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Abstract. Matrix Schubert varieties are the orbit closures of B× B acting on all n× n
matrices, where B is the group of invertible lower triangular matrices. We define
skew-symmetric matrix Schubert varieties to be the orbit closures of B acting on all
n× n skew-symmetric matrices. In analogy with Knutson and Miller’s work on matrix
Schubert varieties, we describe a natural generating set for the prime ideals of these
varieties. We then compute a related Gröbner basis. Using these results, we identify
a primary decomposition for the corresponding initial ideals involving certain fpf-
involution pipe dreams, analogous to the pipe dreams of Bergeron and Billey. We show
that these initial ideals are the Stanley–Reisner ideals of shellable simplicial complexes.
As an application, we give a geometric proof of an explicit generating function for
symplectic Grothendieck polynomials.
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1 Introduction

Let K be an algebraically closed field and write Bn ⊆ GLn := GLn(K) for the Borel group
of n× n invertible lower triangular matrices over K. An n× n matrix A is skew-symmetric
if Aij = −Aji and Aii = 0 for all i, j ∈ [n]; note that the second condition is redundant if
char(K) 6= 2. Let Matss

n := Matss
n (K) denote the set of such matrices.

Consider the Bn-action on Matss
n defined by g · A = gAgT. The orbits for this action

are skew-symmetric matrix Schubert cells, and their Zariski closures are the skew-symmetric
matrix Schubert varieties. We write Xss

A for the closure of the Bn-orbit of A ∈ Matss
n .

Identify the coordinate ring K[Matss
n ] with K[uij : n ≥ i > j ≥ 1], and write U ss for

the n× n skew-symmetric matrix with U ss
ij = uij = −U ss

ji for i > j and U ss
ii = 0 for all i.

If M is an n× n matrix and R, C ⊆ [n], we write MRC for the submatrix of M in rows R
and columns C. One has M ∈ Xss

A if and only if rank M[i][j] ≤ rank A[i][j] for all i, j ∈ [n].
Accordingly, Xss

A is the zero locus of the family consisting of all minors det(U ss
RC) for
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all R ⊆ [i] and C ⊆ [j] with |R| = |C| = rank A[i][j] + 1 for some i, j ∈ [n]. These
polynomials do not always generate the prime ideal I(Xss

A ) of the variety Xss
A , however.

There is nevertheless a natural generating set for I(Xss
A ), which we describe as follows:

Theorem 1.1 (See Theorem 3.4). For each A ∈ Matss
n , the collection of Pfaffians pf(U ss

RR),
as R ranges over all even sized subsets of [n] such that R ⊆ [i] and |R ∩ [j]| > rank A[i][j]
for some i, j ∈ [n] with i ≥ j, generate the (prime) ideal I(Xss

A ).

We are also interested in the problem of describing Gröbner bases for the ideals
I(Xss

A ) with respect to the (graded) reverse lexicographic order on K[Matss
n ]. Recall that a

generating set S of an ideal I is a Gröbner basis of I if the leading terms of the polynomials
in S generate the initial ideal generated by the leading terms of all elements of I. These
definitions are reviewed more carefully in §2.

The generating set in the preceding theorem is generally not a Gröbner basis for
I(Xss

A ); see Example 3.6. Our second main result resolves this problem. Specifically,
in Theorem 3.7 we show that a Gröbner basis for I(Xss

A ) with respect to the reverse
lexicographic term order is provided by the Pfaffians of the block diagonal matrices[

U ss
CC U ss

CR
U ss

RC 0

]
for certain subsets R, C ⊆ [n]. Experimental evidence suggests that these Pfaffians may
also form a Gröbner basis for other so-called antidiagonal term orders, but this more
general claim does not follow from our present methods.

Suppose n is even and z ∈ Sn is a fixed-point-free involution, that is, a permutation
with z(z(i)) = i 6= z(i) for all i ∈ [n]. Associated to such a permutation is a set FP(z) of
fpf-involution pipe dreams, whose elements are certain subsets of {(i, j) ∈ [n]× [n] : i > j};
see Definition 4.1 for the full details. We let Xss

z := Xss
A where A is the skew-symmetric

n× n matrix with Aij = 1 if z(j) = i < j = z(i) and Aij = −1 if z(j) = i > j = z(i).
Whenever we write in(I(Xss

z )), we mean the initial ideal under the reverse lexicographic
term order defined in Example 2.2.

The varieties Xss
z as z ranges over the fixed-point-free involutions in Sn are exactly

the Bn-orbit closures in Matss
n ∩GLn, which is nonempty only if n is even. For simplicity,

we only consider these varieties here, but our results can be extended to the full family
of skew-symmetric matrix Schubert varieties in Matss

n for any n.

Theorem 1.2 (See Theorem 4.2). For each fixed-point-free involution z ∈ Sn, the initial
ideal of I(Xss

z ) has primary decomposition in(I(Xss
z )) =

⋂
D∈FP(z)(uij : (i, j) ∈ D), where

(uij : (i, j) ∈ D) denotes the ideal in K[Matss
n ] generated by uij for all (i, j) ∈ D.

If a subvariety X ⊆ Matss
n (C) is invariant under the left Bn-action, then it defines

a class [X]Bn in the equivariant cohomology ring H∗Bn
(Matss

n (C)) ' Z[x1, . . . , xn]. The
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polynomial [X]Bn can also be computed algebraically as the multidegree of the ideal I(X),
and this definition works more generally over any algebraically closed field K.

Using Theorem 1.2, one can show that [Xss
z ]Bn = ∑D∈FP(z) ∏(i,j)∈D(xi + xj) under

the identification H∗Bn
(Matss

n ) ' Z[x1, . . . , xn]. This formula was proven combinatori-
ally in [6]. It was also shown in [6] that the polynomials [Xss

z ]Bn are the same as the
fpf-involution Schubert polynomials introduced by Wyser and Yong [18], which represent
the ordinary cohomology classes the orbit closures of the symplectic group Spn(C) act-
ing on GLn(C)/Bn. Briefly, the connection to our situation is that Spn(C)-orbits on
GLn(C)/Bn are in bijection with Bn-orbits on GLn(C)/ Spn(C), which can be identified
with Matss

n (C) ∩GLn(C).
Finally, we relate the initial ideal of I(Xss

z ) to the geometry of simplicial complexes.
We also use the next result to give a new geometric proof of a combinatorial formula [15,
Thm. 4.5] for the Bn-equivariant K-theory representative of Xss

z ; see Theorem 4.10.

Theorem 1.3 (See Theorem 4.5). For each fixed-point-free involution z ∈ Sn, the ideal
in(I(Xss

z )) is square-free and equal to the Stanley–Reisner ideal of a shellable simplicial
complex.

One can equally well consider the orbits of Bn × Bn acting on the space of all n× n
matrices by the formula (g, h) · A = gAht. The closures of these orbits are called matrix
Schubert varieties. These varieties have been studied by Fulton [5] and Knutson and Miller
[10] among others, who proved results analogous to those described above. Indeed, our
main goal in this work was to reproduce their results in the skew-symmetric setting.

Ideals generated by Pfaffians of a generic skew-symmetric matrix have been well-
studied [3, 4, 7, 8, 17], and there is some overlap between our results and prior work.
De Negri and Sbarra [4] consider a family of ideals which, translated into our language,
turns out to be a subfamily of the ideals I(Xss

A ) for A ∈ Matss
n . They observe that the

Pfaffian generators of Theorem 1.1 need not form a Gröbner basis with respect to an
antidiagonal term order, and proceed to classify the ideals which do enjoy this property.
Raghavan and Upadhyay [17] study the same family of ideals, computing their initial
ideals and realizing the latter as Stanley–Reisner ideals of shellable complexes, as we do
in Theorems 1.2 and 1.3. Although similar in form, their results are in fact quite different
from ours, because they use term orders which are far from antidiagonal.

In this extended abstract we have omitted most proofs and focused on new results.
However, the techniques we use to prove the results above differ from those of Knutson
and Miller, and a secondary goal of this work was to use these techniques to give new
proofs of their results; see [12], of which this abstract is a condensed version.
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2 Preliminaries

Throughout, we write N = {1, 2, 3, . . . } for the set of natural numbers and [n] = {i ∈
Z : 0 < i ≤ n} for the first n positive integers. We write IFPFn = {w ∈ Sn : w2 =
1, w(i) 6= i for i ∈ [n]} for the set of fixed-point-free involutions in the symmetric group
Sn. This set is nonempty only if n is even, in which case it is the Sn-conjugacy class of
(1, 2)(3, 4) · · · (n− 1, n).

Suppose x1, x2, . . . , xN are commuting variables, and consider the polynomial ring
K[x] := K[x1, x2, . . . , xN] over a field K (for now arbitrary, but in later sections alge-
braically closed). A term order on the polynomial ring K[x] := K[x1, x2, . . . , xN] is a total
order on the set of all monomials, such that 1 is the unique minimum and such that if
mon1,mon2,mon3 are monomials and mon1 ≤ mon2, then mon1mon3 ≤ mon2mon3.

Example 2.1. The lexicographic term order on K[x] declares that xa1
1 · · · x

aN
N ≤ xb1

1 · · · x
bN
N

whenever (a1, . . . , aN) ≤ (b1, . . . , bN) in lexicographic order. The (graded) reverse lexi-
cographic term order declares that xa1

1 · · · x
aN
N ≤ xb1

1 · · · x
bN
N whenever ∑i ai ≤ ∑i bi and

(aN, . . . , a1) ≥ (bN, . . . , b1) in lexicographic order; note the double reversal.

Fix a term order and suppose f = ∑mon cmon · mon ∈ K[x] where the sum is over
monomials mon and each cmon ∈ K. If f is nonzero, then its initial term (or leading term)
is the maximal monomial mon such that cmon 6= 0. If f = 0 then its initial term is also
defined to be zero. In either case, we write in( f ) for the corresponding initial term.

The initial ideal of an ideal I in K[x] is then in(I) := K-span{in( f ) : f ∈ I}. This
abelian group is itself an ideal in K[x]. A Gröbner basis G for an ideal I ⊆ K[x], relative
to a fixed term order, is a generating set whose set of initial terms {in(g) : g ∈ G}
generates in(I).

Example 2.2. In our applications, we will usually take x1, x2, . . . , xN to be either the
commuting variables uij indexed by all positions (i, j) ∈ [n] × [n] for some n, or the
subset of these variables indexed by positions strictly below the main diagonal. Unless
otherwise mentioned, we equip K[uij : i, j ∈ [n]] and its subrings with the (graded)
reverse lexicographic order from Example 2.2 with uij identified with xn(i−1)+j.

This means that we order the variables uij lexicographically, so that uij < ui′ j′ if i < i′

or if i = i′ and j < j′. Then, we declare that mon1 < mon2 if either deg(mon1) <
deg(mon2) or deg(mon1) = deg(mon2) and the following holds: there is some variable
uij whose exponent e1 in mon1 differs from its exponent e2 in mon2, and when uij is the
(lexicographically) largest such variable one has e1 > e2. If mon1 and mon2 are both
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square-free of the same degree, then we have mon1 < mon2 if and only there is some
variable uij that does not divide both monomials, and the largest such variable divides
mon1 but not mon2.

3 Skew-symmetric matrix Schubert varieties

Fix a positive even integer n and an algebraically closed field K. Recall that Matss
n

denotes the set of n× n skew-symmetric matrices over K.

Definition 3.1. Given an involution z ∈ IFPFn , the associated n× n skew-symmetric matrix
Schubert cell X̊ss

z and n× n skew-symmetric matrix Schubert variety Xss
z are

X̊ss
z = {A ∈ Matss

n : rank A[i][j] = rank z[i][j] for i, j ∈ [n]},
Xss

z = {A ∈ Matss
n : rank A[i][j] ≤ rank z[i][j] for i, j ∈ [n]}.

Here we identify z ∈ IFPFn ⊆ Sn with its permutation matrix, so that rank z[i][j] is the
cardinality of {z(1), . . . , z(i)} ∩ [j]. These definitions would still make sense if z were an
arbitrary permutation of N, but then it could happen that X̊ss

z = ∅. We require z ∈ IFPFn
to exclude this degenerate case.

Skew-symmetric matrix Schubert cells arise as the orbits of a certain group action.
Specifically, observe that the general linear group GLn acts on Matss

n by g : A 7→ gAgT.
Given any permutation w of N, let ssn(w) be the n× n matrix whose entry in position
(i, j) is 1 if w(j) = i < j = w(i), −1 if w(j) = i > j = w(i), and 0 otherwise; see
Example 3.3. The next theorem shows that Definition 3.1 is equivalent to the definition
of Xss

z given in the introduction.

Theorem 3.2 ([2]). Suppose z ∈ IFPFn . Then X̊ss
z is the Bn-orbit of the skew-symmetric

matrix ssn(z). Moreover, Xss
z is the Zariski closure of X̊ss

z and is an irreducible variety.

3.1 Pfaffian generators for prime ideals

As in the introduction, we identify the coordinate ring K[Matss
n ] with K[uij : i, j ∈ [n], i >

j] where uij represents the function A 7→ Aij. If A is a matrix and I and J are subsets
of indices, then we write AI J := [Aij](i,j)∈I×J for the corresponding |I| × |J| submatrix.
We often apply this notation to the n× n skew-symmetric matrix of variables U ss with
entries defined by

U ss
ij =


−uji if i < j
uij if i > j
0 if i = j.

(3.1)
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If A is a matrix then rank A ≤ r if and only if all size r + 1 minors of A vanish.
Hence, Xss

z is the zero locus of the ideal in K[uji : i, j ∈ [n], i > j] generated by all size
rank z[i][j] + 1 minors of U ss

[i][j] for (i, j) ∈ [n]× [n]. This ideal is often not prime, however.

Example 3.3. Take n = 6 and let z = (1, 2)(3, 5)(4, 6) ∈ IFPF6 , so

ssn(z) =

 0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −1 0 0 0
0 0 0 −1 0 0

 .

As rank z[4][3] = 2, the ideal described above contains the four 3× 3 minors in U ss
[4][3], one

of which is

det(U ss
{1,2,4},{1,2,3}) = det

[
0 −u21 −u31

u21 0 −u32
u41 u42 u43

]
= u21(u32u41 − u31u42 + u21u43).

However, one can check that the single condition rank A[4][3] ≤ 2 implies all the others
defining Xss

z , and that accordingly the ideal under consideration is generated by the
four 3 × 3 minors in U ss

[4][3]. In particular, it is generated by homogeneous degree 3
polynomials, so cannot contain either factor u21 or u32u41 − u31u42 + u21u43. (Since u21
is nonzero on the matrix ss(z) ∈ Xss

z , the other factor must lie in the prime ideal of the
irreducible variety Xss

z . In fact, it generates it; see Example 3.5.)

In this section, we identify a different set of polynomials which turn out to generate
the prime ideal I(Xss

z ). The key idea in our construction is to replace minors of matrices
by Pfaffians. Recall that the Pfaffian of a skew-symmetric n× n matrix A is

pf(A) = ∑
z∈IFPFn

(−1)`FPF(z) ∏
z(i)<i∈[n]

Az(i),i (3.2)

where once again `FPF(z) = |Dss(z)|. For example, we have pf(U ss
[2][2]) = pf

[
0 −u21

u21 0

]
=

−u21. If n is odd then the outer summation in (3.2) is empty so pf(A) = 0. This is
consistent with the well-known fact that pf(A)2 = det(A), which is zero if A is skew-
symmetric of odd size.

Theorem 3.4. Given z ∈ IFPFn , the prime ideal I(Xss
z ) in K[Matss

n ] = K[uij : i, j ∈ [n], i > j]
is generated by the Pfaffians pf(U ss

RR) for all nonempty sets R ⊆ [n] of even size for which
there exist indices i, j ∈ [n] with i ≥ j such that R ⊆ [i] and |R ∩ [j]| > rank z[i][j].

Example 3.5. Take n = 6 and let z = (1, 2)(3, 5)(4, 6) ∈ IFPF6 as in Example 3.3. As
mentioned in that example, Xss

z is defined by the single rank condition rank A[4][3] ≤
2, and similarly one can deduce that it is only necessary to consider (i, j) = (4, 3) in
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Theorem 3.4. That is, I(Xss
z ) is generated by pf(U ss

RR) where R ⊆ [4] has even size and
|R ∩ [3]| > rank z[4][3] = 2, i.e., by the single Pfaffian

pf(U ss
{1,2,3,4},{1,2,3,4}) = pf

[ 0 −u21 −u31 −u41
u21 0 −u32 −u42
u31 u32 0 −u43
u41 u42 u43 0

]
= u32u41 − u31u42 + u21u43.

To verify Theorem 3.4 in this case, observe that the Pfaffian above is a square root of
det(U ss

{1,2,3,4},{1,2,3,4}), so it vanishes on A ∈ Matss
6 if and only if rank A[4][4] ≤ 3. Because

a skew-symmetric matrix has even rank, this is equivalent to rank A[4][3] ≤ 2. Therefore
the ideal (u21u43 − u31u42 + u41u32) does have zero locus Xss

z , and it is prime because it
is generated by an irreducible polynomial.

3.2 Gröbner bases

The generating set of I(Xss
z ) given in Theorem 3.4 need not be a Gröbner basis.

Example 3.6. Let n = 6 and z = (1, 2)(3, 6)(4, 5). Using Theorem 3.8, one computes
that in(I(Xss

z )) = (u32u41, u32u51, u31u42u51). Theorem 3.4 implies that I(Xss
z ) is gen-

erated by the two Pfaffians g := pf(U ss
{1,2,3,4},{1,2,3,4}) = u32u41 − u31u42 + u21u43 and

h := pf(U ss
{1,2,3,5},{1,2,3,5}) = u32u51 − u31u52 + u21u53. Their initial terms are the first two

generators of in(I(Xss
z )), but the last monomial generator is evidently not in the ideal

they generate, nor can it be the initial term of any Pfaffian of a submatrix of U ss (but it
is the initial term of u41h− u51g).

Given sets A = {a1 < · · · < aq} and B = {b1 > · · · > bq}, we define

fAB := pf

[
U ss

BB U ss
B,A	B

U ss
A	B,B 0

]
∈ K[uij : i, j ∈N, i > j]

where A	 B is the set of a ∈ A for which no b exists with

(a, b), (b, a) ∈ {(a1, b1), . . . , (aq, bq)}.

Theorem 3.7. If z ∈ IFPFn then the elements fAB, as (i, j) ranges over all pairs in [n]× [n]
with i ≥ j and (A, B) ranges over all pairs in ([i]q )× ([j]q ) for q = rank z[i][j] + 1, form a
Gröbner basis for I(Xss

z ) with respect to the reverse lexicographic term order.

For instance, if z = (1, 2)(3, 6)(4, 5) as in Example 3.6, then one of the pairs aris-
ing in Theorem 3.7 is (A = {1, 4, 5}, B = {1, 2, 3}). One computes that fAB is then
u51g− u41h = −u31u42u51 + u21u43u51 + u31u41u52 − u21u41u53, whose initial term is the
monomial generator which was missing in Example 3.6.
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3.3 Initial ideals

From Theorem 3.7 on Gröbner bases we can deduce an explicit formula for the initial
ideal of I(Xss

z ). Given sets A = {a1 < · · · < aq}, {b1 > · · · > bq} ⊆ [n], let uAB =

∏
q
i=1 uaibi . Define φ : K[uij : i, j ∈ [n]] → K[uij : 1 ≤ j ≤ i ≤ n] to be the ring

homomorphism with uii 7→ 0 and uij, uji 7→ uij if i > j. Finally, let uss
AB be the squarefree

radical of φ(uAB), where we take the radical of 0 to be 0.

Theorem 3.8. Given z ∈ IFPFn , the initial ideal of I(Xss
z ) under reverse lexicographic term

order is generated by all monomials of the form uss
AB, where (A, B) ∈ ([i]q )× ([j]q ) for some

(i, j) ∈ [n]× [n] with i ≥ j and q = rank z[i][j] + 1.

It is not necessarily the case that uAB is the leading term in the polynomial fAB
defined in 3.2. However, this does hold if there are no indices i < j with bi > aj > ai > bj,
and given any (A, B), one can find (A′, B′) with this property and such that uA′B′ = uAB.

Example 3.9. Take n = 6 and let z = (1, 2)(3, 5)(4, 6) ∈ IFPF6 as in Examples 3.3
and 3.5. As mentioned in those examples, Xss

z is defined by the single rank condi-
tion rank A[4][3] ≤ 2, and similarly one can deduce that it is only necessary to con-
sider (i, j) = (4, 3) and q = 3 = rank z[4][3] + 1 in Theorem 3.8. Thus, the ideal
in(I(Xss

z )) is generated by uss
AB where A ranges over the 3-element subsets of {1, 2, 3, 4}

and B = {1, 2, 3}. The relevant monomials are listed below:

A B uAB φ(uAB) uss
AB

{1, 2, 3} {3, 2, 1} u13u22u31 0 0
{1, 2, 4} {3, 2, 1} u13u22u41 0 0
{1, 3, 4} {3, 2, 1} u13u32u41 u31u32u41 u31u32u41
{2, 3, 4} {3, 2, 1} u23u32u41 u2

32u41 u32u41

Theorem 3.8 now asserts that in(I(Xss
z )) = (u32u41) is the ideal generated by the right-

most column. Evidently this is indeed the initial ideal of I(Xss
z ) = (u32u41 − u31u42 +

u21u43) as computed in Example 3.5.

4 Stanley–Reisner ideals and K-polynomials

4.1 Pipe dreams and Stanley–Reisner ideals

In this subsection, we derive an alternate expression for in(I(Xss
z )) as an intersection

of prime monomial ideals indexed by the involution pipe dreams corresponding to z, as
introduced in [6]. Define the pipe dream reading word of a finite set D ⊂ N×N to be the
word word(D) whose letters list the numbers i + j− 1 as (i, j) ranges over all elements
of D in the order that makes (i,−j) increase lexicographically (i.e., which reads the
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rows in order, but going right to left). For example, the pipe dream reading word of
D = {(1, 4), (1, 3), (2, 6), (5, 5), (5, 4), (5, 3)} is 437987.

Definition 4.1. A reduced fpf-involution word for z ∈ IFPFn is a sequence of positive integers
i1i2 · · · il of shortest possible length such that

z = sil · · · si2si1(1, 2)(3, 4) . . . (n− 1, n)si1si2 · · · sil ,

where si ∈ Sn is the transposition (i, i + 1).
A set D ⊆ n := {(i, j) ∈ [n]× [n] : i > j} is a reduced (fpf-involution) pipe dream of z

if the pipe dream reading word of D is a reduced fpf-involution word of z. Let FP(z)
denote the set of reduced fpf-involution pipe dreams of z.

Bergeron and Billey associated a set of reduced pipe dreams to any permutation [1], and
our fpf-involution pipe dreams are closely related: D ∈ FP(z) if and only if D is the
intersection of n with a pipe dream of z which is symmetric about its main diagonal [6,
Theorem 3.12]

Given a set D ⊆ n, we write (uij : (i, j) ∈ D) to denote the ideal in the coordinate
ring K[Matss

n ] = K[uij : i, j ∈ [n], i > j] generated by uij for all (i, j) ∈ D.

Theorem 4.2. Let z ∈ IFPFn . Then in(I(Xss
z )) =

⋂
D∈FP(z)(uij : (i, j) ∈ D) ⊆ K[Matss

n ].

Example 4.3. Let z = (1, 2)(3, 5)(4, 6). Then z = s4(1, 2)(3, 4)(5, 6)s4, the only reduced
fpf-involution word of z is 4, and the two elements of FP(z) are {(4, 1)} and {(3, 2)}.
Theorem 4.2 then says that in(I(Xss

z )) = (u41) ∩ (u32) = (u41u32), in agreement with
Example 3.9.

The Stanley–Reisner ideal of a simplicial complex ∆ with vertex set [N] is the ideal in
K[x1, . . . , xN] generated by the elements ∏v∈E xv for all E ⊆ [N] with E /∈ ∆. Any ideal
generated by squarefree monomials is a Stanley–Reisner ideal, and in(I(Xss

z )) has this
property by Theorem 3.8. The next theorem identifies it as the Stanley–Reisner ideal of
an explicit complex; it is not hard to deduce from Theorem 4.2.

Definition 4.4. The fpf-subword complex associated to z ∈ IFPFn and a subset Q ⊆ n is
the simplicial complex with vertices Q and faces

Σ(z, Q) = {S ⊆ Q : Q \ S contains an fpf-involution pipe dream for z}.

Theorem 4.5. If z ∈ IFPFn then in(I(Xss
z )) is the Stanley–Reisner ideal of Σ(z, n). More-

over, the complex Σ(z, Q) is vertex-decomposable (hence shellable) for any Q ⊆ n.
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4.2 K-polynomials

We now describe how the results of the preceding subsection lead to a new proof of
a combinatorial formula for the torus-equivariant K-theory class of Xss

z from [15]. Our
approach is modeled after Knutson and Miller’s study of subword complexes and the
resulting combinatorial formulas for Grothendieck polynomials [9].

Suppose R = K[u1, u2, . . . , uN] is a polynomial ring that is graded by a (multi-
plicative) free abelian group G in the sense that each variable ui is assigned a degree
deg(ui) ∈ G, a monomial ua1

1 · · · u
aN
N has degree deg(u1)

a1 · · ·deg(uN)
aN , and a polyno-

mial is homogeneous if its terms all have the same degree. If I ⊆ R is a homogeneous
ideal (that is, generated by homogeneous elements), then one can also speak of degrees
and homogeneous elements in R/I. The K-polynomial of I is then the following formal
Z-linear combination of elements of G:

K(I) =
N

∏
i=1

(1− deg(ui)) ∑
g∈G

dimK((R/I)g)g,

where (R/I)g is the subspace of degree g homogeneous elements in R/I. See [16, §8] for
a more careful definition, including conditions guaranteeing that this formal generating
function is well-defined.

Example 4.6. Suppose R = k[x1, x2], G = Zt1 ⊕ Zt2, deg xi = ti, and I = (x2
1). A

homogenous basis for R/I is {xi
1xj

2 + I : 0 ≤ i ≤ 1, 0 ≤ j}, so H(R/I) = ∑∞
j=0(1+ t1)t

j
2 =

1+t1
1−t2

and K(I) = 1+t1
1−t2

(1− t1)(1− t2) = 1− t2
1.

Let G be the multiplicative abelian group freely generated by a1, a2, . . . , an. We give
the coordinate ring K[Matss

n ] = K[uij : n ≥ i > j ≥ 1] a G-grading by setting deg(uij) =
aiaj. These degrees arise as torus weights induced from the action of the torus Tn ⊆ Bn
of diagonal matrices on Matss

n . Since a skew-symmetric matrix Schubert variety Xss
z is

Bn-stable, it is Tn-stable, which implies that I(Xss
z ) is homogeneous under this grading.

Definition 4.7. The symplectic Grothendieck polynomial associated to z ∈ IFPFn is the K-
polynomial GSp

z := K(I(Xss
z )).

Although a priori one only knows that GSp
z ∈ Z[[a1, a2, . . . ]], it turns out that this

formal generating function always has only finitely many nonzero terms. The functions
GSp

z are the same as the polynomials ΥK
π,(GL2n,Sp2n)

given in [18] as representatives for
the ordinary K-theory classes of the Spn(C)-orbit closures on GLn(C)/Bn. Symplectic
Grothendieck polynomials also appear in [13, 14] (after making the change of variables
ai 7→ 1− xi) as representatives for the T-equivariant K-theory classes of the varieties Xss

z .
The latter polynomials (in Z[x1, x2, . . . ]) have well-defined “stable limits” converging to
symmetric functions that expand positively in terms of Ikeda and Naruse’s K-theoretic
Schur P-functions (with parameter β = −1); see [11, Thm. 1.9] and [13, Thm. 1.6].
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Example 4.8. Let D be a subset of n = {(i, j) ∈ [n]× [n] : i > j}. As in the proof of
Theorem 4.2, write Ideal(D) = (uij : (i, j) ∈ D) ⊂ K[uij : n ≥ i > j ≥ 1] =: R. The
set of monomials ∏(i,j)∈Dc u

mij
ij where Dc := n \ D descends to a basis for R/Ideal(D).

Accordingly,

K(Ideal(D)) = ∏
n≥i>j≥1

(1− aiaj) ∏
(i,j)∈Dc

∑
mij≥0

(aiaj)
mij = ∏

(i,j)∈D
(1− aiaj).

If z ∈ IFPFn is fpf-dominant in the sense that FP(z) has a unique element D, then
I(Xss

z ) = Ideal(D) by Theorem 4.2, and GSp
z = ∏(i,j)∈D(1 − aiaj), which recovers the

skew-symmetric half of [13, Thm. 3.8].

If z ∈ {1} t IFPFn and s = si = (i, i + 1) ∈ Sn, then we define

z ∗ s =


1 if (i, i + 1) is a cycle of z
z if z = 1 or z(i) > z(i + 1)
szs otherwise.

Note that if z ∈ IFPFn then either z ∗ s ∈ IFPFn or z ∗ s = 1, but we always have 1 ∗ s = 1.
The operation ∗ extends to a right action of the 0-Hecke monoid of Sn but not to a group
action. If i1i2 · · · il is a word, define δFPF(i1i2 · · · il) = (· · · ((1FPF ∗ si1) ∗ si2) · · · ) ∗ sil .

Definition 4.9. An extended (fpf-involution) pipe dream for z ∈ IFPFn is a subset D ⊆
whose pipe dream reading word i1i2 · · · il satisfies z = δFPF(i1i2 · · · il). Let FP+(z) be
the set of all extended pipe dreams for z.

The set FP+(z) is called InvDreams(z) in [15]. The next theorem can be deduced from
Theorem 4.5 and a more detailed analysis of the fpf subword complex Σ(z, n) using the
techniques of Knutson and Miller in [9, §4].

Theorem 4.10 ([15, Thm. 4.5]). Let z ∈ IFPFn . Then

GSp
z = ∑

D∈FP+(z)

(−1)|D|−`FPF(z) ∏
(i,j)∈D

(1− aiaj).
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