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Abstract. We say that a pure d-dimensional simplicial complex ∆ on n vertices is
shelling completable if ∆ can be realized as the initial sequence of some shelling of ∆(d)

n−1,
the d-skeleton of the (n− 1)-dimensional simplex. A well-known conjecture of Simon
posits that any shellable complex is shelling completable. We prove that vertex de-
composable complexes are shelling completable. In fact we show that if ∆ is a vertex
decomposable complex then there exists an ordering of its ground set V such that
adding the revlex smallest missing (d + 1)-subset of V results in a complex that is
again vertex decomposable. We explore applications to matroids, shifted complexes,
as well as k-vertex decomposable complexes. We also show that if ∆ is a d-dimensional
complex on at most d + 3 vertices then the notions of shellable, vertex decomposable,
shelling completable, and extendably shellable are all equivalent.
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1 Introduction

A pure simplicial complex ∆ is shellable if there exists an ordering of its facets F1, F2, . . . , Fs
such that each Fi intersects the previous facets in a pure codimension one complex (see
Definition 2.1). Shellability is an important combinatorial tool that has consequences for
the topology of ∆ as well as algebraic properties of its Stanley–Reisner ring. Examples
of shellable simplicial complexes include the independence complexes of matroids [16],
boundary complexes of simplicial polytopes [6], as well as the skeleta of shellable com-
plexes [4]. In particular for any k = 1, 2, . . . , n− 1 the k-skeleton of a simplex on vertex
set [n], which we denote ∆(k)

n−1, is shellable.
Given a shellable complex a natural question to ask is whether one can get ‘stuck’ in

the process of building a shelling order. A shellable complex ∆ is said to be extendably
shellable if any shelling of a subcomplex of ∆ can be extended to a shelling of ∆. Here a
subcomplex of ∆ is a simplicial complex on the same vertex set as ∆, whose set of facets
is a subset of the facets of ∆.
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Although shellable complexes arise naturally in many contexts, it seems that extend-
ably shellable complexes are harder to come by. Results of Danaraj and Klee [10] imply
that any 2-dimensional triangulated sphere (which is necessarily polytopal) is extend-
ably shellable, and Kleinschmidt [14] has shown that any d-dimensional sphere with
d + 3 vertices is extendably shellable. Björner and Eriksson [3] proved that indepen-
dence complexes of rank 3 matroids are extendably shellable. On the other hand Ziegler
[20] has shown that there exist simplicial 4-polytopes that are not extendably shellable.
The motivation for much of our work will be the following question posed by Simon
[17].

Conjecture 1.1 (Simon’s Conjecture). [17] The complex ∆(k)
n−1 is extendably shellable.

The k = 2 case of Simon’s Conjecture follows from [3] by considering the uniform
matroid of rank 3, and Bigdeli, Yazdan Pour, and Zaare-Nahandi [1] have established
the k ≥ n− 3 cases (a simpler proof was provided independently by the second author
[11] based on results of Culbertson, Guralnik, and Stiller [9]). In [8] it is shown that
if ∆ is a d-dimensional simplicial complex on at most d + 3 vertices, then in fact the
notions of shellable and extendably shellable are equivalent. This implies the k = n− 3
case of Simon’s conjecture and also provides a generalization of Kleinschmidt’s results.
This result is also best possible in the sense that there are 2-dimensional complexes on 6
vertices that are not extendably shellable ([15], [2]).

Inspired by these results and observations, in this paper we consider a related notion.

Definition 1.2. A pure d-dimensional simplicial complex ∆ on n vertices is said to be shelling
completable if there exists a shelling F1, F2, . . . , Fs of ∆ that can be taken as the initial sequence
of some shelling of ∆(d)

n−1.

In particular, a shelling completable complex is shellable. Note that if ∆ is shelling
completable then any shelling of ∆ can be completed to a shelling of ∆(d)

n−1. Also note
that Simon’s conjecture is equivalent to the statement that any pure shellable complex
is shelling completable. From this perspective it is of interest to find a large class of
shellable complexes that are shelling completable.

Our first examples of shelling completable complexes come from the class of shifted
complexes. Recall that a simplicial complex is shifted if there exists an ordering of its
vertex set V = {1, 2, . . . , n} such that for any face {v1, v2, . . . , vk} replacing any vi with
a smaller vertex results in a k-set that is also a face. Note that if ∆ is a d-dimensional
shifted complex according to some ordering on its vertex set then adding the reverse-
lexicographically (revlex) smallest missing (d + 1)-subset F again results in a shifted
complex (see Proposition 3.1 below). Since shifted complexes are known to be shellable
[5], this implies that shifted complexes are shelling completable.
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Shifted complexes are examples of the more general class of vertex decomposable com-
plexes (see Definition 2.4), and our first result says that in fact all such complexes admit
an ordering of its vertex set with this property.

Theorem 3.2. Suppose ∆ is a d-dimensional vertex decomposable simplicial complex on ground
set V. Then either ∆ is full over V or there exists a linear order on V such that if F is the revlex
smallest (d+ 1)-subset of V not contained in ∆ then the simplicial complex generated by ∆∪{F}
is vertex decomposable.

As a corollary we obtain a large class of shelling completable complexes, providing a
positive answer to a weakened version of Simon’s Conjecture.

Corollary 3.4. Vertex decomposable complexes are shelling completable.

Vertex decomposable complexes include pure shifted complexes and (independence
complexes of) matroids. Theorem 3.2 implies that there exists an ordering of the ground
set of these complexes with the property that adding the revlex smallest missing k-subset
results in a vertex decomposable complex. In the context of shifted complexes we have
seen that the natural ordering of the ground set satisfies this property. For the case of
matroids we prove that such decomposing orders (see Definition 4.2) are easy to come by.

Proposition 4.4. LetM be a rank d matroid on ground set V. Then any ordering v1, v2, . . . , vn
of V with the property that {v1, v2, . . . , vd} ∈ M is a decomposing order.

In particular for a rank d matroid M it is ‘easy’ to find a d-subset F of the ground set
with the property thatM∪{F}, while no longer a matroid, is still vertex decomposable.

In the last part of the paper we consider shelling completable complexes with few
vertices (relative to dimension). We exploit a connection between chordal graphs and
certain shellable complexes to prove the following.

Theorem 5.2. Suppose ∆ is a shellable d-dimensional simplicial complex on d + 3 vertices. Then
∆ is vertex decomposable (and hence shelling completable).

This theorem, along with results from [8], imply that for these complexes the notions
of vertex decomposable, shellable, shelling completable, and extendably shellable are all
equivalent.

The rest of this extended abstract is organized as follows. In Section 2 we recall some
necessary definitions. In Section 3 we discuss the ideas behind Theorem 3.2 along with
relevant corollaries. In Section 4 we discuss the notion of decomposing orders in the
context of matroids and Theorem 4.4. In Section 5 we consider d-dimensional complexes
on at most d + 3 vertices and sketch the proof of Proposition 5.2. We end in Section 6
with some discussion and open questions. Throughout the paper we provide only the
main ideas involved in our arguments, we refer to [7] for complete proofs.
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2 Vertex decomposable complexes

A simplicial complex ∆ on a finite ground set V is a collection of subsets of V that is closed
under taking subsets, so that if σ ∈ ∆ and τ ⊂ σ then τ ∈ ∆. The elements of ∆ are
called faces. Note that we do not require {v} ∈ ∆ for all v ∈ V. The elements v ∈ V
such that {v} ∈ ∆ will be called the vertices of ∆, whereas elements w ∈ V that are not
vertices will be called loops. In particular the vertex set of ∆ can be a proper subset of
its ground set. As in [13] we adopt the convention that the void complex ∅ is a simplicial
complex, distinct from the empty complex {∅}. We will sometimes refer to the simplicial
complex generated by a collection of subsets S ⊂ P(V), by which we mean the smallest
simplicial complex containing S.

A facet of ∆ is an element that is maximal under inclusion. The dimension of ∆ is the
largest cardinality (minus 1) of any facet. A simplicial complex ∆ is pure if all facets have
the same cardinality. For W ⊂ V with |W| = d+ 1, we let 2W denote the set of all subsets
of W and refer to it as a d-simplex (on W). With these notions we can state the definition
of a shellable complex.

Definition 2.1. A pure d-dimensional simplicial complex ∆ is said to be shellable if there exists
an ordering of its facets F1, F2, . . . , Fs such that for all k = 2, 3, . . . , n the simplicial complex
generated by ( k−1⋃

i=1

Fi
)
∩ Fk

is pure of dimension d− 1. By convention the void complex ∅ and the empty complex {∅} are
both shellable.

Note that a shellable complex is connected as long as d ≥ 1, and a 1-dimensional
simplicial complex (a graph) is shellable if and only if it is connected. We next recall the
notion of link, star, and deletion of a face in a simplicial complex.

Definition 2.2. Suppose ∆ is a simplicial complex on ground set V and let F ∈ ∆ be a face. The
link, star and the deletion of F are defined as

`k∆(F) := {G ∈ ∆ : G ∩ F = ∅, G ∪ F ∈ ∆},

star∆(F) := {G ∈ ∆ : F ⊂ G},
del∆(F) := {G ∈ ∆ : F * G}.

The ground set of star∆(F) is V, and the ground sets of `k∆(F) and del∆(F) are given by V\F.

We note that shellability is preserved by taking links, a fact that will be useful later.

Lemma 2.3 ([21], Lemma 8.7). If ∆ is a shellable simplicial complex and F ∈ ∆ is any face,
then the link `k∆(F) is shellable.
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We next define the class of vertex decomposable simplicial complexes recursively as
follows.

Definition 2.4. A simplicial complex ∆ is vertex decomposable if ∆ is a simplex (including ∅
and {∅}), or ∆ contains a vertex v such that

1. both del∆(v) and `k∆(v) are vertex decomposable, and

2. any facet of del∆(v) is a facet of ∆.

A vertex v that satisfies the second condition is called a shedding vertex of ∆. We will call a
vertex v that satisfies both conditions a decomposing vertex.

Vertex decomposable complexes were introduced in the pure setting by Provan and
Billera [16] and extended to non-pure complexes by Björner and Wachs [4]. It is known
that any vertex decomposable complex is shellable, a fact implied by the following result
of Wachs [19].

Lemma 2.5 ([19], Lemma 6). Suppose ∆ is a simplicial complex with shedding vertex v. If both
del∆(v) and `k∆(v) are shellable then ∆ is shellable.

3 Shelling completions

We next turn to the question of shelling completions for vertex decomposable complexes.
For this we will need the following concepts. Suppose ∆ is a d-dimensional simplicial
complex on ground set V. We say that ∆ is full (over V) if it is the d-skeleton of the
simplex over the vertex set V, i.e. it consists of all d + 1-subsets of V. Note that a
d-simplex is full if and only if |V| = d + 1.

We will also need the notion of reverse lexicographic (revlex) order on k-subsets of
an ordered ground set. For this recall that if V = {1, 2, . . . , n} is a linearly ordered set,
then {v1 < v2 < · · · < vk} is revlex smaller than {w1 < w2 < · · · < wk} if for the largest
j with vj 6= wj we have vj < wj. Note that if one adds a new element n + 1 to the set
V then any k-subset that contains n + 1 will be revlex larger than any k-subset that does
not contain n + 1.

As mentioned in Section 1 , we can use revlex orders to build new shifted complexes
from existing ones. More precisely we have the following.

Proposition 3.1. Suppose ∆ is a pure shifted d-dimensional simplicial complex with respect to
some linear order on its ground set V, and assume that ∆ is not full on V. Let F be the revlex
smallest (d + 1)-subset of V satisfying F /∈ ∆. Then the complex generated by ∆ ∪ {F} is again
a shifted simplicial complex.
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Proof. One can see that replacing any element x ∈ F with some y ∈ V satisfying y < x
results in a (d + 1)-subset F′ = (F\{x}) ∪ {y} that is revlex smaller than F. Hence F′ is
a facet of ∆ ∪ {F}, implying that ∆ ∪ {F} is shifted.

Our main result generalizes this observation for the class of vertex decomposable
complexes.

Theorem 3.2. Suppose ∆ is a d-dimensional vertex decomposable simplicial complex on ground
set V. Then either ∆ is full over V or there exists a linear order on V such that if F is the revlex
smallest (d+ 1)-subset of V not contained in ∆ then the simplicial complex generated by ∆∪{F}
is vertex decomposable.

Proof. (Sketch) We use induction on d, then on n = |V|. The base cases can be checked
by hand so we assume d ≥ 1 and n ≥ d + 2. First if ∆ is full over its vertex set W we pick
any ordering on the ground set V so that all elements in W are smaller than all elements
in V\W. One can check that adding the revlex smallest missing (d + 1)-subsets results
in a vertex decomposable complex. If ∆ is not full on its vertex set we can continue the
induction by either picking v to be a loop or a decomposing vertex. If v is a loop we
consider the complex ∆ on ground set V\{v} and use induction. If v is a decomposing
vertex we have two subcases to consider.

If del∆(v) is not full on its vertex set V\{v} then we consider the complex del∆(v),
and use induction on n to extend the given ordering V\{v}. If F is the revlex smallest
missing (d + 1)-subset F ⊂ V\{v} can be added added to del∆(v) to obtain another
vertex decomposable complex, one can check that F is revlex smallest among the missing
facets of ∆, and that the complex generated by ∆∪{F} is also vertex decomposable (with
decomposing vertex v). If del∆(v) is full on V\{v} then we consider the complex `k∆(v)
and use induction on d. We let G denote the revlex smallest missing d-set of `k∆(V). One
can show that {G ∪ {v}} is the revlex smallest missing (d + 1)-subset of ∆ and also that
the complex generated by ∆∪ {G∪ {v}} is vertex decomposable. The result follows.

For an illustration of the various steps in the above proof, we refer to Example 4.3.
To establish our desired corollary we will next need the following observation.

Lemma 3.3. Suppose ∆ is a shellable d-dimensional simplicial complex on ground set V and
suppose F is a (d + 1)-subset of V with the property that the complex ∆′ generated by ∆ ∪ {F}
is again shellable. Then any shelling of ∆ can be extended to a shelling of ∆′ by adding F as the
last facet.

As a corollary we get a large class of complexes that are shelling completable, and
hence we obtain a weakened form of Simon’s conjecture.

Corollary 3.4. Vertex decomposable complexes are shelling completable.
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Proof. Suppose ∆ is a pure d-dimensional vertex decomposable complex on ground set
V, where |V| = n. Let m be the number of (d + 1)-subsets of V that are missing as facets
in ∆. If m = 0 then ∆ = ∆(d)

n−1 is full and we are done. Otherwise by Theorem 3.2 we
have some (d + 1)-subset F ⊂ V such that F /∈ ∆ with ∆∪ {F} vertex decomposable, and
hence shellable. From Lemma 3.3 we know that any shelling order of ∆ can be extended
to a shelling of ∆ ∪ {F}. The result follows by induction on m.

4 Decomposing orders and matroid complexes

Recall that a simplicial complex M is a matroid if it is pure and its set of facets satisfy
the following exchange property: If F and G are facets of M then for any x ∈ F\G
there exists some y ∈ G\F such that (F\{x}) ∪ {y} is a facet of M. The facets of M
are usually called bases in this theory. Also note that in some contexts this simplicial
complex is called the independence complex of M but we will simply refer it to as the
matroid itself. It is well known that matroids are vertex decomposable [16] and hence
Corollary 3.4 implies the following.

Corollary 4.1. Independence complexes of matroids are shelling completable.

Given that any shelling of a rank d matroid can be completed to a shelling of the full
skeleton ∆(d−1)

n , a natural question to ask is whether one can control which facet can be
added in the next step of the completion. In the context of matroids, one expects some
flexibility since matroids themselves admit many shelling orders. In particular recall
that if V = {v1, v2, . . . , vn} is any ordering of the ground set of a rank d matroid M,
then both lexicographic ([2] Theorem 7.3.4) and reverse lexicographic ([12] Proposition
6.3) orderings of the facets (bases) ofM give rise to a shelling of the complexM. In fact
matroids can be characterized by the property that any ordering of the ground set gives
rise to such a shelling. For our purposes we will need the following notion.

Definition 4.2. Suppose ∆ is a a pure d-dimensional vertex decomposable simplicial complex. An
ordering v1, v2, . . . , vn of its ground set is a decomposing order for ∆ if the complex generated
by ∆ ∪ {F} is again vertex decomposable, where F is the revlex smallest (d + 1)-subset of V that
is missing from ∆.

Note that Theorem 3.2 says that any vertex decomposable complex admits a decom-
posing order. Also note that in the proof of Theorem 3.2 at each step in the induction we
must choose a vertex v where we employ the inductive hypothesis on either the deletion
del∆(v) (in the first case) or the link `k∆(v) (in the latter). In this way we can obtain a
sequence of subcomplexes

∆ = ∆n, ∆n−1, . . . , ∆s,
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where n is the size of the ground set of ∆, and ∆s is a simplex over some (possibly
smaller) ground set. We illustrate this process below with a worked example.

Example 4.3. Suppose ∆ is the 3-dimensional complex on ground set {1, 2, . . . , 7} with facets

{1234, 1235, 1245, 1345, 2345, 1236, 1246, 1256, 2356, 1237, 2347}.

Here we abuse notation and for example let 1245 denote the 4-subset {1, 2, 4, 5}. We use the
natural ordering on the ground set and verify that it is a decomposing order.

First we define ∆7 = ∆ and note that

del∆7(7) = {1234, 1235, 1245, 1345, 2345, 1236, 1246, 1256, 2356}

is not full (e.g. 1346 is missing). Hence at this step we consider the deletion of vertex 7 and define
∆6 = del∆7(7). Next we note that del∆6(6) is full so we now consider the link of 6 and define

∆5 = `k∆6(6) = {123, 124, 125, 235}.

Continuing in this fashion we have that del∆5(5) is not full so we define

∆4 = del∆5(5) = {123, 124}.

Next we see that del∆4(4) = {123} is full and so we consider the link of 4 and have

∆3 = `k∆4(4) = {12}.

At this point we see that ∆3 is a simplex (on ground set {1, 2, 3}) and hence we have reached
a base case.

Reversing this process, we see that at each step the addition of a new facet F leads to a vertex
decomposable complex. We begin with ∆3 since it is full over its vertex set, and hence a base case
of Theorem 3.2. We extend ∆3 to ∆′3 by noting that 3 is the smallest loop, and 2 is the largest
vertex. Hence we add the facet (12\{2}) ∪ {3} = 13. Now in ∆4 we replace `k∆4(4) = ∆3 with
∆′3, which results in adding the facet 134 to obtain ∆′4. In ∆5 we replace del∆5(5) = ∆4 with ∆′4
which results in adding the facet 134 to obtain ∆′5. Next in ∆6 we replace `k∆6(6) = ∆5 with ∆′5,
adding facet 1346 to obtain ∆′6. Finally in ∆7 we replace del∆7(7) = ∆6 with ∆′6, adding the facet
1346. We note that 1346 is indeed the smallest element missing from ∆ = ∆7 among the revlex
ordered 4-subsets of {1, . . . , 7}

We will use the above observations to show that many orderings of the ground set of
a matroid give rise to decomposing orders.

Proposition 4.4. Let M be a rank d matroid and suppose v1, v2, . . . , vn is any linear ordering
of its ground set V with the property that {v1, v2, . . . , vd} ∈ M. Then v1, v2, . . . , vn is a
decomposing order forM.
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Proof. (Sketch) Suppose that v1, v2, . . . , vn is such an ordering of V and let F be the revlex
smallest (d + 1)-subset of V that is missing from ∆. Let q be the smallest i ≥ 2 such that
vi ∈ F and vi−1 /∈ F. Since M is a matroid we have that any element v is a loop
or a decomposing vertex. From the proof of Theorem 3.2, we get that v1, v2, . . . , vn is
decomposing order forM if v1, v2, . . . , vq is a decomposing order for

Γ := `k∆(F ∩ {vq+1, . . . , vn})|{v1,...,vq}.

We see that Γ is a matroid with the property that delΓ(vq) is full, which follows from
the fact that F was the revlex smallest d-subset missing from ∆. One can check that any
ordering of the ground set of Γ is a decomposing ordering, and the result follows.

As a consequence of Proposition 4.4 we get the following.

Corollary 4.5. Let M be a rank d matroid and suppose v1, v2, . . . , vn is any linear ordering of
its ground set V with the property that {v1, v2, . . . , vd} ∈ M, and let F be the revlex smallest
d-subset missing fromM. Then the complex generated byM∪{F} is vertex decomposable.

Remark 4.6. Given a rank d matroid M on ground set V, a related question to ask is whether
there exists a d-subset F ⊂ V such thatM∪{F} is again a matroid. Truemper [18] has shown
that if M is connected then this is the case if and only if F is a circuit hyperplane (that is, a
circuit inM such that V\F is a circuit of the dual matroidM∗).

In light of Corollary 4.5 a natural question to ask is whether there exists an ordering
of the ground set such that all missing facets can be added in reverse lexicographic order.
The next example shows that an arbitrary ordering will not work.

Example 4.7. LetM be the matroid on ground set [6] generated by the facets

{1234, 1345, 2346, 3456}.

We note that adding the revlex smallest missing 4-subset 1235 results in a shelling move but the
shelling fails when we continue to add the next revlex smallest subsets

1235, 1245, 1236, 1246, 1256.

To see this let ∆ denote the complex obtained by adding these 4-subsets and consider F = 56, a
face of ∆. We note that `k∆(F) = {34, 12}, which is 1-dimensional and disconnected and hence
not shellable. By Lemma 2.3 we conclude that ∆ is not shellable.
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5 Complexes with few vertices

In [8] it is shown that a d-dimensional complex ∆ on d+ 3 vertices is extendably shellable
if and only if ∆ is shellable. In this section we show that these conditions are also
equivalent to ∆ being vertex decomposable. In what follows we will assume that our
complexes have no loops, so that vertex set of ∆ coincides with its ground set.

For our result we will exploit a connection between shellable complexes and the
notion of a chordal graph. Recall that a simple graph G is chordal if it has no induced
cycles of length 4 or more (so that all cycles of length 4 or more have a ‘chord’). It is well
known that any chordal graph admits a simplicial vertex, a vertex v ∈ V(G) such that its
neighborhood (the subgraph induced on the set of vertices adjacent to v) is a complete
graph. From [11] we have the following result, adapted for our purposes.

Lemma 5.1. Let Kn denote the complete graph on vertex set [n] = {1, 2, . . . , n}. Suppose
{e1, e2, . . . , ek} ⊂ E(Kn) is a collection of edges and for each j = 1, 2, . . . , k let Fj = [n]\ej
denote the complementary (n − 2)-subset. Then Kn\{e1, e2, . . . , ek} is a chordal graph if and
only if the simplicial complex induced by F1, F2, . . . Fk is shellable.

Theorem 5.2. Suppose ∆ is a shellable d-dimensional simplicial complex on d + 3 vertices. Then
∆ is vertex decomposable.

Proof. (Sketch) We prove the statement by induction on d. If d = 1 the claim follows since
a graph is connected if and only if it is vertex decomposable. Suppose d ≥ 1 and let ∆ be
a d-dimensional complex with shelling order F1, F2, . . . , Fj. Let G be the graph consisting
of edges {V\Fi : Fi ∈ ∆}. From Lemma 5.1 we have that G is chordal and hence admits
a simplicial vertex v ∈ G. We then have that G\{v} is chordal and hence del∆(v) is a
shellable d-dimensional complex on at most d + 2 vertices. It follows that N(v) is vertex
decomposable. We see that `k∆(v) is a shellable (d− 1)-dimensional complex on at most
d + 2 vertices, which by induction is vertex decomposable. The fact that v is simplicial
implies that v is a shedding vertex, and the result follows.

Hence for a d-dimensional simplicial complex on at most d + 3 vertices the concepts
of shellable, extendably shellable, shelling completable, and vertex decomposable are
all equivalent. We note that there exist 2-dimensional complexes on 6 vertices that are
shellable but not vertex decomposable [15].

6 Completing k-decomposable complexes

Recall that Simon’s Conjecture posits that all shellable complexes are shelling com-
pletable, and here we have shown the conjecture holds for the particular class of vertex
decomposable complexes. We can ask the same question for complexes that properly sit
in between these two classes. We first recall the relevant definition.
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Definition 6.1. A pure d-dimensional simplicial complex ∆ is said to be k-vertex decomposable
if ∆ is a simplex, or ∆ contains a face F such that

1. dim(F) ≤ k

2. both del∆(F) and `k∆(F) are k-vertex decomposable, and

3. del∆(F) is pure (and the dimensions stays same as that of ∆).

The notion of k-vertex decomposable interpolates between the notion of vertex de-
composable (which is equivalent to 0-vertex decomposable in this language) and shellable
(which can be seen to coincide with d-vertex decomposable).

Example 6.2 (Example V6F10-6 from [15]). Let ∆ be the 2-dimensional complex with facets

{123, 124, 125, 134, 136, 245, 256, 346, 356, 456}.

In [15] it is shown that ∆ is not vertex decomposable, but one can check that it is 1-decomposable
using 15 as a shedding face.

Our results imply that a 0-vertex decomposable complex is shelling completable, and
Simon’s conjecture posits that a d-vertex decomposable complex is shelling completable.
As far we know it is an open question whether a 1-vertex decomposable complex is
shelling completable.
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