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Maximal green sequences for triangle products
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Abstract. The existence of maximal green sequences is an important property of a
cluster algebra. We construct explicit maximal green sequences for triangle products
of an acylic quiver with a Dynkin quiver. As an application we deduce from the work
of Gross-Hacking-Keel-Kontsevich the full Fock–Goncharov conjecture for big double
Bruhat cells for simply-connected, connected, semisimple groups of simply-laced type.
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1 Introduction

Cluster algebras were introduced by Fomin and Zelevinsky [8] in their studies on total
positivity and canonical bases. A cluster algebra comes with a distinguished set of
generators, called cluster variables, which is obtained by recursively mutating an initial
seed consisting of a finite quiver without loops and 2-cycles whose vertices are the initial
cluster variables.

In most cases one needs to apply an infinite number of mutations to obtain all cluster
variables from the initial seed. To be more precise, a finite number of mutations suffices
precisely for the cluster algebras obtained from simply-laced Dynkin quivers [9]. There
is, however, a second, less restrictive, notion of finiteness in the theory of cluster algebras
due to Keller [16] based on work of Gaiotto-Moore-Neitzke [10]. Keller [16] introduces
the notion of a maximal green sequence, or slightly more general reddening sequence,
for a quiver Q, which is a finite sequence of mutations of Q with favourable properties.
A quiver Q may or may not possess a maximal green sequence.

The existence of a maximal green sequence has far-reaching consequences for the
cluster algebra associated to Q. In particular, to a maximal green sequence a product of
certain quantum dilogarithm series is attached in [16] computing the refined Donaldson–
Thomas invariants [19] of Q. Furthermore, as predicted by the Fock–Goncharov conjec-
ture [7] Gross-Hacking-Keel-Kontsevich [14] produce a certain canonical basis, called
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theta basis, of the cluster algebra associated to Q relying on the existence of a maxi-
mal green sequence. In Physics, maximal green sequences appear in the computation of
spectra of BPS states [1].

In [18] Keller definded the triangle product Q b R of two quivers Q and R. In this
paper we construct explicit maximal green sequences for Q b R in the case that Q is an
acyclic quiver and R a Dynkin quiver. The key here is that Q possesses a source maximal
green sequence and R a sink maximal green sequence, which can be combined to obtain
a maximal green sequence for Q b R.

As an application we consider the cluster algebra structure introduced by Berenstein-
Fomin-Zelevinsky [2] on the coordinate rings of the large double Bruhat cells Ge,w0 , Gw0,e

and Gw0,w0 of a simply connected, connected, semisimple complex algebraic group G of
simply-laced type. We verify the conditions under which the construction of theta-bases
due to Gross-Hacking-Keel-Kontsevich yields bases for those cluster algebras satisfying
the full Fock–Goncharov conjecture [7]. In particular, in addition to maximal green
sequences we construct optimization sequences for the frozen vertices.

This paper originated in [12], where optimization sequences for Gw0,e were intro-
duced as an ingredient relating the Landau-Ginzburg potential function introduced by
Gross-Hacking-Keel-Kontsevich [14] in their work on theta bases to the decoration func-
tion introduced by Berenstein-Kazhdan [3] in their work on geometric crystals.

2 Background and Notations

Throughout this work all quivers are assumed to be finite and without loops and 2-
cycles. Let Q “ pQ0, Q1q be a quiver with vertices Q0 and edges Q1. The quiver Q
is determined by the skew-symmetric matrix B “ BQ “ pbv,wqv,wPQ0 , where bv,w is the
difference of the number of arrows from v to w and the number of arrows from w to v.

Following [17, sec. 3.3] we also consider valued quivers, which are quivers Q with
at most one arrow between any two vertices together with a pair pvalpαq1, valpαq2q of
natural numbers associated to any arrow α : v Ñ w of Q such that there exists a function
d : Q0 Ñ Zą0 with

dpvqvalpαq1 “ valpαq2dpwq.

Valued quivers correspond to skew-symmetrizable matrices B “ BQ “ pbv,wq P Matn,npZq

via

bv,w “

$

’

&

’

%

valpαq1 if there is an arrow from α : v Ñ w,
´valpαq2 if there is an arrow from α : w Ñ v,
0 else.

Following [8] the mutation of BQ at a vertex x P Q0 is the matrix B1 “ pb1v,wqv,wPB0 defined
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by

b1v,w “

#

´bv,w if v “ x or w “ x,
bv,w ` sgnpbv,xqmax p0, bv,xbx,wq else.

If B “ BQ is skew-symmetric then B1 “ BQ1 , where the quiver Q1 is obtained from Q by

1. adding an arrow v Ñ w for any pair v Ñ x, x Ñ w,

2. reversing arrows with source or target x

3. removing 2-cycles.

For a sequence S “ pSiq
n
i“1 Ă Q0 of vertices of Q we denote by QS the quiver obtained

by successively mutating at S1,S2, . . . ,Sn.
In the following it is convenient to restrict mutations to a subset of vertices called

mutable vertices. Vertices which are not mutable are called frozen. By an ice quiver rQ we
mean a (possibly valued) quiver rQ together with a set Q0 Ă rQ0 of mutable vertices such
that there are no arrows between frozen vertices. The full subquiver Q Ă rQ supported
on the mutable vertices Q0 is called the mutable part of rQ.

Following [5] we introduce

Definition 2.1. The framed quiver pQ associated to a quiver Q is obtained by adding for each
vertex v P Q0 a frozen vertex pv and an arrow v Ñ v. Dually, we define the co-framed quiver qQ
by adding arrows v Ñ v instead.

Definition 2.2. A vertex v P Q0 is called green if no arrow departing from a frozen vertex
w P rQ0zQ0 targets v. Similarly, v P Q0 is called red if no arrow departing at v targets a frozen
vertex w P rQ0zQ0.

Example 2.3. We depict the framing pD of an oriented Dynkin diagram D of type D5 as well as
pDv4:

v5

��

v5

��

v1 //

��

v2

��

// v3

>>

��

// v4

��

v1

��

// v2

��

// v3

>>

����

v4oo

v5 v5

v1s v2 v3 v4 v1 v2 v3 v4

OO

Let S Ă Q0 be a sequence of mutable vertices. By [6] any vertex in pQS has precisely
one of the two colours red and green. Keller [16] introduced certain sequences relating pQ
and qQ:
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Definition 2.4. A sequence S “ pSiq
n
i“1 Ă Q is called green sequence if the vertices Si P

pQpS1, . . . ,Si´1q are green for all i ă n. A sequence S Ă Q is called reddening sequence if all
vertices are red in pQS . A green reddening sequence is called a maximal green sequence.

By [4, Prop. 2.10] for each reddening sequence S Ă Q there exists a unique isomor-
phism of ice quivers

σS : pQS „
ÝÑ qQ.

3 Maximal green sequences for triangle products of an
acyclic quiver with a Dynkin quiver

Following [18] we introduce:

Definition 3.1. Let Q be a (valued) quiver and R a quiver. The triangle product Q b R of Q
and R is obtained from their product Q ˆ R by adding an arrow with value pλ1λ2, λ1λ1q from
pq1, r1q P Q0ˆ R0 to pq, rq P Q0ˆ R0 if Q contains an arrow from q to q1 with value pλ1, λ2q and
R contains λ1 arrows from r to r1.

Example 3.2. Continuing example 2.3 we depict D b D:

‚

��

‚ // ‚ //

��

‚

��

__

// ‚

��

‚

��

‚ // ‚

tt

// ‚

tt

__

// ‚

tt

‚

OO

::

��

‚ //

OO

;;

‚

;;

OO

//

��

‚

��

::

OO

__

// ‚

~~

OO

;;

‚

OO

��

‚ //

OO

‚

��

OO

// ‚

��

OO

__

// ‚

~~

OO

‚

OO

‚ //

OO

‚

OO

// ‚

OO

__

// ‚

OO
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We refer to a quiver R as a Dynkin quiver if it emerges as an orientation of a sim-
ply laced Dynkin diagram. In this section we provide explicit maximal green sequence
for the triangle product Q b R for a (possibly valued) acyclic quiver Q and a Dynkin
quiver R. More precisely, we merely assume that Q admits a source maximal green se-
quence, i.e. a maximal green sequences consisting solely of sources, and that R admits
a sink maximal green sequence. By [4, Lemma 2.20] a quiver Q admits a source maximal
green sequence precisely if it is acyclic. Furthermore, by [4, Proof of Theorem 4.4] any
Dynkin quiver R admits a sink maximal green sequence. We conjecture

Conjecture 3.3. A quiver R has a sink maximal green sequence precisely if it is a Dynkin quiver.

For a quiver Q and an ice quiver rR we introduce the following variant of the triangle
product:

Definition 3.4. Let rR be an ice quiver with mutable part R and Q be a quiver. The vertex set of
the frozen triangle product Q bf

rR of Q and rR is pQ bf
rRq0 “ Q0 ˆ rR0. The mutable part of

Q bf
rR is Q b R. The arrows between the frozen vertices Q0ˆ prR0zR0q and the mutable vertices

Q0 ˆ R0 are given by the images of the arrows between prR0zR0q and R0 under the maps
rR ãÑ Q bf

rR, r ÞÑ pq, rq pq P Q0q. (3.1)

Example 3.5. We continue Example 2.3 and depict A2 bfp pDv4q:

v2,5

��

��

v2,1

��

// v2,2

��

{{

// v2,3

{{

<<

##��

v2,4

yy

oo

v1,5

bb

��

v1,1

__

��

// v1,2

__

��

// v1,3

bb

<<

""��

v1,4

__

oo

v2,5

v2,1 v2,2 v2,3 v2,4

OO

v1,5

v1,1 v1,2 v1,3 v1,4

OO

We assume that t is a sink of R and that Q is acyclic and thus possesses a source
maximal green sequence S . Then the frozen triangle product Q bf

rR is well-behaved
under mutation at S ˆ ttu in the following sense (compare [18, Lemma 7.2] for a similar
statement).

Proposition 3.6. Let rR be an ice quiver with mutable part R and t P R a green sink. If Q is an
acyclic quiver with source maximal green sequence S then

QS bf
rRt “

´

Q bf
rR
¯

pS ˆ ttuq . (3.2)
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Proof. Since both triangle products and source mutations commute with unions it suf-
fices to show the claim for S “ pS1,S2q. Since S1 is a source in Q and t P R a sink we
have

QS b Rt “ pQ b Rq pS1, tqpS2, tq. (3.3)

We say a vertex is of level i if it is in tSiu ˆ rR. We need to show that there are no arrows
between frozen vertices of level 1 and mutable vertices of level 2 in pQ bf

rRqpS1, tqpS2, tq
and vice versa. Since S1 P Q is a source and t P R is a sink, there is no arrow from a
vertex of level 2 targeting pS1, tq P Q bf

rR and no arrow from a vertex of level 2 targeting
pS2, tq P pQ bf

rRqpS1, tq. The claim thus follows since there are no arrows departing from
a frozen vertex of level k targeting pSk, tq P Q bf

rR due to t P rR being green.

Our maximal green sequence on Q b R are composed of maximal green sequences
of Q and R utilizing the following construction.

Definition 3.7. Given sequences S “ pSiq
n
i“1 Ă Q0 and T “ pTjq

m
j“1 Ă R0 of vertices of Q and

R, respectively, we write

S b T Ă pQ b Rq0 “ tpq, rq | q P Q, r P Ru

for the sequence

m
ź

j“1

n
ź

i“1

pSi, Tjq :“ pS1, T1q, . . . , pSn, T1q, . . . , pS1, Tmq, . . . , pSn, Tmq.

We show

Theorem 3.8. Let S and T be maximal green sequences of Q and R, respectively. If S is a
source sequence and T is a sink sequence, then S b T is a maximal green sequence for Q b R.
Furthermore:

σSbT “ σS ˆ σT “ idˆσT

Proof. We write T k :“ pTiq
k
i“1 for k “ 0, . . . , m and prove by induction on k
´

Q bf
pR
¯´

S b T k
¯

“ pQSqbf
´

pRT k
¯

(3.4)

as follows:
´

Q bf
pR
¯´

S b T k`1
¯

“

´

Q bf
pR
¯´

S b T k
¯

pS ˆ tTk`1uq

“

´

pQSqbf
´

pRT k
¯¯

pS ˆ tTk`1uq

“

´

Q bf
´

pRT k
¯¯

pS ˆ tTk`1uq

“ pQSqbf
´

pRT k`1
¯
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The first equality follows from Definition 3.7. The second equality holds by the induction
hypothesis. The third equality holds since for any source maximal green sequence S we
have σS “ id. Finally, the fourth equality is due to Proposition 3.6.

Since {Q b R » Q bf
pR we obtain from (3.4) with k “ n that S b T is a reddening

sequence for Q b R with σSbT “ σS ˆ σT . Since S is a source sequence we have σS “ id.
It remains to prove that S b T is a green sequence for Q b R. We need to show that

for j P rms and i P rns the vertex pSi, Tjq is green in

{pQ b RqpS b T j´1
q

i´1
ź

k“1

pSk, Tjq » pQ bf
pRqpS b T j´1

q

i´1
ź

k“1

pSk, Tjq. (3.5)

Since T is a green sequence for R, the vertex Tj is green in pRT j´1 by virtue of an arrow
Tj Ñ

pTk. Thus, by (3.4) the vertex pSi, Tjq is green in pQ bf
pRqpS b T j´1q by virtue of

pSi, Tjq Ñ pSi, Tkq. Again by (3.4) the full subgraph of pQ bf
pRqpS b T j´1q supported on

tpS1, Tjq, . . . , pSi´1, Tjqu is not connected to pSi, Tkq. Consequently, pSi, Tjq remains green
in (3.5) by virtue of pSi, Tjq Ñ pSi, Tkq.

Remark 3.9. In [15, Theorem 2] the existence of maximal green sequences for triangle products
of a cycle with a Dynkin quiver is proved.

Dually we obtain

Theorem 3.10. Let S and T be maximal red sequences of Q and R, respectively. If S is a
sink sequence and T is a source sequence, then S b T is a maximal red sequence for Q b R.
Furthermore:

σSbT “ σS ˆ σT “ idˆσT

Proof. The statement follows from Theorem 3.8 by dualizing, i.e. turning around all
arrows.

4 The Fock–Goncharov conjecture

Let rQ be an (ice-)quiver without loops and 2-cycles. Fomin and Zelevinsky associated
in [8] to rQ a cluster algebra A “ Ap rQq. In [14] a canonical basis, called theta basis, which
is naturally identified with the tropical points of the corresponding mirror dual cluster
algebra as predicted by the full Fock–Goncharov conjecture [7] is constructed for clus-
ter algebras Ap rQq satisfying certain conditions. In particular, the full Fock–Goncharov
conjecture for the cluster algebra associated to an ice quiver rQ follows from the work
of Gross–Hacking–Keel–Kontsevich ([14, Proposition 8.24, Proposition 8.25, Proposition
8.27, Lemma 9.10]) assuming
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1. the existence of a reddening sequence for Q,

2. that every frozen vertex has an optimized seed,

3. that the matrix B has full rank.

Here B is the matrix associated to the mutable part QB of rQ and we make use of the
following

Definition 4.1. A frozen vertex v of an ice quiver rQ is said to have an optimized seed, if there
exists a sequence of mutations S such that in rQS there is no arrow with source v. We call such a
sequence S an optimization sequence for v P rQ.

Example 4.2. All frozen vertices in Example 3.5 are optimized besides v1,4 and v2,4.

As an immediate application of Theorem 3.8 we obtain property (1) for triangle prod-
ucts Q b R of an acyclic quiver Q and a Dynkin quiver R. In general (3) ceases to hold
for Q b R. We are, however, interested in the quivers Q b A‚n, where An is of type A
and A‚n is obtained from An by freezing the vertices corresponding to the end points of
the underlying Dynkin diagram.

Remark 4.3. We emphasize that we obtain Q b A‚n from Q and A‚n using Definition 3.1 of
the unfrozen triangle product and not Definition 3.4. Thus, Q b A‚n is obtained by freezing the
vertices pq, rq in Q b An for those r P An corresponding to endpoints of the underlying Dynkin
diagram.

The quivers Q b A‚n satisfy properties (1) - (3) and thus by the work of Gross-Hacking-
Keel-Kontsevich the full Fock–Goncharov conjecture holds:

Theorem 4.4. Let Q be an acyclic quiver and An a Dykin quiver of type A. Then properties (1)
- (3) hold for Q b A‚n.

Proof. Property (1) holds for Q b A‚n due to Theorem 3.8 applied to the triangle product
of Q and the mutable part of A‚n. Furthermore, a simple induction argument yields (3)
for Q b A‚n.

It remains to show (2). We first assume that An is linearly ordered with arrows from ri
to ri`1. By induction on 2 ď k ď n´ 1 we show: In R “ Q b A‚npq, r2q, . . . , pq, rkq there
is a triangle pq, r1q Ñ pq, rk`1q Ñ pq, rkq Ñ pq, r1q of arrows with value p1, 1q. There is
no other arrow departing from pq, r1q. The only other arrow possibly departing from
pq, rk`1q has value p1, 1q and is targeting pq, rk`2q.

For k “ 2 the claim follows directly by the construction of Q b A‚n. We deduce the
claim for k` 1 from k as follows. By the induction hypothesis there are arrows pq, r1q Ñ

pq, rk`1q Ñ pq, rkq Ñ pq, r1q in R as well as an arrow pq, rk`1q Ñ pq, rk`2q all with value
p1, 1q. Therefore, in Rpq, rk`1q there is a triangle pq, r1q Ñ pq, rk`2q Ñ pq, rk`1q Ñ pq, r1q of
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arrows with value p1, 1q. Since the only arrow in R departing from pq, r1q targets pq, rk`1q

with value p1, 1q and the only arrows departing from pq, rk`1q target pq, rkq and pq, rk`2q

both with value p1, 1q, we conclude that in Rpq, rk`1q the only arrow departing from
pq, r1q targets pq, rk`2q with value p1, 1q. Furthermore, since to each arrow in Q b A‚n
with value pa, bq departing from pq, rk`2q targeting v ‰ pq, rk`3q there is an arrow v Ñ
pq, rk`1q with value pb, aq, and since both v and pq, rk`2q are not connected by arrows
to tpq, r1q, . . . , pq, rkqu in Q b A‚n, the only arrows possibly departing from pq, rk`2q in
Rpq, rk`1q are targeting pq, rk`3q and pq, rk`1q both with value p1, 1q.

From our claim for k “ n we conclude that

Lq :“ pq, r2q, . . . , pq, rn´1q (4.1)

is an optimization sequence for pq, r1q.
For the general case we denote the frozen vertices of An with a1 and an. Then

there exist source sequences T p1q Ă Anztanu and T pnq Ă Anzta1u such that AnztanuT p1q
and Anzta1uT pnq are linearly ordered with sources a1 and an, respectively. Choosing a
sink maximal red sequence S for Q we obtain by (4.1) and the dual version of Proposi-
tion 3.6 that

pq, r1q P pQ b A‚nqpS b T p1qqLq and

pq, rnq P pQ b A‚nqpS b T pnqqL´1
q

are optimized, where L´1
q “ pq, rn´1q, pq, rn´2q . . . , pq, r2q.

Example 4.5. Let D4 correspond to a suitable orientation of the Dynkin diagram with the same
name and A4 be a linear oriented type A quiver with 4 vertices. Then D4 b A‚4 looks as follows:

p1, 5q // p2, 5q

��

// p3, 5q //

����

p4, 5q

p1, 4q // p2, 4q

##

// p3, 4q //

##

p4, 4q

p1, 1q // p2, 1q

kk

gg

{{

// p3, 1q //

kk

gg

{{

p4, 1q

kk

gg

{{
p1, 2q // p2, 2q //

cc

{{

p3, 2q //

{{

cc

p4, 2q

{{
p1, 3q // p2, 3q //

cc

p3, 3q //

cc

p4, 3q

Here we depict the frozen vertices using blue. We then obtain the maximal green sequence

p3, 5q, p3, 4q, p3, 3q, p3, 2q, p3, 1q, p2, 5q, p2, 4q, p2, 3q, p2, 2q, p2, 1q, p3, 5q, p3, 4q, p3, 3q, p3, 2q, p3, 1q
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for the mutable part D4 b A2 of D4 b A‚4. Furthermore, we obtain for i P r5s the following
optimization sequences. For the vertex p1, iq

Li “ p2, iq, p3, iq

and for p4, iq:
´

S b T p4q
¯

L´1
i “p2, 1q, p2, 2q, p2, 3q, p2, 4q, p2, 5q, p3, 1q, p3, 2q, p3, 3q, p3, 4q, p3, 5q,

p2, 1q, p2, 2q, p2, 3q, p2, 4q, p2, 5q, p3, iq, p2, iq.

4.1 The Fock–Goncharov conjecture for large double Bruhat cells

Let G be a simply-connected, connected, semisimple complex algebraic group with Weyl
group W. Let B˘ Ă G be a pair of opposite Borel subgroups of G. Berenstein, Fomin
and Zelevinsky equipped in [2] the coordinate ring of the double Bruhat cells

Gv,w :“ B`vB` X B´wB´

associated to v, w P W with the structure of an upper cluster algebra by introducing
appropriate ice quivers.

To be more precise, Berenstein, Fomin and Zelevinsky attach to each pair of reduced
words for pv, wq an ice quiver rQ defining an upper cluster algebra structure on the
coordinate ring of Gv,w. The resulting structure does not depend on the chosen pair of
reduced words. In [14] a canonical basis, called theta-basis, has been constructed for
cluster algebras, which satisfy properties (1) - (3). As a byproduct of [14] and (1) - (3)
one obtains that the associated upper cluster algebra turns out to be an honest cluster
algebra. For Gv,w this previously is established in [11].

We are intersted in the properties (1) - (3), which by [14] imply the full Fock–
Goncharov conjecture for Gv,w.

In [2, Proposition 2.6] property (3) is proved for the quivers under consideration.
Furthermore, the mutable part Q of rQ may be chosen as a full subquiver of D b AN,
where D is an orientation of the Dynkin diagram associated to G. Using [22, Theorem 9]
we therefore obtain property (1) for Gv,w from Theorem 4.4. For the big cells Ge,w0 , Gw0,e

and Gw0,w0 we furthermore obtain explicit optimization sequences from Theorem 4.4.
Here w0 denotes the longest element and e the identity in W.

Theorem 4.6. Properties (1) and (3) hold for the cluster structure on Gu,v. Furthermore, the big
double Bruhat cells Ge,w0 , Gw0,e and Gw0,w0 additionally satisfy (2).

Proof. It remains to provide optimization sequences for the big double Bruhat cells Ge,w0 ,
Gw0,e and Gw0,w0 . If G is not of type A, we may choose a reduced word for w0 of the
form ih{2, where i is a reduced word for the Coxeter element and h the Coxeter number
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of G. The construction [2, chapter 2.1] then yields the ice quivers D b
ÐÝ
A‚N, D b

ÝÑ
A‚N

and D b
ÐÑ
A‚M defining the cluster structures on Gw0,e, Ge,w0 and Gw0,w0 , respectively. Here

D is any orientation of the Dynkin diagram of G,
ÐÝAN and

ÝÑAN denote the linearly oriented
quiver with N “ 1` h{2 vertices and

ÐÑAM denotes the type A quiver with M “ 1` h
vertices possessing a unique source in the middle vertex. The claim therefore follows
from Theorem 4.4.

For G of type An we choose lexicographic minimal reduced words. Optimization se-
quences for the resulting quivers for Ge,w0 , Gw0,e and Gw0,w0 produced by [2, chapter 2.1]
can easily be constructed similar to the linear oriented case of Theorem 4.4.

Remark 4.7. For SLe,w0 and SLw0,e Theorem 4.6 is due to [20]. Compare also with [21]. In
the case of double Bruhat cells, Goodearl and Yakimov announced in [13] (see also [14, Example
0.15]) the existence of maximal green sequences. The existence of maximal green sequences for
Gu,v has been shown previously in [23, Theorem 4.1] (see also [24]).
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