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correspondence for Macdonald polynomials
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Abstract. We present a probabilistic generalization of the Robinson–Schensted corre-
spondence in which a permutation maps to several different pairs of standard Young
tableaux with nonzero probability. The probabilities depend on two parameters q and
t, and the correspondence gives a new proof of the squarefree part of the Cauchy iden-
tity for Macdonald polynomials. By specializing q and t in various ways, one recovers
both the row and column insertion versions of the Robinson–Schensted correspon-
dence, as well as several q- and t-deformations of row and column insertion which
have been introduced in recent years in connection with integrable probability.
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1 Introduction

The Robinson–Schensted (RS) correspondence is a bijection between permutations and
pairs of standard Young tableaux of the same shape. This bijection, along with its gener-
alization due to Knuth (RSK), has significant applications in combinatorics, representa-
tion theory, algebraic geometry, and probability. One of the most important features of
RSK is that it gives a bijective proof of the Cauchy identity

∏
i,j≥1

1
1− xiyj

= ∑
λ

sλ(x)sλ(y), (1.1)

where the sum is over all partitions, and sλ(z) denotes a Schur function in the variables
z = (z1, z2, . . .). In particular, the RS case of RSK gives a bijective proof of the identity

n! = ∑
λ`n

( fλ)
2, (1.2)

where the sum is over all partitions of n, and fλ is the number of standard Young
tableaux of shape λ; this identity arises from (1.1) by comparing the coefficients of the
squarefree monomial x1 · · · xny1 · · · yn on either side.
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In the past decade, several randomized versions of RS and RSK have been introduced
[2, 3, 4, 10, 11, 12]. In these versions, a permutation (or, for RSK, a nonnegative integer
matrix) has nonzero probability of mapping to several different pairs of tableaux. The
probabilities depend on a parameter q or t in [0, 1), and the algorithms give proofs of
generalized Cauchy identities for q-Whittaker or Hall–Littlewood symmetric functions.
These randomized insertion algorithms have applications to probabilistic models such
as the TASEP, ASEP, and stochastic six-vertex model [2, 10, 3], and to the asymptotics of
infinite matrices over a finite field [4].

In this abstract, we define a randomized generalization of RS which depends on two
parameters q and t. Our map is designed to give a new proof of the squarefree part of
the Cauchy identity for the Macdonald symmetric functions Pλ(x; q, t). The Pλ(x; q, t) are
“master” symmetric functions, in the sense that they specialize to many important fam-
ilies of symmetric functions (Schur, q-Whittaker, Hall–Littlewood, Jack). Similarly, our
randomized algorithm, which we call qRSt, specializes to many of the known variants
of RS, including the row and column insertion versions of ordinary RS, q-deformations
of row and column insertion [2, 11, 12], and a t-deformation of column insertion [4].

Another interesting specialization of qRSt comes from setting q = t. This specializa-
tion reduces the Macdonald functions to the Schur functions, but it does not remove the
randomness from our algorithm. Instead, it produces a one-parameter family of prob-
abilistic insertion algorithms which interpolate between row insertion (q = t → 0) and
column insertion (q = t → ∞). At the intermediate value q = t → 1, the probability
that any σ ∈ Sn inserts to a pair of standard Young tableaux of shape λ is equal to the
Plancherel measure of λ, and in fact each standard Young tableau of shape λ appears as
the insertion tableau with probability fλ/n!. We also obtain a pair of identities involving
hook-lengths and the numbers fλ (equations (5.2), (5.3)), which we believe are new.

This extended abstract is organized as follows. In §2, we present the notion of an
insertion algorithm from the perspective of up and down operators on Young’s lattice
and local growth rules. In §3, we discuss Macdonald polynomials and introduce (q, t)-
analogues of the up and down operators. In §4, we present our probabilistic insertion
algorithm, and in §5, we discuss some of its specializations. For further details, including
proofs of our results, we refer the reader to our paper [1].

Notation

We assume the reader is familiar with (skew) Young diagrams, standard and semistan-
dard Young tableaux (abbreviated SYT and SSYT, respectively), and Schur functions, as
defined, e.g., in [13, Ch. 7]. We draw Young diagrams in French notation. We write
SYT(λ) (resp., SSYT(λ)) for the set of standard (resp., semistandard) Young tableaux of
shape λ. We call a SSYT with no repeated entries a partial standard Young tableau. If T is
a SSYT, we denote by T(i) the shape of the subtableau consisting of entries at most i.
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2 Insertion algorithms via local growth rules

Young’s lattice is the partial order (Y,⊆) on the set of partitions defined by inclusion of
Young diagrams. For λ, µ ∈ Y, write µ l λ if µ ⊆ λ and |λ/µ| = 1, and define

D(λ) = {µ | µ l λ}, U (λ) = {ν | ν m λ}.

An inner corner of λ is a cell c ∈ λ such that λ/µ = {c} for some µ ∈ D(λ). An outer
corner of λ is a cell c 6∈ λ such that ν/λ = {c} for some ν ∈ U (λ). We will often identify
the elements of D(λ) and U (λ) with the corresponding inner and outer corners of λ.

Let QY be the Q-vector space with basis Y. The up operator U and down operator D are
linear maps on QY defined by Uλ = ∑ν∈U (λ) ν and Dλ = ∑µ∈D(λ) µ. These operators
satisfy the commutation relation

DU −UD = I, (2.1)

where I is the identity map. This relation immediately implies the identity

n! = ∑
λ`n

( fλ)
2. (2.2)

Indeed, a standard Young tableau of shape λ can be viewed as a saturated chain in
Young’s lattice from the empty partition to λ. This implies that the right-hand side
of (2.2) is equal to 〈DnUn∅, ∅〉, where 〈·, ·〉 is the inner product on QY defined by
〈λ, µ〉 = δλ,µ for λ, µ ∈ Y. On the other hand, a straightforward induction using the
commutation relation (2.1) shows that 〈DnUn∅, ∅〉 is equal to n!.

The relation (2.1) can be proved by reformulating it as the set of equations

|U (λ)| = |D(λ)|+ 1 for all λ,
|U (λ) ∩ U (ρ)| = |D(λ) ∩D(ρ)| for λ 6= ρ.

It turns out to be quite fruitful to make the proofs of these equations explicitly bijective.
For λ 6= ρ, this is uninteresting, since either D(λ) ∩D(ρ) = {λ ∩ ρ} and U (λ) ∩ U (ρ) =
{λ ∪ ρ}, or both of these intersections are empty. For the equation |U (λ)| = |D(λ)|+ 1,
set D∗(λ) = D(λ) ∪ {λ}, and choose, for each λ, a bijection

Fλ : D∗(λ)→ U (λ).

Two choices for Fλ are particularly natural: the row insertion bijection Frow
λ , and the column

insertion bijection Fcol
λ . The bijection Frow

λ sends λ to the outer corner in the first row of λ,
and the inner corner in row i to the outer corner in row i + 1; Fcol

λ sends λ to the outer
corner in the first column of λ, and the inner corner in column i to the outer corner in
column i + 1. Figure 1 illustrates these maps.
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Frow
λ Fcol

λ

Figure 1: The Young diagram of the partition λ = (7, 5, 5, 2, 1), with inner corners
colored red and outer corners colored blue. The arrows depict the bijections Frow

λ and
Fcol

λ . In both cases, the outer corner with no arrow pointing to it is the image of λ.

We call a collection of bijections F• = {Fλ | λ ∈ Y} a set of local growth rules. Each set
of local growth rules F• determines a bijection

RSF• : Sn →
⊔

λ`n

SYT(λ)× SYT(λ).

The bijection RSF• is best understood using the formalism of Fomin’s growth diagrams
[6]. This is explained in detail in [1, §2.3]. However, since it would take too much space
to introduce growth diagrams here, we instead describe RSF• as an insertion algorithm.

Definition 2.1. Let F• be a set of local growth rules. Let T be a partial standard Young
tableau, and k a number which is not an entry of T. Define the F•-insertion of k into T,

denoted T F•←− k, as follows:

• Initial insertion step: Place k in the outer corner of T(k) corresponding to the
partition FT(k)(T(k)) ∈ U (T(k)). If this cell is occupied in T by an entry k′ > k, the
entry k′ is displaced. Otherwise, the process terminates.

• Bumping step(s): If an entry z of T is displaced by a smaller number, place z in
the outer corner of T(z) corresponding to FT(z)(T(z−1)) ∈ U (T(z)). If z displaces an
entry z′ > z, repeat this step for z′. Otherwise, the process terminates.

To compute RSF• : σ 7→ (P, Q), write σ = σ1 · · · σn in one-line notation. Set P0 = ∅,

and recursively define Pi = Pi−1
F•←− σi for i = 1, . . . , n. The insertion tableau P is the

standard Young tableau Pn obtained at the end of this process. The recording tableau Q is
the standard Young tableau such that Q(i) is the shape of Pi for each i; in other words, Q
contains an i in the cell which was added to Pi−1 by the insertion of σi.

The special case RSFrow• is the row insertion version of RS (as defined in, e.g., [13, Ch.
7.11]): each entry of σ is initially inserted into the first row, and each displaced number
is bumped to the next row. Similarly, RSFcol•

is the column insertion version of RS. It
follows easily from the perspective of growth diagrams that each RSF• is a bijection, and
moreover, that RSF•(σ) = (P, Q) ⇐⇒ RSF•(σ

−1) = (Q, P).
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3 Macdonald polynomials

3.1 Monomial expansion of Macdonald polynomials

The Macdonald symmetric functions Pλ(x; q, t) and Qλ(x; q, t) are two families of symmetric
functions1 in variables x = (x1, x2, . . .), with coefficients in the field Q(q, t) of rational
functions in q and t. Both Pλ(x; q, t) and Qλ(x; q, t) specialize to the Schur function sλ(x)
when q = t. Macdonald originally defined the Pλ and Qλ rather indirectly by a linear
algebraic criterion, and then he derived explicit formulas for the monomial expansions of
Pλ and Qλ as weighted sums over semistandard Young tableaux of shape λ, generalizing
the combinatorial formula for sλ. We will take the somewhat unusual perspective of
viewing these monomial expansions as the definition of the Macdonald polynomials. To
describe the expansions, we need some notation.

For a cell c ∈ λ, define its arm-length aλ(c) (resp., leg-length `λ(c)) to be the number
of cells in the Young diagram of λ that are strictly to the right of (resp., strictly above) c,
and define its hook-length by hλ(c) = aλ(c) + `λ(c) + 1. For example, the Young diagram
of λ = (8, 6, 3, 3, 1) is shown below. The cell c has aλ(c) = 6, `λ(c) = 3, and hλ(c) = 10.

c aλ(c)

`λ(c)

For c ∈ λ, define bλ(c) = [hλ(c)]`

[hλ(c)]a
, where [hλ(c)]` = 1− qaλ(c)t`λ(c)+1 and [hλ(c)]a =

1− qaλ(c)+1t`λ(c) are two different (q, t)-analogues of the hook-length hλ(c). For µ ⊆ λ,
let Rλ/µ (resp., Cλ/µ) be the set of all cells of µ which are in a row (resp., column)
containing a cell of λ/µ, and define2

ψλ/µ(q, t) = ∏
c∈Rλ/µ−Cλ/µ

bµ(c)
bλ(c)

, ϕλ/µ(q, t) = ∏
c∈λ/µ

bλ(c) ∏
c∈Cλ/µ

bλ(c)
bµ(c)

.

For a semistandard Young tableau T, define

ψT(q, t) = ∏
i≥1

ψT(i)/T(i−1)(q, t), ϕT(q, t) = ∏
i≥1

ϕT(i)/T(i−1)(q, t),

and let xT = x#{1’s in T}
1 x#{2’s in T}

2 · · · .

Theorem 3.1 ([9, Ch. VI (7.13, 7.13′)]). The Macdonald polynomials have monomial expansions

Pλ(x; q, t) = ∑
T∈SSYT(λ)

ψT(q, t)xT, Qλ(x; q, t) = ∑
T∈SSYT(λ)

ϕT(q, t)xT.

1We refer to Pλ and Qλ as Macdonald polynomials, even though they are not actually polynomials.
2In [9], Rλ/µ and Cλ/µ are defined to include the cells in λ/µ, so that ϕλ/µ is just a product over Cλ/µ.
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3.2 The generalized Cauchy identity

Using the linear algebraic definition of the Macdonald polynomials, Macdonald proved
the following generalization of the classical Cauchy identity (1.1).

Theorem 3.2 ([9, Ch. VI (4.13)]). For x = (x1, x2, . . .) and y = (y1, y2, . . .), we have

∏
i,j≥1

(1− txiyj)(1− qtxiyj)(1− q2txiyj) · · ·
(1− qxiyj)(1− q2xiyj)(1− q3xiyj) · · ·

= ∑
λ

Pλ(x; q, t)Qλ(y; q, t). (3.1)

In this abstract we are interested, as in the discussion of the Schur case in §2, in the
coefficients of the squarefree monomial x1 · · · xny1 · · · yn on either side of (3.1). Using
the monomial expansions of Pλ and Qλ on the right-hand side, we obtain the identity

(1− t)n

(1− q)n n! = ∑
λ`n

∑
P,Q

ψP(q, t)ϕQ(q, t), (3.2)

where the inner sum is over pairs of standard Young tableaux of shape λ. Note that since
bλ(c) = 1 when q = t, this formula reduces to (1.2) in the Schur specialization q = t.

The goal of this abstract is to give a direct proof of (3.2), taking the monomial expan-
sions of Theorem 3.1 as the definition of Pλ and Qλ. To this end, define (q, t)-analogues
of the up and down operators on Young’s lattice by

Uq,tλ = ∑
ν∈U (λ)

ψν/λ(q, t) ν, Dq,tλ = ∑
µ∈D(λ)

ϕλ/µ(q, t) µ.

It is clear that the right-hand side of (3.2) is equal to 〈Dn
q,tU

n
q,t∅, ∅〉. Thus, (3.2) can be

deduced by induction on n from the following commutation relation.

Theorem 3.3. The (q, t)-up and down operators satisfy the commutation relation

Dq,tUq,t −Uq,tDq,t =
1− t
1− q

I.

Reasoning as in §2, it is straightforward to reduce the proof of this commutation
relation to the proof of the identity

∑
ν∈U (λ)

ψν/λ(q, t)ϕν/λ(q, t) =
1− t
1− q

+ ∑
µ∈D(λ)

ψλ/µ(q, t)ϕλ/µ(q, t) (3.3)

for each partition λ. In contrast to the situation in §2, however, (3.3) cannot be proved by
a bijection Fλ : D∗(λ)→ U (λ) (this can be seen in any example, the simplest of which is
λ = (1)). Instead, we will “probabilistically superimpose” all the possible bijections Fλ.

Remark 3.4. It is possible to derive Theorem 3.3 from the generalized Cauchy identity
(3.1). Our philosophy, however, is that an explicit probabilistic proof of Theorem 3.3, and
the resulting probabilistic insertion algorithm, is desirable for its own sake.
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4 Definition of qRSt

4.1 Probabilistic bijections

The following definition is due to Bufetov and Petrov [5], although they use the name
“bijectivization.” This notion also plays an important role in [3].

Definition 4.1. Let X and Y be finite sets equipped with weight functions ω : X → k,
ω : Y → k, where k is a field. A probabilistic bijection from (X, ω) to (Y, ω) is a pair of
maps P ,P : X×Y → k satisfying

1. For each x ∈ X, ∑
y∈Y
P(x, y) = 1, and for each y ∈ Y, ∑

x∈X
P(x, y) = 1.

2. For each x ∈ X and y ∈ Y, ω(x)P(x, y) = P(x, y)ω(y).

We will write P(x → y) for P(x, y) and P(x ← y) for P(x, y), and think of P(x → y) as
the probability of moving from x to y, and P(x ← y) as the probability of moving from
y to x. We find this terminology convenient even though we do not require that these
expressions lie in [0, 1], or even that they be real-valued.

It is easy to see that a probabilistic bijection from (X, ω) to (Y, ω) proves the identity

∑
x∈X

ω(x) = ∑
y∈Y

ω(y).

4.2 A probabilistic bijection between (D∗(λ), ωλ) and (U (λ), ωλ)

Define weight functions ωλ : D∗(λ)→ Q(q, t) and ωλ : U (λ)→ Q(q, t) by

ωλ(µ) =


1 if µ = λ

∏
c∈Rλ/µ

bµ(c)
bλ(c)

∏
c∈Cλ/µ

bλ(c)
bµ(c)

if µ ∈ D(λ),
ωλ(ν) = ∏

c∈Rν/λ

bλ(c)
bν(c)

∏
c∈Cν/λ

bν(c)
bλ(c)

.

Using this notation, equation (3.3) becomes (after dividing both sides by 1−t
1−q )

∑
µ∈D∗(λ)

ωλ(µ) = ∑
ν∈U (λ)

ωλ(ν). (4.1)

We will prove (4.1) by giving a probabilistic bijection Pλ,Pλ from (D∗(λ), ωλ) to (U (λ), ωλ).
The key to defining the probabilities Pλ and Pλ is to split the weights ωλ(µ) and

ωλ(ν) into two pieces. For partitions ρ l κ, define

ακ/ρ = ∏
c∈Rκ/ρ

[hρ(c)]`

[hκ(c)]`
∏

c∈Cκ/ρ

[hρ(c)]a

[hκ(c)]a
, ακ/ρ = ∏

c∈Rκ/ρ

[hρ(c)]a

[hκ(c)]a
∏

c∈Cκ/ρ

[hρ(c)]`

[hκ(c)]`
.
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Since bκ(c) =
[hκ(c)]`

[hκ(c)]a
, we see immediately that for µ ∈ D(λ) and ν ∈ U (λ), we have

ωλ(µ) =
αλ/µ

αλ/µ
, ωλ(ν) =

αν/λ

αν/λ
. (4.2)

Definition 4.2. For µ ∈ D∗(λ) and ν ∈ U (λ), define

Pλ(µ→ ν) =


trν−1αν/λ if µ = λ

trν−rµ−1 αν/λ

αλ/µ
ην/λ/µ if µ ∈ D(λ),

Pλ(µ← ν) =


trν−1αν/λ if µ = λ

trν−rµ−1 αν/λ

αλ/µ
ην/λ/µ if µ ∈ D(λ),

where

ην/λ/µ =
(1− q)(1− t)

(1− qcµ−cν trν−rµ)(1− qcµ−cν+1trν−rµ−1)
,

and the cell ν/λ (resp., λ/µ) is located in row rν and column cν (resp., row rµ and
column cµ).

Example 4.3. Suppose λ = (hv) is a rectangle of width h and height v. In this case,
D(λ) consists of the partition µ = (hv−1, h− 1), and U (λ) consists of the two partitions
ν1 = (h + 1, hv−1) and ν2 = (hv, 1). One computes

Pλ(λ→ ν1) =
1− tv

1− qhtv Pλ(µ→ ν1) = qtv−1 1− qh−1t
1− qhtv

Pλ(λ→ ν2) = tv 1− qh

1− qhtv Pλ(µ→ ν2) =
1− qtv−1

1− qhtv .

Theorem 4.4.

1. For each µ ∈ D∗(λ) (resp., ν ∈ U (λ)), we have

∑
ν∈U (λ)

Pλ(µ→ ν) = 1 (resp., ∑
µ∈D∗(λ)

Pλ(µ← ν) = 1).

2. For µ ∈ D∗(λ) and ν ∈ U (λ), we have ωλ(µ)Pλ(µ→ ν) = Pλ(µ← ν)ωλ(ν).

Thus, the expressions Pλ and Pλ define a probabilistic bijection from (D∗(λ), ωλ) to (U (λ), ωλ).

The second part of this result follows immediately from (4.2). The first part is proved
by expressing the probabilities more explicitly in terms of a set of parameters associated
to λ, and then using Lagrange interpolation (see [1, §4.5] for details).

Remark 4.5. The expressions Pλ(µ→ ν) and Pλ(µ← ν) take values in [0, 1] when q, t ∈
[0, 1) or q, t ∈ (1, ∞). We believe this provides justification for calling these expressions
probabilities.
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4.3 Probabilistic insertion

We now view the probabilities Pλ as a set of (probabilistic) local growth rules, and define
the qRSt algorithm analogously to the deterministic insertion algorithms RSF• in §2.

Definition 4.6. Let T be a partial standard Young tableau, and k a number which is not

an entry of T. The (q, t)-Robinson–Schensted insertion of k into T, denoted T
qRSt←−− k, is a

probability distribution on partial SYTs, which is computed as follows:

• Initial insertion step: For each ν ∈ U (T(k)), place k in the cell ν/T(k) with proba-
bility PT(k)(T(k) → ν).

• Bumping step(s): Suppose an entry z of T is displaced by a smaller number. For
each ν ∈ U (T(z)), place z in the cell ν/T(z) with probability PT(z)(T(z−1) → ν).

In other words, the probability that (T
qRSt←−− k) = T′ is the sum of the probabilities of all

“insertion paths” that produce T′.
The (q, t)-Robinson–Schensted (qRSt) correspondence associates to each σ ∈ Sn a proba-

bility distribution PqRSt(σ→ P, Q) on pairs of SYTs of the same shape, where PqRSt(σ→
P, Q) is the sum of the probabilities of all ways of successively inserting σ1, . . . , σn using
the above procedure, starting with the empty tableau, such that the end result is P, and
the growth at each step is recorded by Q.

As in the case of the bijections RSF• , Fomin’s growth diagrams give an elegant way
of defining the probabilities PqRSt, as well as the “backward” or “inverse” probabili-
ties P qRSt. This perspective leads to a straightforward proof that PqRSt,P qRSt give a
probabilistic bijection between the weighted sets of permutations and pairs of standard
Young tableaux of the same shape (with weight functions (1−t)n

(1−q)n and ψP(q, t)ϕQ(q, t),
respectively). The growth diagram point of view also makes it clear that qRSt enjoys the
symmetry property

PqRSt(σ→ P, Q) = PqRSt(σ
−1 → Q, P).

The details appear in [1, §4.6].

Example 4.7. We compute the probability distribution PqRSt(σ→ P, Q) for σ = 312 ∈ S3.
The insertion of 3 into the empty tableau produces 3 . When 1 is inserted into 3 , the 1
displaces the 3, and the bumping of the 3 produces

1 3 with probability P(1)(∅→ (2)) = q(1−t)
1−qt

1
3 with probability P(1)(∅→ (1, 1)) = 1−q

1−qt .
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(The expressions for the probabilities come from Example 4.3.) When 2 is inserted into
1 3 , it either displaces the 3, or goes into the second row. In the former case, the 3

either remains in the first row, or moves to the second row. This results in

1 2 3 with probability P(1)((1)→ (2))P(2)((1)→ (3)) = 1−t
1−qt

q(1−qt)
1−q2t

1 2
3 with probability P(1)((1)→ (2))P(2)((1)→ (2, 1)) = 1−t

1−qt
1−q

1−q2t

1 3
2 with probability P(1)((1)→ (1, 1)) = t(1−q)

1−qt .

The insertion of 2 into 1
3 is computed similarly. The end result is the probability distri-

bution shown below.

P 1 2 3 1 2
3

1 3
2

1 2
3

1 3
2

1
2
3

Q 1 2 3 1 2
3

1 2
3

1 3
2

1 3
2

1
2
3

q2(1−t)2

(1−qt)(1−q2t)
q(1−q)(1−t)2

(1−qt)2(1−q2t)
qt(1−q)(1−t)

(1−qt)2
(1−q)(1−t)
(1−qt)2

qt2(1−q)2(1−t)
(1−qt)2(1−qt2)

t(1−q)2

(1−qt)(1−qt2)

5 Specializations of qRSt

Figure 2 summarizes a number of specializations of qRSt. The reader may investigate
these in Example 4.7. Here we will focus on the q = t specialization. This specialization
gives rise to a one-parameter family of probabilistic bijections between the (trivially)
weighted sets (Sn, 1) and (

⊔
λ`n SYT(λ)× SYT(λ), 1), which contains both the row and

column insertion versions of RS (q = t = 0 and q = t→ ∞, respectively). By Remark 4.5,
each nonnegative value of the parameter gives rise to a probabilistic bijection consisting
of actual probabilities. The value q = t→ 1 is particularly interesting.

Proposition 5.1. Let P̃λ denote the q = t→ 1 specialization of Pλ (and of Pλ). We have

P̃λ(λ→ ν) =
Hλ

Hν
, P̃λ(µ→ ν) =

H2
λ

HµHν

1
hλ(cµ,ν)2

for µ ∈ D(λ) and ν ∈ U (λ). Here Hκ = ∏c∈κ hκ(c) is the product of the hook-lengths of κ, and
cµ,ν is the unique cell in λ which is in Rν/λ ∩ Cλ/µ or Cν/λ ∩Rλ/µ.
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qRSt

t-RS
(row insertion)

q-RS
(row insertion)

[2, 10]

q-RS
(column insertion)

[11, 12, 10]

t-RS
(column insertion)

[4, 3]

q = t

t→ ∞, q→ q−1 q→ ∞, t→ t−1t→ 0q→ 0

q→ 1
q→ 0 q→ ∞

t→ 0 q→ 0 q→ 0 t→ 0

RS (row insertion) RS (column insertion)

q-Plancherel measure
(for σ = id)

Plancherel measure
(for all permutations σ)

Figure 2: Specializations of qRSt. The color indicates the corresponding specializa-
tion of the Macdonald functions: q-Whittaker functions for the q-RS insertions; Hall–
Littlewood functions for the t-RS insertions; Schur functions for the others.

Proof. In the limit q = t→ 1, we have ακ/ρ → Hρ/Hκ and ην/λ/µ → 1/hλ(cµ,ν)2.

By substituting this result into Theorem 4.4(1) and using the hook-length formula
fλ = n!/Hλ, we obtain the following identities for λ ` n:

∑
ν∈U (λ)

fν = (n + 1) fλ (5.1)

∑
ν∈U (λ)

fµ fν

(hλ(cµ,ν))2 =
n + 1

n
( fλ)

2 for µ ∈ D(λ) (5.2)

fλ fν

n
+ ∑

µ∈D(λ)

fµ fν

(hλ(cµ,ν))2 =
n + 1

n
( fλ)

2 for ν ∈ U (λ). (5.3)

The identity (5.1) is a classical result known as the “upper recursion” for the numbers
fλ. Greene, Nijenhuis, and Wilf showed that the ratios Hλ/Hν arise from a “random
hook walk” taking place outside the Young diagram of λ, thereby giving a beautiful
explanation for why the ratios Hλ/Hν define a probability distribution on U (λ) [8]. We
show in [1, §6] that the probabilities Pλ(λ → ν) arise from a (q, t)-generalization of this
random hook walk (this was inspired by the (q, t)-hook walk in [7]). The identities (5.2)
and (5.3), on the other hand, seem to be new, and we believe they deserve further study.

We end with a result whose proof will appear in forthcoming work of the authors
(the σ = id case follows easily from Proposition 5.1).

Proposition 5.2. Suppose σ ∈ Sn and P ∈ SYT(λ) for some λ ` n. In the q = t → 1
specialization of qRSt, the probability that P is the insertion tableau of σ is equal to fλ/n!.
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