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Abstract. We give a construction of generalized cluster scattering diagrams, gener-
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1 Introduction

This work concerns constructing analogues of scattering diagrams, cluster varieties, and
theta bases beyond the ordinary cluster algebra setting. Cluster algebras were originally
introduced by Fomin and Zelevinsky as a tool for studying total positivity [4]. Two
particularly celebrated structural features of cluster algebras are the Laurent phenomenon
and positivity. Although the Laurent phenomenon was proved in the original work of
Fomin and Zelevinsky, a proof of positivity for arbitrary cluster algebras did not appear
until the work of Gross, Hacking, Keel, and Kontsevich [9].

From a geometric perspective, one can study cluster algebras by studying cluster
varieties, which are studied in [3] as cluster ensembles (A,X ). The A-variety encodes
information about the cluster variables and the X -variety encodes information about the
coefficients in the sense of [5]. For the special case of cluster algebras with principal
coefficients, one can talk about the A cluster variety with principal coefficients, Aprin; the A
and X varieties appear, respectively, as a fiber and quotient of Aprin.

An important structural question in the study of cluster algebras concerns the exis-
tence of bases. Because the original definition of cluster algebras arose from a desire to
understand dual canonical bases, it is natural to wonder if "desirable" bases for cluster
algebras exist. Many subclasses of cluster algebras have known bases, including: the
cluster monomial basis for finite type, the generic basis for affine type [1], the generic
basis for acyclic type [7, 6], and the bangle and band bases for cluster algebras of surface
type [14]. Gross, Hacking, Keel, and Kontsevich proved the existence of the theta basis
for arbitrary cluster algebras [9].
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Their proofs of positivity and the existence of the theta basis used scattering diagrams,
a tool from algebraic geometry. Scattering diagrams were first introduced in two dimen-
sions by Kontsevich and Soibelman in [12] and then in arbitrary dimension by Gross
and Siebert in [10] as a tool for constructing mirror spaces in mirror symmetry. Gross,
Hacking, Keel, and Kontsevich constructed cluster scattering diagrams and then defined
the theta basis [9] for cluster algebras.

We parallel the work of Gross, Hacking, Keel, and Kontsevich in the context of recip-
rocal generalized cluster algebras. In particular, we construct generalized cluster vari-
eties whose rings of regular functions are generalized cluster algebras. Simultaneously,
we develop scattering diagrams which lie in the tropicalization of the Fock–Goncharov
dual of said varieties. This allows us to establish theta bases for such algebras.

We remark that in his recent Ph.D. thesis, Lang Mou outlines a related approach for
constructing cluster scattering diagrams for reciprocal generalized cluster algebras [13].
His work utilizes a different lattice structure and does not provide theta functions. Our
work occurred contemporaneously and independently.

Section 2 contains necessary background information for generalized cluster algebras.
Our construction is then given in Section 3. In Section 4, we define theta functions in terms
of broken lines and state our main result, Theorem 4.6, that given generalized fixed data
Γ and any choice of seed s and corresponding cluster scattering diagram Ds, a particular
collection Θ of theta functions defined on Ds forms a basis for the associated generalized
cluster algebra (see Theorem 4.6 for the precise statement).

2 Generalized Cluster Algebras

One natural generalization of a cluster algebra, introduced by [2], is to allow the charac-
teristic binomial exchange relations to instead contain arbitrarily many terms. Let (P,⊕)
be a semifield and F be isomorphic to the field of rational functions in n independent
variables with coefficients in P.

Definition 2.1. A labeled generalized cluster seed is a quintuple Σ = (x, y, B, R, a) such
that x = (x1, . . . , xn) is a free generating set for F , y is an n-tuple with elements in P, B = [bij]
is an n× n skew-symmetrizable matrix with entries in Z, R is an n× n diagonal matrix with
positive integer entries whose i-th diagonal entry is denoted by ri, and a = (ai,s)i∈[n],s∈[ri−1] is a
collection of elements in P. We refer to x = (x1, . . . , xn) as the cluster of Σ, y = (y1, . . . , yn) as
the coefficient tuple, B as the generalized exchange matrix, R as the exchange degree matrix,
and a as the exchange coefficient collection. The elements x1, . . . , xn are the cluster variables of
Σ and y1, . . . , yn are its coefficient variables.

Together, the data of the exchange degree matrix R and the exchange coefficient
collection a determine a set of exchange polynomials ρ1, . . . , ρn, where for each i, we have
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ρi(u) = 1+ ai,1u+ · · ·+ ai,ri−1uri−1 +uri ∈ ZP[u]. The structure of the exchange relations
for mutation in direction k are determined by the k-th exchange polynomial. We work
in the specialized setting of [15] and impose the additional requirement that ai,s = ai,ri−s
- i.e., that all exchange polynomials are reciprocal polynomials.

Definition 2.2. For a generalized cluster seed Σ = (x, y, B, R, a), generalized mutation in di-
rection k, µ

(r)
k , is defined by the following exchange relations:

b′ij =

{
−bij i = k or j = k
bij + rk

(
[−bik]+bkj + bik[bkj]+

)
i, j 6= k

y′i =

y−1
k i = k

yi

(
y[bki]+

k

)rk (⊕rk
s=0 ak,sys

k
)−bki i 6= k

x′i =

x−1
k

(
∏n

j=1 x
[−bjk]+
j

)rk ∑
rk
s=0 ak,s ŷs

k
⊕rk

s=0ak,sys
k

i = k

xi i 6= k

ak,s = ak,rk−s

where [·]+ = max(·, 0) and ŷi := yi ∏n
j=1 x

bji
j .

Remark 2.3. The mutation relation for b′ij given in Definition 2.2 is for the generalized exchange
matrix, B. This is equivalent to writing that the matrix BR mutates according to the relation

(br)′ij = (br)ij + ([−(br)ik]+(br)kj + (br)ik[(br)kj]+).

This reflects the fact that µk(BR) = µ
(r)
k (B)R, where µk denotes ordinary matrix mutation.

A generalized cluster algebra is then defined as:

Definition 2.4. The generalized cluster algebra A = A(x, y, B, R, a) associated to a general-
ized seed Σ is the ZP-subalgebra of F generated by the cluster variables x = {xi}i∈[n] of Σ via
the exchange relations given in Definition 2.2.

Chekhov and Shapiro proved that generalized cluster algebras exhibit the Laurent
phenomenon [2]. They further proved that positivity holds for the subclass of general-
ized cluster algebras from orbifolds and conjectured that it holds in all cases.

3 Generalized cluster scattering diagrams

We begin by establishing the notions of generalized fixed data and generalized torus seed data
and defining an associated map.
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Definition 3.1. The following data is referred to as generalized fixed data, denoted by Γ:

• A lattice N called the co-character lattice with skew-symmetric bilinear form

{·, ·} : N × N → Q.

• A saturated sublattice Nuf ⊆ N called the unfrozen sublattice.
• An index set I with |I| = rank(N) and subset Iuf ⊆ I such that |Iunf| = rank(Nuf)
• A set of positive integers {di}i∈I such that gcd(di) = 1.
• A sublattice N◦ ⊆ N of finite index such that {Nuf, N◦} ⊆ Z and {N, Nuf ∩ N◦} ⊆ Z.
• A lattice M = Hom(N, Z) called the character lattice and sublattice M◦ = Hom(N◦, Z).
• A set of positive integers {ri}i∈I .

The adjective ‘fixed’ refers to the fact that this data is fixed under mutation.

To construct cluster scattering diagrams, we must assume that the map p∗1 : Nuf → M◦

given by n 7→ {n, ·} is injective. This is not true for all choices of fixed data, but is true
in the principal coefficient case. Because arbitrary generalized cluster algebras can be
obtained as specializations of the principal coefficient case, this is sufficient.

Definition 3.2. Given a set of generalized fixed data, we can define generalized torus seed
data s = {(ei, ai)}i∈I such that {ei}i∈I is a basis for N, {ei}i∈Iuf is a basis for Nuf, {diei}i∈I is a
basis for N◦, and each ai = (ai,s) is a tuple of scalars of length ri with ai,1 = ai,ri = 1. The torus
seed data defines a new bilinear form [·, ·]s : N × N → Q given by [ei, ej]s = εij = {ei, ej}dj.
This bilinear form is essentially the exchange matrix of [4] and is skew-symmetrizable.

A choice of a generalized torus seed s = {(ei, ai)}i∈I defines a dual basis {e∗i }i∈I for
M and a basis { fi = d−1

i e∗i }i∈I for M◦. A generalized torus seed s is called reciprocal
if its scalar tuples ai = (ai,s) satisfy the reciprocity condition ai,s = ai,ri−s. We refer to
the associated algebra as a reciprocal generalized cluster algebra. Here, we confine our
attention to this subclass of generalized cluster algebras.

Example 3.3. Consider the generalized cluster algebra

A
(

x, y,
[

0 1
−1 0

]
,
[

3 0
0 1

]
, ((1, a, a, 1), (1, 1))

)
.

In the language of Definition 3.1, this corresponds to the generalized fixed data Γ with d = (1, 1),
r = (3, 1), I = Iuf = {1, 2}, N = N◦ = 〈(1, 0), (0, 1)〉, M = M◦ = 〈(1, 0), (0, 1)〉, and skew-
symmetric bilinear form specified by the exchange matrix. The generalized torus seed data is
s = {((1, 0), (1, a, a, 1)), ((0, 1), (1, 1))}.

Just as in Section 2, we can define generalized mutation in direction k.
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Definition 3.4. Given generalized torus seed data s and some k ∈ Iuf, a mutation in direction
k of the generalized torus seed data is defined by the following transformations of basis vectors
and exchange polynomial coefficients:

e′i :=

{
ei + rk[εik]+ek i 6= k
−ek i = k

f ′i :=

{
− fk + rk ∑j∈Iuf

[−εkj]+ f j i = k

fi i 6= k

a′k,s := ak,rk−s

The basis mutation induces the following mutation of the matrix [εij]:

ε′ij := {e′i, e′j}dj =


−εij k = i or k = j
εij k 6= i, j and εikεkj ≤ 0
εij + rk|εik|εkj k 6= i, j and εikεkj ≥ 0

Example 3.5. Mutating the generalized torus seed from Example 3.3 once in either direction
yields

µ1(s) = {((−1, 0), (1, a, a, 1)) , ((0, 1), (1, 1))}
µ2(s) = {((1, 1), (1, a, a, 1)), ((0,−1), (1, 1))}.

Given a generalized torus seed s, we can then define generalized cluster varieties. Let
T be an infinite |Iuf|-regular oriented tree rooted at vertex v whose edges are labeled
by elements of Iuf. If we attach a choice of s to v, then paths within T correspond to
sequences of mutations in the directions specified by the edge labels. We write Ts to
record the choice of seed. For each vertex v, we can associate the tori Xs = TM =
Spec k[N] and As = TN◦ = Spec k[M◦].

The cluster variables of Definition 2.1 appear in this setting as xi = z fi and yi =
zei . We can then define birational maps between these tori which encode the exchange
relations of Definition 2.2.

Definition 3.6. For n ∈ N and m ∈ M◦, we define birational maps µk : Xs → Xµk(s) and
µk : As → Aµk(s) via the pull-back of functions

µ∗k zn = zn
(

1 + ak,1zek + · · ·+ ak,rk−1z(rk−1)ek + zrkek
)−[n,ek]

µ∗k zm = zm
(

1 + ak,1zvk + · · ·+ ak,rk−1z(rk−1)vk + zrkvk
)−〈dkek,m〉

Here the bilinear form {·, ·} : N × N → Q naturally defines a map p∗1 : Nuf → M◦, and we use
vk = p∗1(ek) in the above.
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By [8, Proposition 2.4], we can glue along the open piece of As, where µ is defined, to
obtain the scheme A. We can similarly obtain the scheme X .

Definition 3.7. The A (resp. X ) generalized cluster varieties are schemes which are isomorphic
up to codimension 2 to the schemes A :=

⋃
w∈T TN◦,sw and X :=

⋃
w∈T TM,sw where the tori are

glued according to the birational functions maps from Definition 3.6.

3.1 Generalized Cluster Scattering Diagrams

We begin by establishing the setting for our construction. Let k be a field of characteristic
zero and σ ⊆ MR a convex top-dimensional cone which contains {p∗1(ei)}i∈Iuf . Then k[P]
and k̂[P] denote, respectively, the rings of polynomials and formal power series in the
monoid P := σ ∩M◦. Choose a linear function d : N → Z such that d(n) > 0 for n ∈ N+.

Definition 3.8 (Definition 1.2 of [9]). For n0 ∈ N+, let m0 := p∗1(n0) and f = 1 + ∑∞
k=1 ckzkm0

∈ k̂[P]. Then p f ∈ k̂[P] denotes the automorphism given by p f (zm) = zm f 〈n
′
0,m〉 where n′0 gen-

erates the monoid R≥0n0 ∩ N◦.

Definition 3.9 (Definition 1.4 of [9]). A wall in MR is a pair (d, fd) ∈ (N+, k̂[P]) such that
for some primitive n0 ∈ N+,

1. fd ∈ k̂[P] has the form 1 + ∑∞
j=1 cjzjp∗1(n0) with cj ∈ k.

2. d ⊂ n⊥0 ⊂ MR is a convex rational polyhedral cone with dimension rank M− 1.

We refer to d ⊂ MR as the support of the wall (d, fd).

We can then define scattering diagrams, an example of which appears in Figure 1.

Definition 3.10 (Definition 1.6 of [9]). A scattering diagram D for N+ is a set of walls
{(d, fd)} such that for every degree k > 0, there are a finite number of walls (d, fd) ∈ D with
fd 6= 1 mod mk+1, where m is the maximal monomial ideal generated by {zm : m ∈ P\{0}}.

Let γ : [0, 1]→ MR\Sing(D) be a smooth immersion which crosses walls transversely
and whose endpoints aren’t in the support of D. Let 0 < t1 ≤ t2 ≤ · · · ≤ ts < 1 be a
sequence such that at time ti the path γ crosses the wall di such that fi 6= 1 mod mk+1.
Definition 3.10 ensures that this is a finite sequence. Set εi := −sgn(〈ni, γ′(ti)〉) where
ni ∈ N+ is the primitive vector normal to di. For each degree k > 0, define pk

γ,D :=
pεs

fdts
◦ · · · ◦ pε1

fdt1
, where p fdti

is defined as in Definition 3.8. Then let pγ,D := limk→∞ pk
γ,D.

We refer to pγ,D as a path-ordered product.

Definition 3.11 (Definition 1.8 of [9]). Let D, D′ be scattering diagrams. They are equivalent
if pγ,D = pγ,D′ for all paths γ for which both path-ordered products are defined.
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d1

d2

d6
d5d4d3

C+
fd1 = 1 + z(−1,0)

fd2 = 1 + az(0,1) + az(0,2) + z(0,3)

fd3 = 1 + z(−1,3)

fd4 = 1 + az(−1,2) + az(−2,4) + z(−3,6)

fd5 = 1 + z(−2,3)

fd6 = 1 + az(−1,1) + az(−2,2) + z(−3,3)

Figure 1: A cluster scattering diagram Ds for the algebra from Example 3.3.

A scattering diagram D is consistent if pγ,D depends only on the endpoints of γ. Let
vi = p∗1(ei) for i ∈ Iuf. Then the initial scattering diagram for generalized torus seed s is

Din,s := {(e⊥i , 1 + ai,1zvi + ai,2z2vi + · · ·+ ai,ri−1z(ri−1)vi + zrivi) : i ∈ Iuf},

and we have the following:

Proposition 3.12 (cf. [10, 11]). Given a generalized torus seed s, there is a consistent scatter-
ing diagram Ds which contains Din,s such that Ds\Din,s consists only of walls d ⊂ n⊥0 with
p∗1(n0) 6∈ d for some primitive n0 ∈ N+. The scattering diagram Ds is unique up to equivalence.

3.2 Principal Coefficients

As with ordinary cluster algebras, we can obtain a generalized cluster algebra with
principal coefficients by extending the matrix [{ei, ej}] to a 2n× 2n skew-symmetric matrix
with the n× n identity matrix as its upper right block and an n× n zero matrix as its
lower right block. This requires the following modifications to our construction:

Definition 3.13. Given generalized fixed data Γ, the generalized fixed data for the cluster variety
with principal coefficients, Γprin, is defined by:

• The double of the lattice N, Ñ := N ⊕M◦, with skew-symmetric bilinear form given by

{(n1, m1), (n2, m2)} = {n1, n2}+ 〈n1, m2〉 − 〈n2, m1〉.

• The unfrozen sublattice Ñuf := Nuf ⊕ 0 ∼= Nuf.
• The sublattice Ñ◦ := N◦ ⊕M.
• The index set Ĩ is given by the disjoint union of two copies of I.
• The unfrozen index set, Ĩuf, is the original Iuf thought of as a subset of the first copy of I.
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• The integer collections d̃ = (di)i∈ Ĩ and r̃ = (ri)i∈ Ĩ taken such that within each disjoint
copy of I, the di and ri agree with the original generalized torus seed s.

• The character lattice M̃ = Hom(Ñ, Z) = M⊕ N◦ with sublattice M̃◦ = M◦ ⊕ N.

Given a torus seed s, the torus seed with principal coefficients sprin is defined as
sprin := {((ei, 0), ai), ((0, fi), ai)}i∈I . The choice of sprin defines dual bases for M̃ and M̃◦.
Let ṽi := (vi, ei) = (p∗1(ei), ei). Then we can define

D
Aprin
in,s =

{(
(ei, 0)⊥, 1 + ai,1zṽ1 + · · ·+ ai,ri−1z(ri−1)ṽi + zri ṽi

)}
.

d̃1

d̃2

d̃6
d̃5d̃4d̃3

fd̃1
= 1 + z(−1,0,0,1)

fd̃2
= 1 + az(0,1,1,0) + az(0,2,2,0) + z(0,3,3,0)

fd̃3
= 1 + z(−1,3,3,1)

fd̃4
= 1 + az(−1,2,2,1) + az(−2,4,4,2) + z(−3,6,6,3)

fd̃5
= 1 + z(−2,3,3,2)

fd̃6
= 1 + az(−1,1,1,1) + az(−2,2,2,2) + z(−3,3,3,3)

d2

d1

d6
d5 d4 d3

fd1 = 1 + z(0,1)

fd2 = 1 + az(1,0) + az(2,0) + z(3,0)

fd3 = 1 + z(3,1)

fd4 = 1 + az(2,1) + az(4,2) + z(6,3)

fd5 = 1 + z(3,2)

fd6 = 1 + az(1,1) + az(2,2) + z(3,3)

Figure 2: The Aprin (top) and X (bottom) scattering diagrams for the generalized

cluster algebra A
(

x, y,
[

0 1
−1 0

]
,
[

3 0
0 1

]
, ((1, a, a, 1), (1, 1))

)
. The X -diagram is obtained

from the Aprin-diagram via the slice {m ∈ M◦ : m = p∗(n)}, with d̃i in the Aprin-
diagram yielding the wall di in the X -diagram. Note that in this example, the diagram
for Aprin is actually four dimensional and it is drawn here via projection onto M◦.

A choice of generalized torus seed with principal coefficients defines tori Xsprin :=
TM̃ = Spec k[Ñ] and Asprin := TÑ◦ = Spec k[M̃◦]. The varieties Aprin and Xprin are then
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obtained by gluing according to the birational mutation maps, as before. By Theorem

3.12, there exists a unique consistent scattering diagram D
Aprin
s corresponding to Asprin .

The varieties As and Xs are given, respectively, by the fiber Ae, where e ∈ TM is the iden-
tity element, and the quotient Aprin/TN◦ . Figure 2 illustrates an example of a consistent
scattering diagram for Aprin and the corresponding X -diagram obtained by slicing.

3.3 Mutation invariance

In Section 3, we gave both a construction for Ds and relations for obtaining a mutated
seed µk(s). If applied to µk(s), our construction would yield another diagram Dµk(s).
Because s and µk(s) correspond to the same generalized cluster algebra, we should
expect Ds and Dµk(s) to be equivalent. To see this, let Hk,+ := {m ∈ MR : 〈ek, m〉 ≥ 0}
and Hk,− := {m ∈ MR : 〈ek, m〉 ≤ 0}. Then define the piecewise linear transformation
Tk : M◦ → M◦ as

Tk(m) :=

{
m + rkvk〈dkek, m〉 m ∈ Hk,+

m m ∈ Hk,−

The shorthand Tk,− and Tk,+ is sometimes used for Tk in the regions Hk,+ and Hk,−.

Definition 3.14. The scattering diagram Tk(Ds) is obtained from Ds via the following procedure:

1. For each wall (d, fd) in Ds other than dk := (e⊥k , 1 + a1zvk + · · ·+ aj−1z(j−1)vk + zjvk),
there are either one or two corresponding walls in Tk(Ds). If dim(d∩Hk,−) ≥ rank(M)−
1, then add to Tk(Ds) the wall (Tk(d∩Hk,−), Tk,−( fd)) where the notation Tk,±( fd) indi-
cates the formal power series obtained by applying Tk,± to the exponent of each term of fd.
If dim(d∩Hk,+) ≥ rank(M)− 1, add the wall (Tk(d∩Hk,+), Tk,+( fd)).

2. The wall dk in Ds becomes the wall d′k = (e⊥k , 1+ a1z−vk + · · ·+ ark−1z−(rk−1)vk + z−rkvk)

It is important to note that Tk is an involution up to equivalence of diagrams.

Theorem 3.15 (Analogue of Theorem 1.24 of [9]). If the injectivity assumption holds, then
Tk(Ds) is a consistent scattering diagram for N+

µk(s)
. Moreover, Dµk(s) and Tk(Ds) are equivalent.

Hence, we conclude that the definition of a scattering diagram is mutation invariant.
That is, even though two distinct seeds s and s′ for the same generalized cluster algebra
will yield distinct scattering diagrams Ds and Ds′ (see Figure 3), the diagrams are "mu-
table" to each other via some sequence of applications of Tk. Note that that the exchange
polynomial coefficients are reciprocal, i.e. ai,s = ai,ri−s, are necessary for the theorem.

The positive chamber of Ds is C+s := {m ∈ MR| 〈ei, m〉 ≥ 0 for i ∈ Iuf}. For seeds
s′ reachable from s via a finite sequence of mutations, let C+v denote the chamber of
Ds corresponding to the positive chamber of Ds′ and ∆+

s denote the set of chambers
C+v as v runs across all vertices of Ts. We refer to ∆+

s as the cluster complex and to its
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elements as cluster chambers. This identification of the chamber structure of Ds and the
cluster complex follows from the fact that Tk is the Fock–Goncharov tropicalization of
the mutation map µk on A∨.

4 Theta basis for reciprocal generalized cluster algebras

To define theta functions, we will make use of broken line as in the ordinary setting:

Definition 4.1 (Definition 3.1 of [9]). Let D be a scattering diagram, m0 be a point in M◦\{0},
and Q be a point in MR\Supp(D). A broken line with endpoint Q and initial slope m0 is a
piecewise linear path γ : (−∞, 0] → MR\Sing(D) with finitely many domains of linearity.
Each domain of linearity, L, has an associated monomial cLzmL ∈ k[M◦] such that:

1. γ(0) = Q.
2. If L is the first domain of linearity of γ, then cLzmL = zm0 .
3. Within the domain of linearity L, the broken line has slope −mL, i.e. γ′(t) = −mL.
4. If t is a point at which γ is non-linear and is passing from one domain of linearity L to

another domain L′ and Dt := {(d, fd) ∈ D : γ(t) ∈ d.}, then the power series pγ|(t−ε,t+ε),Dt

contains the term cL′zmL′ .

One example of a broken line is shown in Figure 3.

Definition 4.2 (Definition 3.3 of [9]). Suppose D is a scattering diagram and consider points
m0 ∈ M◦\{0} and Q ∈ MR\Supp(D). For a broken line γ with initial exponent m0 and
endpoint Q, we define I(γ) = m0, b(γ) = Q, and Mono(γ) = c(γ)zF(γ) where Mono(γ) is the
monomial attached to the final domain of linearity of γ. We then define ϑQ,m0 := ∑γ Mono(γ)
where the summation ranges over all broken lines γ with initial exponent m0 and endpoint Q.
When m0 = 0, we define ϑQ,0 = 1 for any endpoint Q.

We can then observe how mutation acts on broken lines:

Proposition 4.3 (Analog of Proposition 3.6 of [9]). The transformation Tk gives a bijection
between broken lines with endpoint Q and initial slope m0 in Ds and broken lines with endpoint
Tk(Q) and initial slope Tk(m0) in Dµk(s). In particular, ϑ

µk(s)
Tk(Q),Tk(m0)

= Tk,±
(

ϑs
Q,m0

)
for Q ∈

Hk,± where Tk,± acts linearly on the exponents in ϑs
Q,m0

.

This observation tells us theta functions is defined independent of the choice of the
seed s. The last important step is to prove that cluster monomials can be expressed as
theta functions. To do so, we construct the scheme Ascat by associating tori to each cham-
ber of the scattering diagram and gluing along the birational mutation maps induced by
path-ordered products. Then we show that Ascat is isomorphic to the generalized cluster
variety A. The structure of our argument is the same as in the ordinary case (see Section
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z(−1,2)z(−1,−1)

z(0,−1)

az(−1,1)z(−1,−1)

z(0,−1)

az(−1,0)
z(−1,−1)

z(0,−1)

z(−1,−1)

z(0,−1)

z(0,−1)

Q

Figure 3: The broken line for ϑ(0,−1) in Ds for the generalized cluster algebra from
Example 3.3 with generalized torus seed s = ((1, 0), (1, a, a, 1), ((0, 1), (1, 1)).

4 of [9]) with some modifications to accommodate the differences in our wall-crossing
automorphisms.

For any m0 ∈ M\{0} such that there exists a path γ from m0 to some point Q in the
positive chamber C+ which passes through finitely many chambers, the theta function
ϑQ,m0 can also be obtained via the path-ordered product pγ (zm0). Within the cluster
complex, the definitions of ϑQ,m0 by broken lines and by path-ordered products agree.
Hence, the theta functions are regular functions on Ascat. Because Ascat ' A and the
ring of regular functions on A is the generalized cluster algebra, we have

Theorem 4.4 (Analogue of Theorem 4.9 of [9]). The generalized cluster monomials can be
expressed in terms of theta functions.

To demonstrate that the theta functions form a basis, we then define structure con-
stants for multiplication and give a multiplication rule for theta functions:

Lemma 4.5 (Analogue of Definition-Lemma 6.2 and Proposition 6.3 in [9]). Let p1, p2,
and q be points in M̃◦s and z be a generic point in M̃◦R,s. There are at most finitely many
pairs of broken lines γ1, γ2 such that γi has initial slope pi, both broken lines have endpoint z,
and F(γ1) + F(γ2) = q. Let az(p1, p2, q) := ∑(γ1,γ2) c(γ1)c(γ2) for pairs γ1, γ2 such that
I(γi) = pi, b(γi) = z, and F(γ1) + F(γ2) = q. Then

ϑp1 · ϑp2 = ∑
q∈M̃◦s

αz(q)(p1, p2, q)ϑq

for z(q) sufficiently close to q. When z is sufficiently close to q, az(p1, p2, q) is independent of
the choice of z and we can simply write α(p1, p2, q) := az(p1, p2, q).

For a generic point Q in some chamber, let Θ be the collection of m0 ∈ M◦ such that
there are finitely many broken lines with initial slope −m0 and endpoint Q. Then,
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Theorem 4.6. For fixed data Γ and torus seed s = {(ei, (ai,s)}i∈I with all ai,s ≥ 0, the collection
{ϑm}m∈Θ forms a basis for the associated middle reciprocal generalized cluster algebra.

When the upper generalized cluster algebra and generalized cluster algebra agree,
Theorem 4.6 gives a basis for the generalized cluster algebra.
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