be its derivative A3T, and so
would be T.

We now give some more explanation on the process we followed to find the closed
form proved above. The first step is to compute a small-order differential operator
annihilating Θ. It is possible, given the data of the series coefficients, to guess such
an operator Lg of order 4 (hence smaller in order than Lct), by using for instance the
guesser [9]:

(* In Mathematica, continuation of the previous calculations *)

<< "Guess.m"

Theta = Expand[x*Expand[1/x CoefficientList[Series[Theta0,{t,0,70}],t]]

/. (x^i_ /; i<0) -> 0 /. (y^i_ /; i!=0) -> 0];

Lg = GuessMinDE[Theta,TT[t]]

The output is an operator Lg ∈ Q(x, t)〈∂t〉 which is likely to annihilate Θ. We can
increase our trust in this operator by verifying that Lg right-divides Lct:

(* In Mathematica, continuation of the previous calculations *)

OreReduce[Lct,{ToOrePolynomial[Lg,TT[t]]}]

This line returns the right-remainder of Lct modulo Lg, which is 0 as expected.
At this point, we could also compute the quotient, and, examining its solutions sim-

ilarly to what was done in the proof of Theorem 4.1, prove that Lg annihilates Θ. But
this is not necessary: the constructed closed form will (by design) be annihilated by Lg,
so the fact that Lg is an annihilator of Θ is a consequence of the theorem.

As a next step, we compute a closed form solution C of Lg. The starting point is
to decompose Lg as the least common left multiple (LCLM) of two operators of smaller
order [7]:

# In Maple

L1, L3 := op(DFactorLCLM(Lg, [Dt,t]));

The output is a pair of two operators L1 of order 1, and L3 of order 3, such that
Lg = LCLM(L1, L3). Equivalently, in terms of solution spaces, this means that a basis of
solutions of Lg(y) = 0 is obtained by the union of the bases of L1 and L3, respectively.
The operator L1 admits a simple solution; this can be seen using the Maple command

dsolve(diffop2de(L1, [Dt,t], y(t)), y(t));
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which outputs
3 x3

t
+

3 x4

t2 −
2
t
+

3 x
t2 −

x2

t3 .

It remains to treat the operator L3. The starting point is to decompose it as the product
of two operators of smaller order [8]:

# In Maple

fac := DFactor(L3, [Dt,t]);

The output is a pair fac = [L2, S1] of two operators of order 2, respectively 1, such
that L3 = L2 S1. Now the differential equation L3(z) = 0 is equivalent to L2(y) = 0
and S1(z) = y. Hence, it remains to solve L2(y) = 0. This can be done by using the
algorithm in [12] and its Maple implementation provided by the authors2. Using the
command hypergeomdeg3, one gets a solution in terms of hypergeometric 2F1 functions:

SOL:=x/t^3/(t*x^3+2*t-x)/(4*t^2*x^3-t^2+2*t*x-x^2)*

((x-3*t)*x*hypergeom([-1/3, -2/3],[1],27*t^3)

-4*t*(2*t*x^3+t-x)*hypergeom([-1/3, 1/3],[2],27*t^3));

One can check that this is indeed a solution of L2; indeed, the simplification command

simplify(eval(diffop2de(fac[1], [Dt,t], y(t)), y(t) = SOL));

returns 0. Moreover, one can show that this solution coincides (locally at t = 0) with the
unique power series solution of L2. Finally, the solution of L3(z) = 0 can be found using

simplify(dsolve( diffop2de(fac[2], [Dt,t], z(t) ) = SOL, z(t)));

which yields

tx3 + 2t− x
t3

√
(4x3 − 1) t2 + 2tx− x2

(∫ SOL · t3

tx3 + 2t− x
1√

(4x3 − 1) t2 + 2tx− x2
dt + c

)
,

where SOL is the hypergeometric expression found above and c = c(x) is a constant
function in t, that is found by fitting initial terms of the power series expansions. Putting
pieces together yields the expression in the statement of Theorem 4.1.

Note that the method sketched above is rigorous in the sense that the closed form
solution of Lct found in this way is correct by construction. The alternative correctness
argument in the proof of the theorem is independent of how the closed form was found.

It is also worth noting that providing a closed form for Θ is somewhat more than just
proving its transcendence. If we were not interested in the hypergeometric expression,
we could prove the transcendence of Θ directly on the level of operators. For, the lclm

2https://www.math.fsu.edu/~vkunwar/hypergeomdeg3/hypergeomdeg3

https://www.math.fsu.edu/~vkunwar/hypergeomdeg3/hypergeomdeg3
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decomposition quoted above translates into a decomposition Θ = Θ1 + Θ3 where Θ1 is
a solution of L1 and Θ3 is a solution of L3. Since Θ1 (stated above) is rational, transcen-
dence of Θ is equivalent to transcendence of Θ3. Now assume that Θ3 is algebraic. Then
the factorization L3 = L2S1 implies that y := S1(Θ3) is algebraic as well, and that it is
a solution of L2. To conclude the argument, it suffices to observe that y 6= 0, that S1 is
irreducible, and that S1 has a logarithmic singularity.

5 Transcendence of Q

Theorem 5.1. Assume that a 6= b and c 6= 0. In particular, this is the case if a, b, c are
variables in the polynomial ring Q[a, b, c]. Then the power series Q(x, y), Q(x, 0) and Q(0, y)
are transcendental over Q(a, b, c, x, y, t).

Proof. First note that the algebraicity of the three series is equivalent: if Q(x, y) is alge-
braic, then so are its specializations Q(0, y) and Q(x, 0); and conversely, if, say, Q(0, y) is
algebraic, then by symmetry of the step set so is Q(x, 0), and by the kernel equation, so
is Q(x, y).

To reach a contradiction, assume that Q(x, y) is algebraic. Then, by taking the deriva-
tive along x and taking the value at x = y = 0, the power series Q1,0 is also algebraic.
Repeating the same process, Q2,0 and Q3,0 are algebraic. Recall that Q(0, 0) is algebraic [2,
Corollary 3]. So all in all, the left-hand side L of Equation (3.2) is algebraic.

If (a− b)
(

ab− (ab− ac− bc + abc)Q(0, 0)
)
6= 0, this would imply that

Θ =
c L

(a− b)
(

ab− (ab− ac− bc + abc)Q(0, 0)
)

t3

is also algebraic, which is a contradiction with Theorem 4.1.
Thus, (a − b)

(
ab − (ab − ac − bc + abc)Q(0, 0)

)
= 0. By assumption, a 6= b, so the

second factor has to be zero. Since Q(0, 0) = 1 + (a + b)ct3 + · · · , extracting coefficients
of t0 and t3 in this second factor yields abc = ac + bc and 0 = ab(a + b)c. Since c 6= 0,
these relations imply ab = a + b and 0 = ab(a + b), thus ab = a + b = 0, and finally
a = b = 0, which contradicts the assumption a 6= b.

6 Particular cases and additional remarks

If a = b, as observed in [2, Section 5.5], the right-hand side of Equation (3.2) vanishes,
and then the series Q(x, y) is algebraic. If c = 0, then in particular Q(0, 0) = 1, and
both sides of Equations (3.2) and (2.1) (after clearing out the denominator c) vanish. We
do not know if the power series Q(x, y) is algebraic or even D-finite in that case. With
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sample values of a, b, x, y and c = 0, we were not able to guess any algebraic, differential
or recurrence relation with the first 10 000 coefficients in t of the series Q(a, b, c; x, y; t).

The generating function Q(1, 1), which counts interacting walks regardless of their
ending point, is also of interest, besides Q(0, 0) and Q(x, y). Experimentally, this gen-
erating function appears to be algebraic: we could guess a polynomial3 P(a, b, c; t, u) ∈
F45007[a, b, c, t, u], with F45007 the finite field with 45007 elements, such that, for a large
number of values of (a, b, c) ∈ F3

45007, one has P(a, b, c; t, Q(a, b, c; 1, 1; t)) = 0 mod t2350.
The polynomial P has degree 92 in t, degree 24 in u, degree 60 in a and in b, and de-
gree 24 in c. In dense monomial form it has a size of more than 1GB. The next step
would be to lift the result to obtain a polynomial P ∈ Q[a, b, c, t, u], and to prove that
P(a, b, c; t, Q(a, b, c; 1, 1; t)) = 0. In principle, this is doable using (a variant of) the ap-
proach in [3].
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