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Naruse hook formula for linear
extensions of mobile posets
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Abstract. Linear extensions of posets are important objects in enumerative and alge-
braic combinatorics that are difficult to count in general. Families of posets like straight
shapes and d-complete posets have hook-length product formulas to count linear ex-
tensions whereas families like skew shapes have determinant or positive sum formulas
like the Naruse hook length formula from 2014. In 2020, Garver et. al. gave determi-
nant formulas to count linear extensions of a family of posets called mobile posets that
refine d-complete posets and border strip skew shapes. We give a Naruse type hook
length formula to count linear extensions of such posets as well as q-analogues of our
formula in both major and inversion index.
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1 Introduction

The number of standard Young tableaux (SYT) of a shape λ is counted by the famous
hook-length formula:

Theorem 1.1 (Frame-Robinson-Thrall [2]). Let λ be a partition of n. We have

|SYT(λ)| = n! ∏
u∈[λ]

1
h(u)

,

where h(u) = λi + λ′j − i− j + 1 is the hook length of the square u = (i, j).

Naruse introduced a more general formula to count the number of SYT of skew-shape
as a sum over excited diagrams of products of hook-lengths.

Theorem 1.2 (Naruse [7]). For a skew shape λ/µ of size n, we have

|SYT(λ/µ)| = n! ∑
D∈E(λ/µ)

∏
u∈[λ]\D

1
h(u)

, (NHLF)

where E(λ/µ) is the set of excited diagrams of λ/µ.

*park@math.umass.edu received support form the NSF grant (DMS-1855536).

mailto:park@math.umass.edu


2 GaYee Park

In [4], Morales, Pak and Panova introduces a combinatorial proof of NHLF based on
the case of border strips, connected skew-shapes with no 2× 2 box.

The number of SYT of shape λ/µ can also be interpreted as the number of linear
extension of a poset induced by the Young diagram of λ/µ. In [10], Proctor defined the
family of d-complete posets, that include Young diagrams and rooted trees, and proved a
hook-length formula to count the number of linear extensions.

Theorem 1.3 (Peterson-Proctor [10]). The number of linear extensions of a d-complete poset P
with n element is

e(P) = n!
∏x∈P hP (x)

,

where hP (x) is the hook-length of x ∈ P .

A mobile poset is a recent common refinement of border strips and d-complete posets
introduced in [3] (see Figure 1, (a)). The authors found a determinantal formula for the
number of linear extensions of these posets, similar to Jacobi–Trudi formula and asked
whether there was a Naruse-type formula [3, Sec. 6.1] for this number. The first main
result of this extended abstract is a Naruse hook-length formula for mobile posets.

Theorem 1.4 (NHLF for mobiles). Let Pλ/µ(p) be a free-standing mobile poset of size n with
underlying border strip λ/µ and p = (p(r1,s1)

, . . . , p(rk,sk)
) the d-complete posets hanging on

(r, s). Then we have,

e(Pλ/µ(p)) =
n!

H(p) ∑
D∈E(λ/µ)

∏
(i,j)∈γ

1
h′(i, j)

, (1.1)

where h′(i, j) = λi − i + λ′j − j + 1 + ∑r≥i,s≥j |p(r,s)|, and H(p) is the product of hook lengths
of all elements in the d-complete posets hanging from λ/µ.

As an application to this main theorem, we give bounds to generalizations of Euler
number defined in [3]. See Corollary 4.1 and Corollary 4.2.

Moreover, there is the following q-analogue of the NHLF for semistandard Young
tableaux proved in [6]. We state this result in terms of emaj

q (P, ω) := ∑σ qmaj(σ) where
(P, ω) is a labeled poset, and σ is a linear extension of it.

Theorem 1.5 (Morales-Pak-Panova [6]). For a skew shape λ/µ with associated poset Qλ/µ

with ω Schur labeling, we have:

emaj
q (Qλ/µ, ω)

∏n
i=1(1− qi)

= ∑
D∈E(λ/µ)

qw(Br(D)) ∏
u∈[λ]\D

1
1− qh(u)

(1.2)

where w(Br(D)) is the sum of hook-lengths of the support of broken diagonals.
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Naruse-Okada [8] have a different q-analogue of emaj
q (P, ω) for a family called skew

d-complete posets with natural labelings.
Our second result is the q-analgoue of Theorem 1.4 in terms of major index for all

mobile posets.

Theorem 1.6. For a labeled mobile poset (Pλ/µ, ω) with ω reverse Schur labeling on [λ/µ] and
natural labeling on d-complete posets,

emaj
q (Pλ/µ, ω)

∏n
i=1(1− qi)

= ∏
v∈p

1
1− qh(v) ∑

D∈E(λ/µ)

qw′(Br(D)) ∏
u∈[λ]\D

1
1− qh′(u)

, (1.3)

where w′(Br(D)) = ∑u∈Br(D) h′(u).

We also have a q-analogue in terms of inversion statistic for the mobile trees (d-
complete posets that are restricted to rooted trees).

Theorem 1.7. For a labeled mobile poset (Pλ/µ, ω) with ω reverse Schur labeling on [λ/µ] and
natural labeling on d-complete posets,

einv
q (Pλ/µ, ω)

∏n
i=1(1− qi)

= ∏
v∈p

1
1− qh(v) ∑

D∈E(λ/µ)

qw(Br(D))+qpD ∏
u∈[λ]\D

1
1− qh′(u)

, (1.4)

where w(Br(D)) = ∑u∈Br(D) h(u) and pD = ∑(i,j)∈[µ]\D ∑b=j pa,b.

In Section 2, we give definitions and background results required for the proof. In
Section 3, we give an example and the proof for Theorem 1.4. In Section 4, we show an
application to the main theorem. Finally, In Section 5, we give examples and sketch the
proofs of the q-analogues.

The full length of this extended abstract is available at [9].

2 Background

2.1 Posets and linear extensions

A linear extension of an n-element poset P is a bijection f : P → [n] that is order-
preserving. The number of SYT of a shape λ/µ is equal to the number of linear extensions
of a poset of shape λ/µ. We denote the set of linear extensions of P as L(P), and
e(P) = |L(P)|. We have the following formula for the number of linear extensions of a
disjoint sum.

Proposition 2.1. The number of linear extensions of a disjoint sum of posets Pi, each of size ni,
is e(P1 + · · ·+ Pk) = (n1+···nk

n1,···nk
)e(P1) · · · e(Pk).
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Figure 1: (a) The conversion of tableaux to mobile posets. (b) Excited move (c) Excited
diagrams and the corresponding broken diagonals of (2, 2, 2, 1)/(1, 1)

2.2 Border strips and Mobile Posets

A border strip is a connected skew shape λ/µ containing no 2× 2 box. A family of d-
complete posets are a large class of posets containing rooted tree posets and posets arising
from Young diagrams. Given a border strip, we can convert it into a poset by letting the
inner corners of the diagram be the maximal points of the corresponding poset. Now
we can construct a mobile poset (See Figure 1 (a) for an example).

Definition 2.2 (Garver-Grosser-Matherne-Morales [3]). A mobile1 (tree) poset is a poset
obtained from a border strip Q, by allowing every element x ∈ Q to cover the maximal element
of a nonnegative number of disjoint d-complete (rooted tree) posets.

2.3 Excited diagrams and broken diagonals

Denote [λ/µ] as the skew shape Young diagram of a shape λ/µ. An excited diagram
of λ/µ, denoted by D, is a subset of [λ] obtained from µ by applying a sequence of
excited moves that we define next. Let D ∈ E(λ/µ), then (i, j) ∈ D is an active cell if
(i + 1, j), (i, j + 1), and (i + 1, j + 1) are not in D. We obtain a new excited diagram by
replacing an active cell by (i + 1, i + j) (see Figure 1, (b)). Note that for border strips, the
excited diagrams can also be interpreted as the complement of its lattice paths γ from
(λ′1, 1)→ (1, λ1) that stay inside [λ] (see[4, Sec. 3]).

For each excited diagram D ∈ E(λ/µ) we associate a set of broken diagonals Br(D) ⊂
[λ] \ D as follows. Start with D = [µ], then Br(D) = {(i, j) ∈ λ/µ|i − j = µt − t}, for
1 ≤ t ≤ `(λ) − 1 and µt = 0 if `(µ) < t ≤ `(λ). For each active cell u = (i, j) and
its excited move αu : D → D′, we have a corresponding move for the broken diagonal
where Br(D′) = Br(D) \ {(i + 1, j + 1)} ∪ {(i + 1, j)}}. See Figure 1, (b) and (c).

1What we call a mobile poset is called a free-standing mobile poset in [3].



Naruse hook formula for linear extensions of mobile posets 5

2.4 Multivariate function

For border strip λ/µ, let

Fλ/µ(x, y) = Fλ/µ(x1, . . . , xλ′1
, y1, . . . , yλ1) := ∑

D∈E(λ/µ)
∏

(i,j)∈[λ]\D

1
xi − yj

. (2.1)

Let λ/ν be the shape obtained by removing an inner corner of λ/µ. We denote this
subtraction by µ → ν. Note that for border strips, λ/ν is disconnected. We denote each
disconnected component as λ/ν1 and λ/ν2.

We need the following identity of Fλ/µ(x, y) from [4].

Lemma 2.3 (Pieri-Chevalley formula [4, Eq. (6.3)]).

Fλ/µ(x, y) =
1

x1 − y1
∑

µ→ν

Fλ/ν1(x, y)Fλ/ν2(x, y), (2.2)

where λ/ν1 and λ/ν2 are the two connected border strips that form λ/ν.

2.5 q-analogues of linear extensions

A labeled poset (P , ω) is a poset P with a labeling ω : P → [n]. We call ω a natural labeling
if for any x, y ∈ P with x <P y, we have ω(x) < ω(y) [11]. We call ω a reverse Schur
labeling if the labeling increases as it follows the path from the right end of the poset [11].
For Theorem 1.7 and Conjecture 1.6, we use reverse Schur labeling on [λ/µ] and natural
labeling on the d-complete posets. In the case of inversion statistic, for each µ → ν, we
need ω(x1) > ω(x2) for all xi ∈ λ/νi to satisfy the condition for Proposition 2.6

Given a linear extension f : P → [n], the permutation ω ◦ f−1 ∈ Sn is a linear
extension of the labeled poset, L(P , ω). Recall, maj(σ) = ∑i∈Des(σ) i and inv(σ) = #{i ∈
[n− 1]|σi > σj where i < j} where Des(σ) := {i ∈ [n− 1] | σi > σi+1}. The two common
statistics for q-analogues of the number of linear extensions for a labeled poset (P , ω)
are the major index and inversions.

Let stat ∈ {maj, inv}, the major index (inversion) q-analogue of the number of linear
extensions of a labeled poset (P , ω) is

estat
q (P , ω) := ∑

σ∈L(P ,ω)

qstat(σ).

Now we state the q-analogue of the hook-length formulas. We define the q-integer
[n]q := 1 + q + · · ·+ qn−1 and the q-factorial [n]q! := [n]q · · · [2]q[1]q. We also define the

q-multinomial coefficients
[

n
p

]
q

:= [n]!
[p]q![n−p]q! .

Peterson and Proctor [10] gave a q-analogue formula in terms of major index for
d-complete posets.
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Theorem 2.4 (Peterson and Proctor [10]). Let (P , ω) be a labeled d-complete poset of size n
with any labeling. Then,

emaj(P ,ω)
q = qmaj(P ,ω) [n]q!

∏x∈P [hP (x)]q
.

Björner and Wachs [1] gave a q-analogue formula in terms of inversion index for
rooted tree posets.

Theorem 2.5 (Björner and Wachs [1]). Let (P , ω) be a rooted tree poset with a natural labeling.
Then,

einv
q (P , ω) = qinv(P ,ω) [n]q!

∏x∈P [hP (x)]q
.

For both major [11, Exercise 3.162(a)] and inversion [1] statistics, we have the follow-
ing proposition.

Proposition 2.6. Let (P + Q, ω) be a labeled disjoint sum of posets with |P + Q| = n and
|P| = p. Suppose that ω has the property that the label of every element of P is smaller than the
label of every element of Q. We have

einv
q (P + Q, ω) =

[
n
p

]
q

einv
q (P, ω1) · einv

q (Q, ω2),

where ω1 and ω2 are the labeling obtained by restricting ω to P and Q respectively.

The formula for the disjoint sum in major index is the same, and it applies for all
labeling.

3 Proof of the NHLF for Mobiles

In this section we sketch the proof of Theorem 1.4. The proof follows the proof of the
NHLF for border strips in [4]. We need to first define the hook lengths of mobile posets.
Given a mobile poset Pλ/µ(p), define the hook length of (i, j) ∈ [λ] as follows:

h′(i, j) = λi − i + λ′j − j + 1 + ∑
a≥i,b≥j

pa,b (3.1)

In other words, it is the usual hook length of the cell in λ plus the sizes of the d-
complete posets that are attached on the segment of the border strip inside of the hook
of (i, j) (see Figure 2 (a)). We provide an example of the main theorem below.
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h′(i, j) = h(i, j) +
∑

a≥i,b≥j
pa,b

u

h′(u) = 3 + 4

(a)

5 1

7 6

712
13

(b)

11 6

10 5

4

2 1

3

78
9

(c)

... ... ... ...

p p p p

p p p p

1 2 k − 1

1 2 k − 1

(d)

Figure 2: (a): h′(u) is the usual hook-length plus the size of d-complete posets in the
shaded area. (b): mobile poset with hook-lengths marked. (c): a labeled mobile tree.
(d): illustration of poset Cp(k) (top) and Ap(k) (bottom).

Example 3.1. Consider the mobile poset P2221/11 from Figure 2 (b). By Theorem 1.4, one can
check that

e(P) =
13!

24 · 42

(
1

5 · 6 · 72 +
1

5 · 6 · 72 · 12
+

1
5 · 72 · 12 · 13

)
= 33000. (3.2)

Now we give the proof of the theorem. Let Hλ/µ be the sum on the RHS of (1.1).
Then we have the following lemma.

Lemma 3.2. Hλ/µ = 1
n ∑µ→ν Hλ/ν1 Hλ/ν2

Proof. We evaluate F(x, y) from (2.1) at the following values of xi and yj:

xi = λi − i + 1−∑
a<i

pa,b and yj = j− λ′j −∑
b≥j

pa,b.

Note that x1 − y1 = n and xi − yj = h′(i, j). Evaluating Fλ/µ(x, y) at such xi and yj,
we obtain the sum on the RHS of (1.1).

Fλ/µ(x, y) |xi=λi−i+1+∑a≥i pa,b
yj=j−λ′j+∑b<j pa,b

= ∑
γ:(λ′1,1)→(1,λ1),γ⊂λ

∏
(i,j)∈γ

1
h′(i, j)

= Hλ/µ (3.3)

Then, evaluating (2.2) at such xi and yj, we obtain the desired equation.

Similar to skew shaped SYT, we have the following recurrence for mobile posets:

Lemma 3.3. For a mobile poset Pλ/µ, we have

e(Pλ/µ) = ∑
µ→ν

e(Pλ/ν), (3.4)

where ν is obtained by adding an inner corner of λ/µ to µ.
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Proof. For a fixed mobile Pλ/µ, a linear extension of this poset consists of an inner corner
of λ/µ followed by a linear extension of the remaining poset of shape λ/ν, where µ →
ν. Conversely, given a linear extension of Pλ/ν, by inserting the new element in the
beginning we obtain a linear extension of Pλ/µ.

We are now ready to give the proof for Theorem 1.4.

Proof of Theorem 1.4. We induct on |λ/µ| to show that e(Pλ/µ(p))/n! = Hλ/µ/H(p) us-
ing Lemma 3.3. Note that λ/ν is disconnected and

Pλ/ν = Pλ/ν1 + Pλ/ν2 + T1 + · · ·+ Tk, (3.5)

where Pλ/ν1 , Pλ/ν2 are the two connected free standing mobiles of size p1 and p2, and
T1, . . . , Tk, for k ≥ 0, are the d-complete posets of sizes t1, . . . , tk hanging from the re-
moved inner corner in Pλ/µ. By Proposition 2.1 we have

e(Pλ/ν) =

(
n− 1

p1, p2, t1, . . . , tk

)
e(Pλ/ν1)e(Pλ/ν2)e(T1) · · · e(Tk),

then using this, (3.4) becomes

e(Pλ/µ)

(n− 1)!
= ∑

µ→ν

(
k

∏
i=1

e(Ti)

ti!

)
e(Pλ/ν1)

p1!
e(Pλ/ν2)

p2!
. (3.6)

Since Ti is d-complete then e(Ti)/ti! = 1/H(Ti), by Thoerem 1.3. Also, both

|λ/ν1|, |λ/ν2| < |λ/µ|,

by induction e(Pλ/νj)/pj! = Hλ/νj /H(pj) for j = 1, 2, where H(pj) is the product of the
hook lengths of the elements in the d-complete posets hanging from [λ/νj]. Note that
H(p) = H(p1)H(p2)H(T1) · · ·H(Tk). Then (3.6) becomes

e(Pλ/µ) =
(n− 1)!

H(p) ∑
µ→ν

Hλ/ν1 Hλ/ν2 . (3.7)

By Lemma 3.2, the sum on the RHS of (3.7) equals n ·Hλ/µ, completing the proof.

4 Application

As an application to Theorem 1.4, it gives bounds to e(Pλ/µ(p)) just as in [5].
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Corollary 4.1. For any mobile poset e(Pλ/µ(p)) of size n,

n!
H(p)∏u∈[λ/µ] h′(u)

≤ e(Pλ/µ(p)) ≤ |E(λ/µ)| · n!
H(p)∏u∈[λ/µ] h′(u)

where [λ/µ] is the border strip of the mobile poset.

One application of the formula is that it provides bounds to generalizations of Euler
numbers defined in [3]. The authors give two generalizations of Euler number using two
different families of posets, up-down posets with k− 1 downs and chains (or anti-chains)
of size p hanging on every minimal element,denoted as Cp(k) and Ap(k) (see Figure 2
(d)). See A332471 and A332568 in the OEIS for examples of these sequences.

Corollary 4.2.

(2k + kp)!
(p + 1)!k(2p + 3)k−1(p + 2)

≤ e(Cp(k)) ≤ Cat(k) · (2k + kp)!
(p + 1)!k(2p + 3)k−1(p + 2)

(2k + kp)!
(p + 1)k(2p + 3)k−1(p + 2)

≤ e(Ap(k)) ≤ Cat(k) · (2k + kp)!
(p + 1)k(2p + 3)k−1(p + 2)

,

where Z is the up-down border strip with k− 1 many down steps.

Proof. The result follows from Corollary 4.1, a routine calculations of hooks, and the fact
that the excited diagrams of up-down posets are given by the Catalan numbers [4]

5 q-analogues of the Naruse-type formula for mobiles

5.1 An inversion index q-analogue

In this section we give an example and sketch the proof of Theorem 1.7. Unless specified
otherwise, (Pλ/µ(p), ω) is a labeled mobile tree poset.

Example 5.1. Consider labeled the mobile tree poset (P2221/11, ω) from Figure 2 (c). By Theo-
rem 1.7, we have

einv
q (P) =

[11]!
[1]4[3]2

(
q4

[4][6][1][5][6]
+

q9

[4][6][10][5][6]
+

q14

[4][6][10][11][6]

)
= q38 + 4q37 + 9q36 + 17q35 + · · ·+ 9q6 + 4q5 + q4.

Denote the sum on the RHS of (1.4) as H̃λ/µ(q). We have the following lemma.

https://oeis.org/A332471
https://oeis.org/A332568
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Lemma 5.2. We have (1− qn) · H̃λ/µ = ∑µ→ν qλ′1−1+c(u) · H̃λ/ν1(q) · H̃λ/ν2(q), where c(u) =
j− i for u = (i, j), the inner corener from µ→ ν

Proof. We first evaluate Fλ/µ(x, y) at xi = qλi−i+1−∑a<i pa,b and yj = qj−λ′j−∑b≥j pa,b .

Fλ/µ(x, y) |
xi=qλi−i+1−∑a<i pa,b ,yj=q

j−λ′j−∑b≥j pa,b
= (−1)n · ∑

γ:A→B,
γ⊂λ

∏
(i,j)∈γ

qλ′j−j+∑b≥j pa,b

1− qh′(i,j)
(5.1)

By [6, Prop 4.7] and [6, Lemma 7.17], we have

∑
(i,j)∈λ\D

(
(λ′j − j) + ∑

b≥j
pa,b

)
= ∑

(i,j)∈[λ]\D

(
(λ′j − i) + ∑

b≥j
pa,b

)
− ∑

(i,j)∈[λ]\[µ]
c(i, j)

= w(Br(D)) + ∑
(i,j)∈[λ]\D

∑
b≥j

pa,b − ∑
(i,j)∈[λ]\[µ]

c(i, j) (5.2)

where c(i, j) = j− i and w(Br(D)) = ∑(i,j)∈Br(D) h(i, j). Denote ∑(i,j)∈[λ/µ] ∑b≥j pa,b as
p∗. Taking p∗ and c(i, j) outside of the sum, we can write (5.1) as

Fλ/µ(x|y) |
xi=qλi−i+1−∑a<i pa,b ,yj=q

j−λ′j−∑b≥j pa,b
= (−1)n · qp∗−∑(i,j)∈[λ/µ] c(i,j)H̃λ/µ(q) (5.3)

Then, evaluating (2.2) at such xi and yj, we obtain the desired formula.

We generalize Lemma 3.3 to the inversion index q-analogue. We have the following.

Lemma 5.3.
einv

q (Pλ/µ, ω) = ∑
µ→ν

qn−ω(u)einv
q (Pλ/ν, ων) (5.4)

where ω is a reverse Schur labeling and ω(u) is the label of the inner corner u from µ→ ν.

Proof. Recall that the linear extension σ of Pλ/µ consist of a linear extension σ′ of λ/ν

followed by an inner corner u. Note that inv(σ) = inv(σ′) + n− ω, where n− ω is the
number of inversion caused by the inner corner. The rest of the proof follows the same
argument as Lemma 3.3.

We are now ready to give the proof for Theorem 1.7.

Proof of Theorem 1.4. We show that einv
q (Pλ/µ(p)) = ∏n

i=1(1−qi)

∏v∈T 1−qh(v) · H̃λ/µ(q) by induction

on |λ/µ| using Lemma 5.3. Recall λ/ν is disconnected and is expressed as (3.5). By
induction and Theorem 2.5, for each Pλ/νj and Ti, we have

eq(P
λ/νj )

[pj]q! = (1−q)pj ·
∏v∈pj

1−qh(v) · H̃λ/νj(q) and
einv

q (Ti)

[ti]q! = qinv(Ti)

∏v∈Ti
[h(v)]q

= (1−q)ti

∏v∈Ti
(1−qh(v))

.
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Note that Ti are natural labeling, so inv(Ti) = 0 vanishes. Using Proposition 2.6 and
the equations above, we have

eq(Pλ/ν) =
∏n−1

i=1 (1− qi)

∏v∈T(1− qh(v))
H̃λ/ν1(q) · H̃λ/ν2(q)

We now apply the equation to (5.4).

eq(Pλ/µ) =
∏n−1

i=1 (1− qi)

∏v∈T(1− qh(v))
∑

µ→ν

qn−ω(u) · H̃λ/ν1(q) · H̃λ/ν2(q) (5.5)

Note that λ′1 − 1 + c(u) = n− ω(u) for ω, reversed Schur labeling. By Lemma 5.2,
the sum on the RHS of (5.5) equals (1− qn) · H̃λ/µ(q), completing the proof.

5.2 A major index q-analogue

In this section, we give an example and sketch the proof of Theorem 1.6. The poset
(Pλ/µ(p), ω) is labeled with a reversed Schur labeling on the border strip and a natural
labeling on the d-complete posets.

Example 5.4. Consider the poset (P2221/11, ω) from Figure 2 (c). By Theorem 1.6, we have

emaj
q (P) = q44 + 4q43 + 9q42 + 17q41 + · · ·+ 9q12 + 4q11 + q10

=
[11]!

[1]4[3]2

(
q10

[4][6][1][5][6]
+

q15

[4][6][10][5][6]
+

q20

[4][6][10][11][6]

)
.

Similiarly as the case of the inversion index, we have the following lemmas in terms
of the major index. Again, denote the sum of the RHS of (1.3) as Hλ/µ(q).

Lemma 5.5. We have (1− qn) · Hλ/µ(q) = ∑µ→ν q|Pλ/ν1 | · Hλ/ν1(q) · Hλ/ν2(q), where Tν is
the union of the d-complete posets that were hanging on the removed inner corner u.

Proof sketch. As done in the inversion index case, we first evaluate the multivariate for-
mula Fλ/µ at xi = qλi−i+1−∑a<i pa,b and yj = qj−λ′j−∑b≥j pa,b . We modify (5.2) as follows:

LHS = w′(Br(D)) +

(
∑

(i,j)∈[λ]\D
∑
b≥j

pa,b − ∑
(i,j)∈Br(D)

pi,j

)
− ∑

(i,j)∈[λ]\[µ]
c(i, j)

where w′(Br(D)) = ∑(i,j)∈Br(D) h′(i, j). Let p1 be the size of the d-complete posets on
Pλ/ν1 . Applying this modification to (2.2), we get the following equation.

(1− qn) · Hλ/µ(q) = ∑
µ→ν

qλ′1−1+c(u)+p1 · Hλ/ν1(q) · Hλ/ν2(q). (5.6)

Note that λ′1 − 1 + c(u) + p1 = |Pλ/ν1 |.
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Lemma 5.6. For a labeled mobile poset (Pλ/µ(p), ω), where ω is a reverse Schur labeling,

emaj
q (Pλ/µ, ω) = ∑µ→ν q|Pλ/ν1

|emaj
q (Pλ/ν, ων) where λ/ν1 is the left disconnected poset of λ/ν,

and ων is the restricted labeling of ω onto λ/ν.
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