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Abstract. Given a random text over a finite alphabet, we study the frequencies at
which fixed-length words occur as subsequences. As the data size grows, the joint
distribution of word counts exhibits a rich asymptotic structure. We investigate all
linear combinations of subword statistics, and fully characterize their different orders
of magnitude using diverse algebraic tools.

Moreover, we establish the spectral decomposition of the space of word statistics of
each order. We provide explicit formulas for the eigenvectors and eigenvalues of the
covariance matrix of the multivariate distribution of these statistics. Our techniques
include and elaborate on a set of algebraic word operators, recently studied and em-
ployed by Dieker and Saliola (2018).

Subword counts find applications in Combinatorics, Statistics, and Computer Science.
We revisit special cases from the combinatorial literature, such as intransitive dice,
random core partitions, and questions on random walk. Our structural approach de-
scribes in a unified framework several classical statistical tests. We propose further
potential applications to data analysis and machine learning.

Remark. This is an extended abstract. A preprint of the full paper is available online at
https://arxiv.org/pdf/2012.00742 .

1 Word Statistics

Sequences over a finite alphabet are ubiquitous in pure and applied mathematics, and
lie at the core of many probabilistic models. They may represent steps of a random
walk, words of group generators, discrete-valued time series, DNA segments, or output
of pseudorandom generators, to mention a few examples. In the analysis of such se-
quences, one often considers various numerical statistics, in order to capture their main
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features, extract meaningful information, apply further processing, or take informed
decisions. It is hence important to examine general families of such statistics, and thor-
oughly understand their expected behavior.

Subword counts give rise to a broad family of word statistics, which this work inves-
tigates. Given a finite alphabet Σ = {a, b, c, . . . }, a pattern u ∈ Σk, and a longer text
w ∈ Σn, we consider #u(w), the number of occurrences of u as a subsequence of w.
The copies of u that we count do not have to appear consecutively in the text, nor to be
disjoint. For example #fee(referee) = 3. Many well-studied word statistics are special
cases of these counts, or finite linear combinations of them.

Randomized models provide a natural setting to investigate words and their statistics.
They help us analyze these fundamental objects via typical instances, and guide us in
developing relevant tools for applications. Here are two basic models for a random
word w ∈ Σn, that appear naturally in various contexts and applications.

• One-Sample: W(n, p) where p = (pa, pb, . . . ) ∈ (0, 1)|Σ| and ∑x px = 1
The letters of w are independent, and every letter wi = x with probability px.

• Multi-Sample: W ′(n) where n = (na, nb, . . . ) ∈N|Σ| and ∑x nx = n
Every word w with exactly nx = #x(w) for every x, is equally likely.

The word models W and W ′ parallel the two best-studied random graph models on n
labeled vertices. For graphs, G(n, p) selects every edge with probability p independently,
and G ′(n, m) selects exactly m edges uniformly from all possible ways [9]. While the
two kinds of models share many asymptotic properties, they differ in some important
aspects, especially regarding subgraph counts, and in our models – subword counts.
Remark. This is an extended abstract. A preprint of the full paper is available online at [8],
and includes all the details of the constructions, the proofs, and more applications.

2 Spaces of Subword Counts

We start with a general presentation of our approach to subword statistics. Some new
results and special cases will be mentioned, but full formal statements are deferred to
the subsequent §3.

Let k ∈ N, and consider the random variables #u, for all k-letter words u ∈ Σk. For
the sake of this general discussion, the distribution of the underlying w ∈ Σn may be
either W(n, p) or W ′(n). In the latter model, we let nx = pxn and the same general
statements apply up to minor changes.

How is the subword count #u distributed as the text size n grows? By summation
over all (n

k) potential occurrences, one can see that the expected value and variance are

E [#u] =
pu1 · · · puk

k!
nk ±O(nk−1) , V [#u] = O

(
n2k−1

)
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It follows that the vector of subword frequencies, #u/(n
k) for u ∈ Σk, satisfies a law of

large numbers:

Xk :=
{

#u
(n

k)

}
u∈Σk

n→∞−−−−−−−−→
in probability

E [Xk] = p⊗k

It is then natural to study interactions between different subword counts. In general,
there is a nonzero correlation between #u and #v, even in the limit as n → ∞. These
correlations are encoded in the following |Σ|k-dimensional central limit theorem, as we
will see later on.

√
n (Xk −E [Xk])

n→∞−−−−−−−−→
in distribution

N
(

0, lim
n→∞

n Cov [Xk]
)

However, the multivariate Gaussian limit reveals only a small part of the asymp-
totic picture. It turns out that the rank of the limiting covariance matrix is much lower
than |Σ|k, so that the limit law is supported on a low-dimensional subspace. In terms
of linear combinations of the form ∑u fu #u with fu ∈ R, many of those are significantly
more concentrated than their individual constituents, and should be scaled differently.

Let RΣk denote the space of formal linear combinations of k-letter words over Σ.
Every f = ∑u fuu ∈ RΣk defines a scalar random variable # f by linearity. One desirable
goal is to find the typical order of magnitude of all # f . The first step in our approach
is grading the space of all subword combinations. This grading provides an orthogonal
decomposition RΣk =

⊕
r Vr such that E[(# f /nk)2] = Θ(1/nr) for every nonzero f ∈ Vr.

The next goal is to analyze the random variables within each component, that is,
nr/2Xk projected onto Vr. The spaces of word statistics in our models come with natural
inner product structures. The most fundamental and most practical objective is a ba-
sis of statistics that diagonalizes the covariance matrix of this multivariate distribution,
in the spirit of principal component analysis, PCA. Thus, the second step is a spectral
decomposition of each component Vr.

Having a full explicit decomposition of this form, one can readily obtain the precise
leading term of the variance V[# f ] for any feature f which is a scalar projection of Xk.
It lets one identify and compare the various “modes” of the joint distribution, which
reveals much of its structure.

Our main contribution is the implementation of this plan. We provide gradings of
word statistics by scale, and diagonalizations by second moments, as stated below in §3.
These are demonstrated on diverse examples in §5. Several previously-studied word
statistics naturally arise as special cases, including some of order smaller than 1/

√
n.

Also new families of word statistics constructed this way seem to be meaningful and
useful.

The analysis of multivariate statistical features of ordered or sequential data is a
direct practical application of our work. Linear decompositions of data on combinato-
rial structures have been studied since the seminal monograph by Diaconis [4, §8], that
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introduced the use of algebraic tools such as representations of the symmetric group.
However, the crucial issue of choosing bases for components has mostly been left ar-
bitrary, depending on matters of convenience, or ad hoc interpretations. Our proposed
approach, which turns to the second moment structure of typical data distributions, aims
to provide a systematic treatment that seems very natural from a practical perspective.
In fact, the random word models we use make it particularly well-suited for extracting
features in the high noise regime.

3 Main Results

We now present the scaling decompositions and the spectral decompositions of the sub-
word statistics of random words. The one-sample model W(n, p), where letters are in-
dependent, is treated in Theorems 1 and 2. Theorems 3 and 4 concern the more involved
setting of the multisample modelW ′(n), with randomly ordered letters.

All the components can be obtained by straightforward elementary computations,
using Gaussian elimination and combinatorial manipulations on words. These construc-
tions are very briefly sketched in the next section, while detailed accounts are available
in the full version at [8].

Let w be a random word in the model W(n, p). Recall that Σ = {a, b, · · · } is a finite
alphabet, so that d := |Σ| ≥ 2, and the characters of w are independent and distributed
with p = (pa, pb, · · · ) ∈ Rd. We count subwords u ∈ Σk occurring in w ∈ Σn, and study
the normalized statistic,

#̄u(w) :=
#u(w)

(n
k)

∈ [0, 1]

Moreover, we study all linear combinations of the random variables #̄u for u ∈ Σk. Every
formal sum f = ∑u fuu in the dk-dimensional space Wk := RΣk defines such statistics # f
and #̄ f by linearity.

Working with a single length k ∈ N is not a real restriction. Indeed, in §2.4 of [8] we
define compatible linear embeddings Wk ↪→ Wk+1. Therefore, every Wk contains all Wj
for j < k. The space of all subword statistics is thus denoted W :=

⋃
k∈N Wk.

In order to establish the scaling of # f for every f ∈ W, we study the structure of
every Wk. In §2.1 of [8] we define a grading on the spaces Wk, which will yield a well-
defined grading on W. Every space Wk decomposes into k + 1 subspaces, denoted

Wk = Wk0 ⊕ Wk1 ⊕ . . . ⊕ Wkk

dim Wkr = (k
r)(d− 1)r

This primary decomposition depends on the probability vector p. The following theorem
asserts that it determines the order of magnitude in n of any statistic in Wk, and different
components are uncorrelated.
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Theorem 1 (Grading underW(n, p)).
Let k ∈N and r ∈ {0, 1, . . . , k}. For every nonzero statistic f ∈Wkr there exists C f ,p > 0 such
that

nr EW(n,p)

[
(#̄ f )2

]
−−−→

n→∞
C f ,p.

Moreover, for every r′ 6= r and f ′ ∈Wkr′ , EW(n,p) [ #̄ f #̄ f ′ ] = 0.

Remark. This decomposition also has the property that Wk0, . . . , Wkk are pairwise orthog-
onal. Here we work with the inner product on Wk, naturally induced from the measure
W(k, p), and denoted 〈 f , f ′〉p.

We further refine each component Wkr into k− r + 1 orthogonal subspaces. For every
k ≥ r ≥ 1, the following decomposition is given in §2.3 of [8].

Wkr = Wkr0 ⊕ Wkr1 ⊕ . . . ⊕ Wkr(k−r)

dim Wkrm = (r+m−1
m )(d− 1)r

This secondary decomposition yields a full asymptotic diagonalization of the covariance
of Wk, as follows.

Theorem 2 (Spectrum underW(n, p)).
Let k ∈N, r ∈ {1, . . . , k}, and m, m′ ∈ {0, . . . , k− r}. For every f ∈Wkrm and f ′ ∈Wkrm′

EW(n,p)

[(
nr/2 #̄ f

) (
nr/2 #̄ f ′

)]
−−−→

n→∞

(k!)2 〈 f , f ′〉p
(k + m)!(k− r−m)!

In particular, if m′ 6= m then this limit is 〈 f , f ′〉p = 0.

In §2.6 of the full version [8] we present a concise and practical description of the
spaces Wkrm, which provides insight into their structure. We establish an explicit iso-
morphism between Wkrm and Ukrm ⊗ (Rd−1)⊗r, where Ukrm are spaces of multivariate
orthogonal polynomials on the discrete simplex.

Remark. As we discuss in §2.12 of [8], if f ∈Wkr then #̄ f is a so-called U-statistic of rank r.
This fact provides additional information on the distribution of these random variables.

We now turn to the other model W ′(n) where the random word w has a prescribed
composition n = (na, nb, nc, . . . ), meaning #x(w) = nx for every letter x ∈ Σ. Denote the
set of such words by (Σ

n), and denote their length by n = |n| := ∑xnx. The number of
words in the set (Σ

n) is the multinomial coefficient (n
n) = n!/(na!nb! · · · ), and each one is

equally likely inW ′(n).
As before, we count the occurrences of subwords u ∈ Σk and analyze the random

variables #u, or # f for linear combinations f = ∑u fuu. However, in this model it is
sufficient to consider words u ∈ (Σ

κ), fixing the composition κ = (ka, kb, . . . ) of u. Indeed,
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in §2.7 of [8] we show how subwords of different compositions reduce to this case. We
therefore work in the linear space of formal sums of words of composition κ, denoted
Wκ = W(ka,kb,... ) := R(Σ

κ). Note that dim Wκ = (k
κ) where k = |κ|. For u ∈ (Σ

κ), a natural
choice of normalization is

#̃u :=
#u

∏x∈Σ (nx
kx)
∈ [0, 1]

extended to #̃ f for linear combinations f = ∑u fuu ∈ Wκ. Without loss of generality we
assume ka ≥ kb ≥ · · · > 0 unless stated otherwise.

Our primary decomposition of Wκ is based on representations of the symmetric
group Sk. The space Wκ admits an action of Sk by reordering all k-letter words in its
basis. The implied decomposition of Wκ as a direct sum of simple Sk representations
is well-studied. In §2.8-2.9 of [8], we briefly review this decomposition and use it to
describe the following k− ka + 1 components of word statistics.

Wκ = Wκ0 ⊕Wκ1 ⊕ · · · ⊕Wκ(k−ka)

The next theorem asserts that the word statistics in Wκr have order of magnitude n−r/2,
and that different components Wκr and Wκr′ are asymptotically uncorrelated. By writing
n/n→ p we denote the assumption that the parameters n = (na, nb, . . . ) grow such that
nx/n→ px > 0 as n = |n| → ∞, for every x.

Theorem 3 (Grading underW ′(na, nb, nc, . . . )).
Let f ∈ Wκr be a nonzero statistic of composition κ = (ka, kb, . . . ) where r ∈ {0, . . . , |κ| − ka},
and suppose that n/n→ p. Then, there exists C′f ,p > 0 such that

nr EW ′(n)

[(
#̃ f
)2
]
−−−→

n→∞
C′f ,p .

Moreover, for every r′ 6= r and f ′ ∈Wκr′

EW ′(n)

[(
nr/2 #̃ f

) (
nr′/2 #̃ f ′

)]
−−−→

n→∞
0 .

Remark. The components Wκ0, Wκ1, Wκ2, . . . are pairwise orthogonal with respect to the
standard inner product of Wκ, denoted 〈−,−〉.
Remark. Similar to the first random model, the random variables #̃ f are generalized U-
statistics of rank r. See §2.13 in the full version [8].

The next result elaborates on the two-sample random model W ′(na, nb). Here w is a
uniformly random word of length n = na + nb with #a(w) = na and #b(w) = nb, and we
count all subwords of composition κ = (ka, kb) with ka ≥ kb ≥ 1, where k = |κ| = ka+ kb.
The primary decomposition of Wκ already gives the components Wκr for r ∈ {0, . . . , kb}.
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The full decomposition of Wκ is defined in §2.11 in [8], where we refine every Wκr
into (k− 2r + 1)r orthogonal subspaces as follows:

Wκr =
k−2r⊕
i=0

r−1⊕
j=0

Wκrij r ∈ {1, . . . , kb}

dim Wκrij =
(k− 2r− i + j + 1) (k− i− j− 2)!

(k− i− r)! (r− j− 1)!

We do not consider the case r = 0, because Wκ0 is simply the 1-dimensional space of
constant statistics.

This decomposition yields the following full asymptotic diagonalization of the co-
variance matrix. In writing f ∈ Wκrij it is implied that r, i, j are any numbers in the
applicable ranges r ∈ {1, . . . , kb}, i ∈ {0, . . . , k − 2r}, and j ∈ {0, . . . , r − 1}, where as
usual k = ka + kb and n = na + nb.

Theorem 4 (Spectrum underW ′(na, nb)).
Let κ = (ka, kb). For every two word statistics f ∈Wκrij and f ′ ∈Wκr′i′ j′

E w∈W(na,nb)

[((nanb
n
)r/2 #̃ f

) ((nanb
n
)r′/2 #̃ f ′

)]
−−−−−−−→

na,nb → ∞
Λκrij

〈
f , f ′

〉
where

Λκrij :=
(ka!)2 (kb!)2 (k− 2r)! (k− 2r + 1)!

(ka − r)! (kb − r)! i! (2k− r− i− j)! (k− 2r + 1 + j)!

In particular, if (r′, i′, j′) 6= (r, i, j) then this limit is 〈 f , f ′〉 = 0.

Remark. This spectral decomposition of Wκr does not depend on pa and pb, if these are
respectively the limits of na/n and nb/n as in Theorem 3. This remarkable property is
not true in general, in the case of three samples or more.

In fact, the limit in this theorem is taken with respect to any na and nb such that
min(na, nb) → ∞. This is a relaxation of the assumption of Theorem 3 that nx/n con-
verges to a positive constant px for every x ∈ Σ. For this reason, the formulation of
Theorem 4 restates the case r 6= r′.

4 Decompositions

The purpose of this short section is to give some general idea what goes into the decom-
positions of Theorems 1-4. Again, all the details are available in the full version [8].

In Theorem 1, the primary components Wkr, giving the scaling of the statistics in Wk,
rely on an orthogonal decomposition RΣ = R1⊕ (1⊥) depending on p, and the structure
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it induces on Wk
∼= (RΣ)⊗k. In Theorem 3, the primary decomposition of Wκ uses the

structure induced by the Sk action, where the different components Wκr correspond to
submodules of the different Young diagram “widths”.

The secondary decompositions that diagonalize the covariances are defined in terms
of a set of linear operators in the words algebra, that has been studied and developed
in a recent line of work [18, 5]. The operators ∂, X, L, and Θ respectively perform
deletion, insertion, lifting, and replacement, of letters in formal sums of words. The
decompositions of Theorems 2 and 4 can be expressed as

Wkrm = Xk−r−m
1 ker

(
∂1
∣∣
W(r+m)r

)
Wκrij = Θkb−r

ab Lj
b Xi

a ker
(

∂a
∣∣
W(ka+kb−r−i,r−j),r−j

)
The relation of operators in the words algebra to terms of a certain order in the

covariance of subword statistics is not immediate, and the translation requires consider-
able combinatorial effort. The resulting expressions for the leading terms are often quite
intricate, and our analysis combines the existing knowledge on the words algebra and
representations with some new techniques and ideas.

5 Examples

We list a variety of examples for subword statistics, as special cases of our treatment.
We examine how they are scaled and classified by the scheme of Theorems 1-4. All the
computations of the decompositions and second moments are straightforward from the
definitions and can be done automatically.

We keep the discussion brief as our main purpose is not to study these particular
examples, but demonstrate how various statistics from diverse contexts unify under one
framework. Nevertheless, in several cases our perspective sheds a new light on them, or
points to potential generalizations. The full version at [8] discusses additional examples
from the combinatorial literature, such as the discrete Lévy area of a random walk on the
grid, and the problem of intransitive dice.

Example 1. Warm Up: Coin Flips

A sequence of n tosses of a fair coin gives a word in {H, T}n, distributed byW(n, (1
2 , 1

2)).
The decomposition for k = 1 gives W10 = span{H + T} and W11 = span{H − T}. As
Theorem 1 claims, the former yields #̄(H+ T) ≡ 1 of constant order. The latter, of order
1/
√

n, is the “observed bias” of the coin under the fairness hypothesis.
Computing for k = 2: W20 = span{HH + HT + TH + TT}, W210 = span{HH − TT},

W211 = span{HT− TH}, W220 = span{HH+ TT− HT− TH}.
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The first two come from W10 and W11 via the embedding W1 ↪→W2. The new statistic
#̄(HT− TH) may be interpreted as the tendency of tails to occur after heads. It also scales
as 1/

√
n, but Theorem 2 implies that its variance is 1

3 of that of #̄(HH− TT), and these
two statistics are uncorrelated. By §2.13 in [8], their joined distribution is asymptotically
binormal. The fourth statistic scales as 1/n and leads to the next example.

Example 2. Pearson’s χ2 Test Statistic

The following holds up to a constant correction of smaller order in n:

#̄(HH+ TT− HT− TH) = 2#̄(HH+ TT)− 1 ≈ (#̄H− 0.5)2

0.5
+

(#̄T− 0.5)2

0.5

This is the classical Pearson’s χ2 test statistic for fitting the frequencies of H and T to
the distribution (0.5, 0.5) [15]. This fact extends to any finite-dimensional distribution
vector p. The combination ∑x #̄xx/px − 1, which is essentially Pearson’s χ2 statistic,
always lies in W220.

Example 3. Functions on the Boolean Hypercube

Consider a binary stream w ∈ {0, 1}n, distributed withW(n, (p, q)). The subword statis-
tics of w correspond to R{0, 1}k, or equivalently Boolean functions f : {0, 1}k → R,
so they take the form ∑u f (u) #̄u. The primary decomposition of R{0, 1}k follows the
so-called “slices” of the Fourier basis of Boolean functions. Namely, we expand all the
“monomials” with k − r times (0 + 1) and r times (q 0 − p 1) to obtain (k

r) combina-
tions that span Wkr. For example, the expansion of (q 0− p 1)k from Wkk gives the most
concentrated statistic, with variance ∼ k!/nk by Theorems 1-2. For p = q = 1

2 , it is
the bias of the parities of k-bit subwords of w. The diagonalization in each slice in-
troduces a finer decomposition into orthogonal subspaces, corresponding to the above-
mentioned special orthogonal polynomials. For example, in order 1/

√
n we obtain the

basis {Pi(1) f1 + · · · + Pi(k) fk}0≤i<k, where f1, . . . , fk are so-called “dictatorship” func-
tions, and Pi(x) are the orthogonal polynomials of the uniform measure on {1, . . . , k}.
As n grows, these k statistics tend to independent Gaussian distributions.

Example 4. Two-Sample Statistical Tests

Consider two real-valued samples X1, . . . , Xn and Y1, . . . , Ym drawn independently from
unknown continuous distributions, denoted by the random variables X and Y. The
relative order of the observations induces a word w over {x, y} of length n + m. For
example, if X2 < Y3 < Y1 < X1 < Y2 then w = xyyxy. If the two distributions coincide,
X ∼ Y, then w is exactly as in the random model W ′(n, m). This is the null hypothesis
of several nonparametric tests for comparing two distributions.
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Persson [16] represents several two-sample test statistics in terms of subword counts
in w. We review these statistics below.

Mann–Whitney U [14]. This test statistic, U = #yx estimates how much P(Y < X)
deviates from 1/2 for randomly selected X and Y. The equivalent combination u =
(yx− xy)/2 lies in the component Wκ1 where κ = (1, 1). The null distribution of #̃u is
asymptotically normal with variance 1

12(
1
m + 1

n ), reproduced by Theorems 3-4.
Cramér–von Mises criterion [11]. The above U might fail to detect X 6∼ Y when

the probability of X < Y happens to be exactly 1/2. However, given four indepen-
dent replications X, X′, Y, and Y′, the probability that max(X, X′) < min(Y, Y′) or
max(Y, Y′) < min(X, X′) is 1/3 if and only if X ∼ Y. Otherwise, it is greater than 1/3
by an L2 difference between the distribution functions FX and FY. This difference can be
estimated by 2 #̃t for the following centralized combination in W(2,2):

t = 1
3(xxyy+ yyxx)− 1

6(xyyx+ yxxy+ xyxy+ yxyx)

Theorems 3-4 give t ∈W(2,2)201 and V[#̃t] ∼ 1
45(

1
m + 1

n )
2 in agreement with [1].

Watson’s U2 [19]. Now suppose that {Xi} and {Yi} are samples on the circle S1. In
this case, the previous test for X ∼ Y depends on an arbitrary choice of a starting point.
Another notion of difference by Watson can be estimated by #̃s, for the following rotation
invariant combination.

s = 1
12(xxyy+ yyxx+ xyyx+ yxxy)− 1

6(xyxy+ yxyx)

This is not a principal direction of the covariance, but s = v + 1
4 t for v ∈W(2,2)200 and so

W(2,2)2 = span{s, t}. By Theorem 4, V[#̃v] ∼ 1
720(

1
m + 1

n )
2, so V[#̃s] ∼ 1

360(
1
m + 1

n )
2.

Remark. A surprising connection between Watson’s test statistic and the size distribution
of (s, t)-core partitions has been discovered in [6], and further unfolded in [7] based on
this perspective of subword counts.

We mention the possibility of similarly analyzing Cramér–von Mises type tests for
the classical K-sample problem [10, 17]. It is also possible to study such functionals with
higher Lp norms of (FX − FY) as word statistics. This may be interesting because the
infinity norm gives another popular two-sample test by Kolmogorov–Smirnov.

Example 5. Path Signature and Machine Learning

Finally, we describe a potential application to machine learning, which will be inves-
tigated in future work. In many application areas the data takes the form of a long
random-like text over a finite alphabet. This may either be a stream of symbols, that
comes with a natural ordering or “time” parameter, or a mixture of d samples of real-
valued data points, as in Example 4. Suppose that one wishes to classify, model, estimate
a parameter, or learn a function of such sequences, say by applying a neural network.
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Then, the input sequence first has to be summarized as a vector of characteristic features,
of reasonable length.

The signature method is a generic way of extracting feature sets for sequential data.
The basic idea is to embed the data as a path [0, 1] → Rd, and then to use features
from its signature, which is the graded sequence of its iterated integrals. The coordinates
of the signature are definite integrals of the path (xt, yt, . . . )0≤t≤1 such as

∫
t dxt,

∫
t dyt,∫

t<s dxtdxs,
∫

t<s dxtdys, and so on. This method has achieved success in several recent
machine learning applications to financial data, clinical symptoms, handwriting recog-
nition, and more [12, 3, for overviews]. The notion of path signature originates in the
fundamental theory of rough paths [2, 13].

Though the signature method has mostly been applied to vector-valued time series
and spatial data, also a text over d symbols naturally embeds as a path in Rd. Every
appearance of a letter x contributes a unit step along the axis that corresponds to x. The
signature of the resulting path is essentially the set of subword statistics in the given
text, where the kth level corresponds to subwords of k letters.

Now, our results on the diagonalization of the space of subword statistics provide
a suitable choice of basis for feature selection in the signature. Such a basis may be
crucial for addressing several important challenges, such as how and where to truncate
the coordinates of the signature, how to adjust input parameters in specific applications,
how to interpret the contribution of the various characteristic features, etc.

One prediction we would like to make is that our suggested basis of attributes will
actually be most beneficial for highly noisy data, since our decomposition diagonalizes
the joint distribution under randomness. Then, it seems particularly preferable to use a
basis of uncorrelated features that distinguishes between statistics that scale differently
with the data length.
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