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Weight-preserving bijections between integer
partitions and a family of alternating sign
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Abstract. We construct weight-preserving bijections between column strict shifted
plane partitions with one row and alternating sign trapezoids with exactly one col-
umn in the left half that sums to 1. Amongst other things, it relates the number of −1s
in the alternating sign trapezoids to certain entries in the column strict shifted plane
partitions that generalise the notion of special parts in descending plane partitions.
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1 Introduction

Alternating sign matrices (ASMs) are square matrices with entries −1, 0, and 1 such that
the nonzero entries alternate in sign and sum to 1 along each row and column. When
Mills, Robbins, and Rumsey conjectured that n × n ASMs are equinumerous with to-
tally symmetric self-complementary plane partitions (TSSCPPs) in an 2n× 2n× 2n box
[20] and with descending plane partitions (DPPs) without parts exceeding n [19], they
initiated a strenuous quest for weight-preserving bijections between ASMs and other
presumably equinumerous families of objects. These conjectures were proved nonbi-
jectively by establishing the same enumeration formula for each of the three classes:
for DPPs [1], TSSCPPs [2], and ASMs [23], [18]. A fourth equinumerous class was in-
troduced in a recent work by Ayyer, Behrend, and Fischer [4], namely alternating sign
triangles (ASTs).

The realm of alternating sign arrays is known for the lack of bijective proofs. Most
of the bijections that have been established only consider special cases. For instance,
there are partial bijections between ASMs and TSSCPPs by Cheballah and Biane [6] and
Striker [22] and between ASMs and DPPs by Ayyer [3], Striker [21], and Fulmek [14].

It took around four decades to find the first general bijective proof. Fischer and
Konvalinka [11], [12] have recently constructed an explicit but rather intricate bijection
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that relates ASMs with DPPs. Its underlying concept is turning Fischer’s nonbijective
proof of the ASM enumeration formula [9] into a bijective proof by using a generalisation
of the Garsia–Milne involution principle. See [13] for a concise overview of how the proof
was found and how the bijections work.

Ayyer, Behrend, and Fischer [4] announced a family of alternating sign arrays that are
generalising ASTs: alternating sign trapezoids (ASTZs). Fischer [10] proved that ASTZs
are equinumerous with column strict shifted plane partitions (CSSPPs) of a fixed class
which are a simple generalisation of DPPs essentially introduced by Andrews [1].

In the present extended abstract, we provide weight-preserving bijections between
single-row CSSPPs of a fixed class and ASTZs with exactly one column in the left half
that sums to 1. We start with the definitions of ASTZs and CSSPPs and of the statistics
we consider on these objects.

2 Preliminaries

Definition 2.1. For l ≥ 2, an (n, l)-alternating sign trapezoid is an array of −1s, 0s, and
+1s in a trapezoidal shape with n rows of the following form

a1,1 a1,2 · · · · · · · · · · · · · · · · · · a1,2n+l−2
a2,2 · · · · · · · · · · · · · · · a2,2n+l−3

. . . ...
an,n · · · an,n+l−1

such that the following four conditions hold:
• the nonzero entries alternate in sign in each row and each column;
• the topmost nonzero entry in each column is 1;
• each row sums to 1;
• each of the central l − 2 columns sums to 0.
If a column sums to 1, we call it a 1-column. Otherwise, it is a 0-column. In addition,

if the bottom entry of a 1-column is 0, we also call it a 10-column.

Let ASTZn,l denote the set of (n, l)-ASTZs. We introduce four different statistics on
ASTZs. For A ∈ ASTZn,l, we define

µ(A) := # −1s in A,
r(A) := # 1-columns among the n leftmost columns of A,
p(A) := # 10-columns among the n leftmost columns of A,
q(A) := # 10-columns among the n rightmost columns of A.

The weight w(A) of A is set to be Mµ(A)Rr(A)Pp(A)Qq(A).
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Example 2.2. The following (5, 5)-ASTZ has weight M3R3P:

0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 −1 0 1 0 0 0

0 0 0 0 1 0 0 0 0
1 0 0 0 0 −1 1

1 0 −1 0 1

Note that ASTZs can be interpreted as a generalisation of ASTs as follows: We can
construct the class of ASTs with n + 1 rows by adding an additional bottom row that
consists of a single 1 below (n, 3)-ASTZs such that we obtain a triangular array. Ayyer,
Behrend, and Fischer [4] showed that the number of −1s is equally distributed in ASTs
with n rows and n× n ASMs.

Definition 2.3. A strict partition µ is a tuple of strictly decreasing positive integers µi; the
number of elements in µ is denoted by `(µ). A shifted Young diagram of shape µ is a finite
collection of cells arranged in `(µ) rows such that row i has length µi and each row is
indented by one cell compared to the row above.

A column strict shifted plane partition π = (πi,j)1≤i≤`(µ),i≤j≤i+µi−1 is a filling of a shifted
Young diagram of shape µ with positive integers such that the entries weakly decrease
along each row and strictly decrease down each column. We call the entries parts and say
that the partition is of class k if the first part of each row equals k plus its corresponding
row length, that is, πi,i = k + µi for all 1 ≤ i ≤ `(µ).

Let CSSPPn,k denote the set of CSSPPs of class k with at most n parts in the first
row. Note that we consider the collection of zero cells to be a CSSPP of class k for any
k. We introduce four different statistics of which two depend on a fixed parameter d ∈
{1, . . . , k}. For π ∈ CSSPPn,k and k ≥ 1, we define

µd(π) := # parts πi,j ∈ {2, 3, . . . , j− i + k} \ {j− i + d},
r(π) := # rows of π,

pd(π) := # parts πi,j = j− i + d,

q(π) := # 1s in π.

The weight wd(π) of π is set to be Mµd(π)Rr(π)Ppd(π)Qq(π).

Example 2.4. The following CSSPP of class 4 has shape (6, 4, 3, 1) and weight MR4PQ2

if d = 2:

10 10 9 9 6 1

8 8 8 2

7 6 1

5
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Note that CSSPPs of class 2 correspond to DPPs by subtracting 1 from each part
of the CSSPP and eventually deleting all parts equal to 0. We call the parts πi,j ∈
{2, 3, . . . , j− i + k} \ {j− i + d}, that are counted by the statistic µd, d-special parts. They
generalise the special parts defined by Mills, Robbins, and Rumsey [19] since the number
of special parts in π ∈ CSSPPn,2 equals µ2(π).

The author [15] showed that the joint distribution of the respective four statistics on
the sets ASTZn,l and CSSPPn,l−1 coincide:

Theorem 2.5. Let n ≥ 1, l ≥ 2, and 1 ≤ d ≤ l− 1. The generating function ∑A∈ASTZn,l
w(A)

of (n, l)-ASTZs equals the generating function ∑π∈CSSPPn,l−1
wd(π) of CSSPPs of class l − 1

with at most n parts in the first row. In particular, they are each given by

det
0≤i,j≤n−1

(
R

i

∑
k=0

Qi−k
j

∑
m=0

(
j

m

)
Mk−m

((
k + l − 3

k−m

)
+

P
M

(
k + l − 3
k−m− 1

))
+ δi,j

)
. (2.1)

The purpose of the present extended abstract is to construct weight-preserving bijec-
tions between the sets {π ∈ CSSPPn,l−1 | r(π) = 1} and {A ∈ ASTZn,l | r(A) = 1}.

Let us fix some notation: We number the n leftmost columns of A ∈ ASTZn,l from
−n to −1 and the n rightmost columns from 1 to n. We observe that A has exactly
n 1-columns. If r(A) = 1, that is, A has exactly one 1-column among the n leftmost
columns, then A has also exactly one 0-column among the n rightmost columns. We
denote the set of (n, l)-ASTZs with a unique 1-column among the n leftmost columns
at position −i and a unique 0-column among the n rightmost columns at position j by
ASTZ i,j

n,l. See Example 3.1.
We denote the subset of all single-row CSSPPs in CSSPPn,k with exactly j parts by

CSSPP j
n,k. Note that CSSPPs with only one row are ordinary integer partitions.

Our main goal is to construct bijections

n⋃
i=1

ASTZ i,j
n,l ←→ CSSPP

j
n,l−1

preserving the weights (µ, p, q) and (µd, pd, q) for any 1 ≤ d ≤ l − 1, respectively. That
is, we solve the following task:

Problem. For l ≥ 2 and 1 ≤ d ≤ l− 1, construct bijections between (n, l)-ASTZs with exactly
one 1-column in the left half, µ entries equal to −1, p 10-columns in the left half, q 10-columns
in the right half, and a 0-column at position j and single-row CSSPPs of class l − 1 with exactly
j parts, thereof µ d-special parts, p parts at position k that are equal to k − 1 + d, and q parts
equal to 1.

As a side benefit, we obtain an enumeration formula for the number of elements in
ASTZ i,j

n,l:
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Theorem 2.6. The number of A ∈ ASTZ i,j
n,l such that µ(A) = µ, p(A) = p, and q(A) = q is

given by (
j− i

µ + p + q

)(
j + i + l − q− 5

µ

)
−
(

j− i− 1
µ + p + q

)(
j + i + l − q− 4

µ

)
. (2.2)

We proceed as follows: In Section 3, we discuss the lattice path representations of
ASTZs and CSSPPs as our main tool. In Section 4, we present the actual construction
of the bijections from ASTZs to CSSPPs. In the end, we conclude with some remarks
about other bijections and a potential generalisation in Section 5. Note that, for the sake
of simplicity, we often write the bijection despite meaning a family of bijections.

Remark 2.7. There is indeed a notion of (n, 1)-ASTZs, also called quasi alternating sign
triangles (QASTs) [4]. Fischer [10] proved that QASTs with n rows are equinumerous with
CSSPPs of class 0 with at most n parts in the first row. Moreover, the author [15] defined
weights w on QASTs and CSSPPs of class 0 – similar to the weights for the case l ≥ 2
– such that the generating functions are also given by (2.1) for l = 1. However, the
sets {w(A) | A ∈ ASTZn,1} and {w(π) | π ∈ CSSPPn,0} are not the same in general
and the presented bijections do not apply to that case. Nonetheless, we conjecture that
it is possible to obtain a bijective proof by adapting our bijection to the case l = 1.
Throughout the extended abstract, we assume l ≥ 2.

3 Lattice path representations

3.1 ASTZs as lattice paths

The bijections are based on the concept of osculating paths. Osculating paths are lattice
paths that neither cross nor share edges but potentially share points. Describing ASMs
in terms of osculating paths dates back to [7] and was further investigated in [8] and [5],
among others. We adopt this idea for the case of ASTZs.

In the special case of A ∈ ASTZ i,j
n,l, the ASTZ A is mapped to a single path. We con-

sider a trapezoidal grid graph where every vertex presents an entry of A and vertices are
connected by an edge if the corresponding entries of A are horizontally or vertically next
to each other. The path starts at the corresponding vertex of the bottommost entry of the
1-column at position −i and moves upwards. If the path reaches a vertex corresponding
to a 1 or a −1, then it turns to the right or to the left, respectively. If the path reaches
a vertex that corresponds to the bottommost entry of a 10-column, it also turns to the
left. Thus, the path ends at the vertex that corresponds to the bottommost entry of the
0-column at position j.

We interpret the vertices of the grid graph as lattice points in the coordinate plane and
identify the vertex corresponding to the bottommost entry of the column at position i



6 Hans Höngesberg

with the origin. Thus, the elements of ASTZ i,j
n,l are in one-to-one correspondence with

lattice paths from (−l − 2i + 3, 0) to (j − i, j − i) which only consist of rightward and
upward unit steps and which do not cross the main diagonal.

The statistics on A ∈ ASTZ i,j
n,l are reflected in the associated lattice path as follows:

If the 1-column we start with is a 10-column, then the first step of the lattice path is an
upward step; otherwise, it is a rightward step. For every 10-column in the right half of A,
we have a left turn on the main diagonal, that is, a rightward step which is immediately
followed by an upward step. All the other left turns in the lattice path result from the
−1s in A.

Example 3.1. The following ASTZ is an element of ASTZ2,8
9,4. The corresponding path is

illustrated in grey.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −1 1

0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0

0 1 0 0 −1 0 0 1
0 0 0 0 0 1

0 0 0 1

We shall use that ASTZ as a running example throughout the extended abstract and call
it A. It has weight M2RPQ2 and is mapped to the following lattice path.

x

y

P
M

Q

M
Q

3.2 CSSPPs as lattice paths

The representation of CSSPPs as a family of nonintersecting lattice paths is well-known.
In the special case of λ ∈ CSSPP j

n,k, the CSSPP λ is encoded by a single lattice path.
If λ is given by λ1 λ2 . . . λj such that λ1 = j + k, then it is associated to a lattice path
from (0, j + k− 1) to (j− 1, 0) that only comprises rightward and downward unit steps
in the following way: we start at the point (−1, λ1 − 1) and draw a lattice path to (j−
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1, 0) in such a way that its horizontal steps are exactly the steps from (i − 2, λi − 1) to
(i− 1, λi − 1) for all i ∈ {1, . . . , j}. Eventually, we delete the first step.

The statistics on λ translate into the following properties: The lattice path has exactly
q(λ) horizontal steps at height 0. The step right beneath the line y = x + d is horizontal
if and only if pd(λ) = 1. Finally, the number of horizontal steps below the line y = x + k
that are neither at height 0 nor directly below y = x + d equals µd(λ).

By using this lattice path representation, we obtain an expression for the number
of partitions λ ∈ CSSPP j

n,k with µ = µd(λ), p = pd(λ), and q = q(λ) for any d ∈
{1, . . . , k}. It is given by (

j− 1
µ + p + q

)(
j− q + k− 3

µ

)
. (3.1)

This identity can easily be seen as follows: Consider a partition of class k and with j
parts. Its corresponding lattice path goes from (0, j + k− 1) to (j− 1, 0) and crosses the
line y = x + k. The intersection point divides the path into two smaller paths. The lower
one contains all the steps possibly contributing a factor M, P, or Q to the weight. It
consists of µ + p + q horizontal steps, and, therefore, the coordinates of the intersection
with the line y = x + k are given by (j− µ− p− q− 1, j + k− µ− p− q− 1). Next, we
remove the following steps from the lower path: the q horizontal steps at height 0, the
vertical step from height 0 to height 1, and the step just below the line y = x + d. Due to
their uniquely determined positions, these steps can easily be reinserted after removing.
In the end, we obtain a path consisting of µ horizontal and j + k − µ − q − 3 vertical
steps. The final path looks as shown on the right-hand side in Example 3.2. Paths of this
kind are enumerated by (3.1). Note that we also obtain (3.1) by summing (2.2) over all
1 ≤ i ≤ n.

Example 3.2. The CSSPP 11 9 7 6 5 4 1 1 is of class 3 and has weight M2RPQ2 if
d = 1. It is mapped to the lattice path on the left-hand side. We call this CSSPP π for
later reference. On the right-hand side, we see its reduced lattice path representation.

x

y

y = x + ky = x + k

y = x + dy = x + d
MM

PP
M

Q Q

j− µ− p− q− 1

µ + p + q

µ

j + k− µ− q− 3
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4 From ASTZs to CSSPPs

So far, we have seen how to represent elements fromASTZ i,j
n,l and CSSPP j

n,l−1 as lattice
paths. In this section, we construct a weight-preserving bijection between these two
families of lattice paths. In particular, we show how to go from ASTZ i,j

n,l to CSSPP j
n,l−1.

We omit the construction of the inverse mapping.
For the sake of simplicity, we assume i < j in the following construction. For i > j,

the set ASTZ i,j
n,l is empty. In the case i = j, there is only one A ∈ ASTZ j,j

n,l. It follows

that µ(A) = p(A) = q(A) = 0. There is also only one λ ∈ CSSPP j
n,l−1 such that

µd(λ) = pd(λ) = q(λ) = 0, namely the integer partition that consists of j times the part
j + l − 1. Note that it is still possible to accommodate the case i = j into the following
construction by a few small but cumbersome adjustments.

Let i < j. Consider A ∈ ASTZ i,j
n,l and write µ = µ(A), p = p(A), and q = q(A). We

encode the respective lattice path by its left turn representation [17], [16]: Since a lattice
path with given starting point and endpoint is uniquely determined by the coordinates
(xm, ym) of its left turns, we can represent the lattice path associated to A by the following
two-rowed array:

−2i− l + 4 ≤ x1 < x2 < . . . < xµ+q ≤ j− i− 1
p ≤ y1 < y2 < . . . < yµ+q ≤ j− i− 1

(4.1)

Since the lattice path stays weakly above the main diagonal, it follows that xm ≤ ym for
all 1 ≤ m ≤ µ + q.

Next, we transform each row of (4.1) into a lattice path that consists of upward and
rightward unit steps. If the row is given by a ≤ z1 < · · · < zc ≤ b, then the lattice path
goes from (−c, a− b + c− 1) to (0, 0) such that each zm corresponds to a horizontal step
at height zm −m− b + c for all m ∈ {1, . . . , c}.

We continue by possibly truncating these paths: Each factor of Q in the weight of A
corresponds to a left turn with coordinates (xm, ym) such that xm = ym. We remove these
redundant pieces of information by deleting the corresponding horizontal steps in the
path associated to the x-coordinates. If p = 0, then y1 = 0. In that case, we remove the
first step in the path corresponding to the y-coordinates, too.

We draw the resulting paths as nonintersecting lattice paths. Take Si
x := (−µ,−j−

i− l + 4 + µ + q) as starting point and (0, 0) as endpoint for the reduced path associated
to the x-coordinates and analogously Si

y := (−µ− p− q,−j + i + µ + p + q) and (−1, 0)
for the reduced path associated to the y-coordinates. These paths are nonintersecting by
construction. Hence, the former path ends with the vertical step from (0,−1) to (0, 0).
We remove this step and change the endpoint from (0, 0) to Ex := (0,−1). In addition,
we change the endpoint of the other path from (−1, 0) to Ey := (0, 0) by adding the
horizontal step from (−1, 0) to (0, 0).
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Example 4.1. The lattice path corresponding to A in Example 3.1 has the following left
turn representation:

−4 ≤ −2 < 2 < 3 < 5 ≤ 5
1 ≤ 1 < 2 < 4 < 5 ≤ 5

The corresponding reduced paths are as follows:

x

y

−2−2

3

x

y

1 2
4 5

Thus, we obtain these two nonintersecting lattice paths:

EyEy
Si

ySi
y ExEx

Si
xSi
x

Note that the number of pairs of nonintersecting lattice paths from Si
x and Si

y to Ex
and Ey can be calculated with the help of the well-known Lindström-Gessel-Viennot
lemma and is given by (2.2). Thus, we have proved Theorem 2.6.

Our next step is to ‘shuffle’ the two paths. For A ∈ ASTZ i,j
n,l, we repeat the following

process of shifting and switching paths i− 1 times: At the beginning of the ı̃th step, we
have two nonintersecting lattice paths from {Si

x, Si
y − (0, ı̃− 1)} to {Ex − (0, ı̃− 1), Ey}.

We shift the path with endpoint Ey down by one unit step and the other path up by
(0, ı̃). After switching the paths at the top right intersection point, we shift the path
with endpoint Ex down by (0, ı̃). This procedure yields two nonintersecting lattice paths
from from {Si

x, Si
y − (0, ı̃)} to {Ex − (0, ı̃), Ey}. By repeating this process i − 1 times

in total, we obtain a pair of nonintersecting lattice paths from {Si
x, Si

y − (0, i − 1)} to
{Ex − (0, i− 1), Ey}.

At the end, the upper path consists of µ + p + q horizontal steps and j− µ− p− q− 1
vertical steps, whereas the lower one consists of µ horizontal steps and j + l − µ− q− 4
vertical steps. Compare these paths with the illustration in Example 3.2. To construct the



10 Hans Höngesberg

CSSPP, we have to rotate the upper path by 90◦ and horizontally or vertically reflect the
lower path. We have four possibilities in total for that. Each of them creates a possibly
different but equally valid bijection. Finally, we insert the missing steps that correspond
to the steps we removed as described in Section 3.2.

Example 4.2. Since A ∈ ASTZ2,8
9,4, we ‘shuffle’ the paths from Example 4.1 once:

←→ ←→

If we rotate the upper path clockwise by 90◦, reflect the lower path along a vertical axis,
and set d = 1, A is mapped to π as displayed in Example 3.2.

5 Concluding remarks

5.1 Other bijections

There are no general bijections known between ASTZs and CSSPPs. In comparison to
the bijection presented above, Fischer [10] observed that there is a much simpler bijection
in the case r = 1 if we disregard the statistics µ and µd, respectively. Even in the case of
ASMs and DPPs, all established bijections by Ayyer [3], Striker [21], and Fulmek [14] are
restricted to permutation matrices and DPPs without special parts. None of them has
been extended to the general case yet.

5.2 Towards a general bijection between ASTZs and CSSPPs

The key idea of the bijection in the present extended abstract is the representation of
ASTZs as a family of osculating lattice paths. A simple and naive approach to general-
ising the bijection would be to map each of these lattice paths separately to an integer
partition in order to obtain the rows of a CSSPP.

For instance, there are five (3, 2)-ASTZs with 0-columns at positions 1 and 3 as shown
below. Each of them corresponds to a family of two osculating paths. If we map each
path individually to a partition, we would get a CSSPP of shape (3, 1). But there are
seven CSSPPs of class 1 and of shape (3, 1) in total.

1 0 0 0 0 0
0 0 0 1

1 0

0 1 0 0 0 0
0 0 0 1

1 0

0 0 1 0 0 0
1 −1 0 1

1 0

0 0 0 1 0 0
1 0 −1 1

1 0

0 0 0 0 1 0
1 0 0 0

1 0
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4 4 4

2

4 4 3

2

4 4 2

2

4 4 1

2

4 3 3

2

4 3 2

2

4 3 1

2

Thus, our naive approach fails. However, this bijection might still serve as a basis for
a general bijection between ASTZs and CSSPPs.
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