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Abstract. We provide lower and upper bounds on the minimum size of a maximum
stable set over graphs of flag spheres, as a function of the dimension of the sphere and
the number of vertices. Further, we use stable sets to obtain an improved Lower Bound
Theorem for the face numbers of flag spheres.

1 Introduction

Given a graph G, a set X ⊆ V(G) is stable (or independent) if no edge of G has both ends
in X. We denote by α(G) the size of a largest stable set in G; a stable set of size α(G) is
called a maximum stable set of G. Stable sets are a basic concept in graph theory, but it is in
general very difficult to understand what the structure of maximum stable sets is (this is
related to the fact that the problem of computing α(G) is NP-complete). In this paper we
study maximum stable sets in graphs whose clique complex is topologically a sphere of
fixed dimension (these are called graphs of flag spheres). These graphs possess a beautiful
recursive structure, since the neighborhood of every vertex is a graph of the same type
but of lower dimension. They are also of great interest in topological combinatorics
and beyond, e.g., in the study of manifolds with nonpositive sectional curvature, via the
Charney-Davis conjecture [2, 3].

Our main objective is the following natural invariant: the minimum size over maxi-
mum stable sets in n-vertex graphs of flag (d − 1)-dimensional spheres, namely

α(d, n) = min(α(G) : |V(G)| = n, cl(G) triangulates the (d − 1)-dimensional sphere).

(Here cl(G) is the complex of cliques of G.) For fixed d we are interested in the growth
of α(d, n) as n → ∞.

Conjecture 1.1. For every d ≥ 2 and n ≥ 2d, α(d, n) =
⌈

n+d−3
2(d−1)

⌉
.
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This conjecture holds for d = 2 (easy) and d = 3 (see Theorem 2.3, using the 4-color
theorem (4CT) for the lower bound). For d = 4 we prove that the conjectured upper
bound holds. For general d ≥ 4 we show:

Theorem 1.2. Let d ≥ 4 and n ≥ 2d. Then

1
4

n
1

d−2 ≤ α(d, n) ≤
⌈⌈ n

⌊d/4⌋
⌉
+ 1

6

⌉
.

The lower bound slightly improves on the Ramsey bound (Ω(n
1
d )) by using the 4CT

within the base case d = 4. The upper bound, which is roughly 2n
3d for large d, is obtained

by taking the join of copies of the best flag 3-spheres constructed in Theorem 2.4 for the
upper bound, and taking up to 3 extra suspensions to reach dimension d − 1. Indeed, a
maximum stable set in the join is a maximum stable set in a component of the join – now,
ignoring rounding, such component is a 3-sphere on a 4/d fraction of the n vertices, and
a 1/6 fraction of its vertices form a maximum stable set.

Our second result is an improved lower bound theorem on the number of edges for
the class of flag spheres; the proof relies on the existence of a large stable set in such
graphs. Deducing from this bound lower bounds on the number of higher dimensional
k-faces appeared in the proof of [9, Proposition 3.2], following the MPW-reduction.

Theorem 1.3. (i) Fix δ > 0. There exists d(δ) such that for all d ≥ d(δ) and n large enough,
each n-vertex flag (d − 1)-sphere has at least (d + 1−δ

2d+1)n edges.
(ii) For all d ≥ 6, and n large enough, each n-vertex flag (d − 1)-sphere has at least (d +

0.987
2d+1)n edges.

Note that the Lower Bound Theorem for simplicial spheres [1, 4] guarantees in (i)
for simplicial spheres at least (d − δ)n edges and Gal’s conjecture [3], which, if true,
is tight, would imply at least (2d − 3 − δ)n edges (it does hold for d ≤ 5). For d ≥ 6
the lower bound in Theorem 1.3(ii) appears to be new. If Conjecture 1.1 holds then this
lower bound would further improve to at least (d + 1

2d−2)n edges, for all d ≥ 6, for large
enough n.

Outline: In Section 2 we construct low dimensional flag spheres whose maximum
independent sets are small, proving Conjecture 1.1 for d = 3 and the upper bound there
for d = 4, and deducing both bounds in Theorem 1.2. In Section 3 we prove Theorem 1.3
by combining stable sets with framework rigidity. In Section 4 we give some results and
conjectures regarding the corresponding invariant for the other extreme:

αM(d, n) = max(α(G) : |V(G)| = n, cl(G) triangulates the (d − 1)-dimensional sphere).
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2 The construction

We construct graphs, denoted Wd,k. First we analyze their α, and next we analyze their
clique complex. Figure 1(middle) illustrates W3,3.
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Figure 1: Middle: The graph W3,3 is depicted. The bold black and bold white vertices
indicate stable sets of size α(W3,3) = 4. The shaded edges indicate edges that are not
visible from a front view of the depicted realization of the flag 2-sphere cl(W3,3) in
3-space. Right: The graph X(3, 2, 2) is depicted. The bold white vertices indicate a
stable set of size α(X(3, 2, 2)) = 4. Left: The graph Y(3, 2, 1) is depicted. The bold
white vertices indicate a stable set of size α(Y(3, 2, 1)) = 4.

Fix an integer d ≥ 2. For k ≥ 1 let Wd,k be the following graph. V(Wd,k) = {a, b} ∪
X1 ∪ . . . ∪ Xk where the sets X1, . . . , Xk, {a, b} are pairwise disjoint and |Xi| = 2d − 2 for
every i ∈ {1, . . . , k}. Denote Xi = {yi

1, . . . , yi
d−1, zi′

1 , . . . , zi
d−1}. Next we list the edges

of Wd,k.

• a is complete to X1 and b is complete to Xk and there are no other edges incident
with a, b.

• For every i, the induced graph Wd,k[Xi] is the 1-skeleton of the (d − 1)-dimensional
crosspolytope, a.k.a. the graph of the octahedral (d − 2)-sphere, with non-edges
yi

1zi
1, . . . , yi

d−1zi
d−1.

• Xi is anticomplete to Xj if |i − j| > 1.
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• For i ∈ {1, . . . , k − 1} and s, t ∈ {1, . . . , d − 1} let us say that the pair (yi
szi

s, yi+1
t zi+1

t )
is positive if yi

sy
i+1
t and zi

sz
i+1
t are edges, and yi

sz
i+1
t and zi

sy
i+1
t are non-edges, and

negative if yi
sy

i+1
t and zi

sz
i+1
t are non-edges, and yi

sz
i+1
t and zi

sy
i+1
t are edges. Then

the pair (yi
szi

s, yi+1
t zi+1

t ) is positive if t ≥ s and negative if t < s.

• All pairs of vertices of Wd,k that are not mentioned above are non-edges.

Now we define certain edge subdivisions on cl(Wd,k). Consider a maximal simplex
in the link of a (resp. b) in cl(Wd,k), say y1

1y1
2y1

3 . . . y1
d−1 (resp. yk

1yk
2yk

3 . . . yk
d−1). Given a

simplicial complex Z and an edge xy of Z, we denote by Z(xy) the complex obtained
from Z by the stellar subdivision of Z at xy (also called edge subdivision), and by vxy the
new vertex resulting from such a subdivision. Make the following sequence of 2d − 2
edge subdivisions:

X′′(d, k, 0) := cl(Wd,k), and for j ∈ {1, . . . , d − 1}, having defined X′′(d, k, j − 1) and
uj−1 (for j > 1), let X′′(d, k, j) := X′′(d, k, j − 1)(ay1

j ) and uj := vay1
j
. Let X(d, k, j) be

the graph that is the 1-skeleton of X′′(d, k, j) (thus X(d, k, 0) = Wd,k). For example,
Figure 1(right) illustrates X(3, 2, 2).

Next let Y′′(d, k, 0) := X′′(d, k, d − 1), and for j ∈ {1, . . . , d − 1}, having defined
Y′′(d, k, j − 1) and wj−1 (for j > 1), let Y′′(d, k, j) := Y′′(d, k, j − 1)(byk

j ) and wj := vbyk
j
.

Let Y(d, k, j) be the graph that is the 1-skeleton of Y′′(d, k, j). For example, Figure 1(left)
illustrates Y(3, 2, 1).

Theorem 2.1. For every d ≥ 2, k ≥ 1, d − 1 ≥ j ≥ 0,

α(X(d, k, j)) = k + 1 =
|V(X(d, k, j))| − 2 − j

2d − 2
+ 1.

For every d ≥ 3, k ≥ 1, d − 1 ≥ j ≥ 1,

α(Y(d, k, j)) = k + 2 =
|V(Y(d, k, j))| − 2 + (d − 1 − j)

2d − 2
+ 1.

Proof sketch: Let G be one of the graphs X(d, k, j) or Y(d, k, j). Let U be the set of vertices
of the form uj in G, and let W be the set of vertices of the form wj in G. Then W ̸= ∅
only if |U| = d − 1. Moreover U ∪ a and W ∪ b are both cliques in G. Denote by
NG(v) the neighbors of v in G. Then, X1 \ NG(a) ⊆ {y1

1, . . . , y1
d−1}, and for every j we

have that X1 \ NG(uj) = {y1
1, . . . , y1

j−1, z1
j }. In particular, α(G[X1 \ NG(v)]) ≤ 1 for every

v ∈ U ∪ {a}. Similarly, α(G[Xk \ NG(v)]) ≤ 1 for every v ∈ W ∪ {b}.
Let S be a stable set of G. First we prove an upper bound on |S|. Clearly for every

i we have that α(G[Xi]) = 2. Moreover every vertex of Xi+1 has a neighbor in every
non-edge of G[Xi], and every vertex of Xi has a neighbor in every non-edge of G[Xi+1].
Consequently, |S ∩ (Xi ∪ Xi+1)| ≤ 2.
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Hence |S \ (U ∪ W ∪ {a, b})| ≤ k + 1. Suppose |S \ (U ∪ W ∪ {a, b})| = k + 1. Then
k is odd, and |S ∩ X1| = |S ∩ Xk| = 2. It follows that S ∩ (U ∪ W ∪ {a, b}) = ∅ and
|S| = k + 1.

Next suppose that |S \ (U ∪ W ∪ {a, b})| = k. Since U ∪ {a} and W ∪ {b} are both
cliques, it follows that |S| ≤ k + 2, and so we may assume that G = X(d, k, j) for some
j (for otherwise G = Y(d, k, j) and the upper bound on α(G) holds). With some extra
work, of similar flavor, one shows that |S| ≤ k + 1 in this case, since W = ∅ in this case.

Next we show that if G = X(d, k, j) for some j ≥ 0 then α(G) = k + 1. Let S′ =⋃
i∈1,...,k; i odd{yi

1, zi
1}. If k is odd let S = S′. If k is even, let S = S′ ∪ {b}. In both cases

|S| = k + 1.
Finally we show that if G = Y(d, k, j) for some j ≥ 1 then α(G) = k + 2. Since j ≥ 1,

we have that a is anticomplete to {y1
1, . . . , y1

d−1} and w1 ∈ W. Let

S = {a, w1} ∪
⋃

i∈{1,...,k}
k−i odd

{yi
1} ∪

⋃
i∈{1,...,k}
k−i even

{zi
1}.

Then S a stable set of size k + 2 in G.
So far we have proved that α(X(d, k, j)) = k + 1 for every d ≥ 2, k ≥ 1 and j ≥ 0,

and that α(Y(d, k, j)) = k + 2 for every d ≥ 3, k ≥ 1 and j ≥ 1. The remaining equalities
follow by a direct computation.

Observe that Wd,1 is the 1-skeleton of the d-dimensional crosspolytope. Further,

Observation 2.2. The clique complex of W3,k is a flag 2-sphere for every k ≥ 1.

Proof. For each i, W3,k[Xi] is a 4-cycle. Consider W3,k[Xi ∪ Xi+1]: adding to the two
disjoint 4-cycles W3,k[Xi] ∪ W3,k[Xi+1] the edges yi

syi+1
s and zi

szi+1
s (for the positive pairs

(yi
szi

s, yi+1
s zi+1

s ) with s = 1, 2) makes a cylinder subdivided into 4 squares; adding the
other edges for the positive pair with s = 1, t = 2 and for the negative pair with s =
2, t = 1 subdivides each of the four squares into two triangles. Thus, W3,k[X1 ∪ . . . ∪ Xk]
is a triangulated cylinder, and adding a, b with their edges makes a flag 2-sphere.

Next we show:

Theorem 2.3. For every n ≥ 6, α(3, n) = ⌈n
4 ⌉.

Proof. Observe that |V(X(3, k, j))| ≡4 2 + j, and |V(Y(3, k, j))| ≡4 j, and thus for every
n ≥ 6 there exist integers k ≥ 1 and j ≥ 0 and a graph G ∈ {X(3, k, j), Y(3, k, j)}
such that |V(G)| = n. Now by Theorem 2.1 for every k ≥ 1 and j ≥ 0 we have that
α(X(3, k, j)) = ⌈ |V(X(3,k,j))|

4 ⌉, and for every k ≥ 1 and j ≥ 1 we have that α(Y(3, k, j)) =
⌈ |V(Y(3,k,j))|

4 ⌉. Finally, since X′′(3, k, j) and Y′′(3, k, j) are obtained from cl(W3,k) by stellar
edge subdivisions, it follows from Observation 2.2 that their clique complexes are flag
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2-spheres. We have shown that for every n ≥ 6, α(3, n) ≤ ⌈n
4 ⌉. Since by the 4CT

every n-vertex triangulation of the 2-dimensional sphere has a stable set of size ⌈n
4 ⌉,

α(3, n) ≥ ⌈n
4 ⌉.

For d = 4, the graph W4,k induces a cell structure on the 3-sphere, consisting of
tetrahedra with a vertex a or b and of triangular prisms consisting of a triangle on Xi
and the corresponding triangle on Xi+1 (the corresponding vertices differ only in the
superscript). All these triangular prisms are triangulated by considering all tertrahedra
defined by cliques of W4,k on this set of 6 vertices, except for the following two (for a fixed
1 ≤ i ≤ k − 1): yi

1, zi
2, yi

3; yi+1
1 , zi+1

2 , yi+1
3 and its “antipodal prism” zi

1, yi
2, zi

3; zi+1
1 , yi+1

2 , zi+1
3 .

We add the edge yi
1zi+1

2 to triangulate the first, and the edge zi
1yi+1

2 to triangulate the
second (such added edge is “bent” inside the prism, the resulted triangulation of the
prism is topological, not geometric); denote the resulting graph by W ′

4,k. Let X′(4, k, j)
and Y′(4, k, j) be the graphs obtained from X(4, k, j) and Y(4, k, j), respectively, by adding
the same edges. See Figure 2 for an illustration of how the triangular prisms are trian-
gulated.

yi+1
1 yi+1

2

yi+1
3

yi
1 yi

2

yi
3

yi+1
1 zi+1

2

yi+1
3

yi
1 zi

2

yi
3

Figure 2: Two triangular prisms with the induced graphs on their vertices. The grey
edges indicate edges not visible from a front view of the depicted realization embeded
in 3-space. The red edge is bent inside the right prism. In purple are sample induced
tetrahedra. Note that in each prism, its clique complex triangulates it.

Theorem 2.4. The clique complex of W ′
4,k is a flag 3-sphere for every k ≥ 1.
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Proof sketch: Recall the cell structure on the 3-sphere described above, by tetrahedra and
triangular prisms, induced by W4,k. First observe that for every triangular prism T on
vertex set V(T) and every added edge uv = yi

1zi+1
2 or zi

1yi+1
2 of W ′

4,k on vertices in V(T),
all cliques in W ′

4,k involving uv have their vertex sets contained in V(T). Further, every
clique of W ′

4,k[X1 ∪ . . .∪ Xk] has its vertex set contained in V(T) some triangular prism T.
Hence, to show that cl(W ′

4,k) is a flag 3-sphere it is enough to check that every induced
subcomplex cl(W ′

4,k[V(T)]) triangulates the prism T. Clearly the squares in each prism
T are triangulated, as exactly one diagonal in each square is inserted (which diagonal
depends on whether the corresponding pair is positive or negative). One verifies that
each triangle on the boundary of T is contained in exactly one tetrahedron whose vertex
set is contained in V(T), and there is no 5-clique whose vertex set is contained in V(T).
Thus, to verify that cl(W ′

4,k[V(T)]) triangulates the prism T it suffices to check for each
tetrahedron A whose vertex set is contained in V(T) that each triangle B in A and not
in the boundary of T, satisfies that B is contained in exactly one more tetrahedron A′

whose vertex set is contained in V(T). One inspects that this is indeed the case.

Next we show:

Theorem 2.5. For all n ≥ 8, α(4, n) ≤ ⌈n+1
6 ⌉.

Proof. Observe that |V(X(4, k, j))| ≡6 2 + j, and |V(Y(4, k, j))| ≡6 j − 1 (here 0 ≤ j ≤
3), and thus for every n ≥ 8 there exist integers k ≥ 1 and j ≥ 0 and a graph G ∈
{X(4, k, j), Y(4, k, j)} such that |V(G)| = n. Now by Theorem 2.1 for every k ≥ 1 and
j ≥ 0 we have that α(X(4, k, j)) =

⌈
|V(X(4,k,j))|+1

6

⌉
, and for every k ≥ 1 and j ≥ 1 we

have that α(Y(4, k, j)) =
⌈
|V(Y(4,k,j))+1|

6

⌉
. Since X′(4, k, j) and Y′(4, k, j) are obtained from

X(4, k, j) and Y(4, k, j) by adding edges, we deduce that

α(X′(4, k, j)) ≤
⌈
|V(X(4, k, j))|+ 1

6

⌉
=

⌈
|V(X′(4, k, j))|+ 1

6

⌉
for every k ≥ 1 and j ≥ 0, and

α(Y′(4, k, j)) ≤
⌈
|V(Y(4, k, j))|+ 1

6

⌉
=

⌈
|V(Y′(4, k, j))|+ 1

6

⌉
and for every k ≥ 1 and j ≥ 1.

Finally, since cl(X′(4, k, j)) and cl(Y′(4, k, j)) are obtained from cl(W ′(4, k)) by stellar
edge subdivisions, it follows from Theorem 2.4 that their clique complexes are flag 3-
spheres. This completes the proof.

Remark 2.6. In fact, α(X′(4, k, j)) =
⌈
|V(X(4,k,j))|+1

6

⌉
for every k ≥ 1 and j ≥ 0, and

α(Y′(4, k, j)) =
⌈
|V(Y(4,k,j))|+1

6

⌉
for every k ≥ 1 and j ≥ 1.
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Indeed, for d = 4 the sets S constructed in the proof of Theorem 2.1 are also indepen-
dent in X′(4, k, j) and Y′(4, k, j) resp.

Finally we prove the lower bound of Theorem 1.2.

Theorem 2.7. Let d ≥ 4. Then for all n ≥ 2d,

α(d, n) ≥ 1
4

n
1

d−2

Proof sketch: The proof is by induction on d. Let ∆ be a (d − 1)-flag sphere. Recall ∆ has
at least 2d vertices [8], say it has n vertices.

For the base case let d = 4. Then the link of v in ∆, denoted lkv(∆), is a planar
triangulation for every vertex v of ∆, and therefore, by the 4CT, lkv(∆) contains a stable
set of size

⌈
|V(lkv(∆))|

4

⌉
. Thus if for some vertex v of ∆ we have that |V(lkv(∆))| ≥ n

1
2 ,

then the theorem holds. If |V(lkv(∆))| < n
1
2 for every v, then a stable set of size n

n
1
2
=

n
1
2 > 1

4 n
1
2 can be obtained greedily. This finishes the case when d = 4.

Now we turn to general d. In this case lkv(∆) is a (d − 2)-flag sphere for every vertex
v of ∆, and therefore, inductively, lkv(∆) contains a stable set of size 1

4 |V(lkv(∆))|
1

d−3 .

Thus if for some vertex v of ∆ we have that |V(lkv(∆))| ≥ n
d−3
d−2 , then the theorem holds.

If |V(lkv(∆))| < n
d−3
d−2 for every v, then a stable set of size n

n
d−3
d−2

= n
1

d−2 > 1
4 n

1
d−2 can be

obtained greedily. This completes the proof.

3 Lower bounds on f1

The goal of this section is to prove Theorem 1.3.

Proof. Let ∆ = cl(G) be a flag (d− 1)-sphere on n = f0(∆) vertices and f1 = f1(∆) edges.
Let ϵ > 0, and assume f1 < (d + ϵ)n. We look for the largest ϵ = ϵ(d) for which we
reach a contradiction (when d is chosen large enough, and then n is chosen large enough
with respect to d).

By an easy restatement of Turán’s theorem from [7] there is a stable set I of G with
|I| ≥ n

2(d+ϵ)+1 .
We may assume d ≥ 4. Then, we use the following well known facts: (i) G is

generically d-rigid, hence its space of stresses (a.k.a. affine 2-stresses [6]) has dimension
g2(∆) := f1 − dn + (d+1

2 ), see Kalai [4]. (ii) For every vertex link, its graph is generically
(d − 1)-rigid and is not stacked (by flagness) hence, by the Cone Lemma, see, e.g., [10,
Corollary 1.5], for every vertex v ∈ ∆ there exists a stress supported in the closed star
of v (namely in the induced graph of G on v and its neighbors) such that some edge
containing v has a nonzero weight.
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Now, as I is independent, the stresses mentioned above for v ∈ I are linearly inde-
pendent (each has a unique edge with a nonzero weight) and hence

f1 − dn +

(
d + 1

2

)
≥ |I| ≥ n

2(d + ϵ) + 1
,

Thus, for n large enough with respect to d, we can ignore the (d+1
2 ) term and get:

ϵn > n
2(d+ϵ)+1 , namely ϵ > 1

2(d+ϵ)+1 .

Solving the quadric for ϵ we get a contradiction if ϵ <
−(2d+1)+

√
(2d+1)2+8

4 .
Hence for arbitrarily small δ > 0, if d is large enough we reach a contradiction for

ϵ = 1−δ
2d+1 , proving part (i). For part (ii), note that

√
x2 + 8− x > 3.95

x for x ≥ 13 = 2 · 6+ 1,
thus for all d ≥ 6 (and large enough n) we will reach a contradiction if ϵ ≤ 3.95

4(2d+1) =
0.987
2d+1 .

Note that if Conjecture 1.1 holds then plugging the larger value for |I| yields f1 ≥
(d + 1

2d−2)n for all d ≥ 6 and large enough n.

Conjecture 3.1. For all d ≥ 5, the graph of every flag (d − 1)-sphere is (d + 1)-rigid.

If true, this conjecture would imply f1 ≥ (d + 1) f0 − (d+2
2 ) for flag spheres of dimen-

sion d − 1 ≥ 4. A standard use of the Cone and Gluing Lemmas, see Kalai [4], reduces
Conjecture 3.1 to the case d = 5. For d < 5 its assertion is false.

4 αM(d, n)

Fix d ≥ 4 and let n → ∞. Then there exist simplicial (d − 1)-spheres on n vertices where
the proportion of vertices in an independent set is arbitrarily close to 1. To see this, start
with the boundary complex ∆ of a cyclic d-polytope with m > d vertices, and note that
∆ is a neighborly (d − 1)-sphere, i.e. all ( m

⌊ d
2⌋) subsets consisting of

⌊
d
2

⌋
vertices are faces

in ∆. It is easy to check that ∆ has Θ(m⌊ d
2 ⌋) facets. Perform stellar subdivisions on all

facets. Then the set I of the newly added vertices is stable and of size Θ(m⌊ d
2 ⌋) , while

only the original m vertices are not in I.
In contrast, for flag spheres we conjecture that the proportion of vertices in an inde-

pendent set can not exceed 1/2.

Conjecture 4.1. For all d ≥ 2, αM(d, n) =
⌊

n−2(d−2)
2

⌋
.

This conjecture clearly holds for d = 2 and we prove it for d = 3. The lower bound
holds for all d ≥ 2 by the following construction: consider the (d − 2)-fold suspension
over the (n − 2(d − 2))-gon. A maximum stable set is obtained by taking every second
vertex along the (n − 2(d − 2))-gon.
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Theorem 4.2. For all n ≥ 6, αM(3, n) = ⌊n−2
2 ⌋.

Proof. The construction above proves the lower bound αM(3, n) ≥
⌊n−2

2

⌋
. To show

αM(3, n) ≤
⌊n−2

2

⌋
, let I be a maximum stable set in the graph G = (V, E) of a flag

2-sphere on n vertices (it forces n ≥ 6). Let G′ = (V, B) be the subgraph of G whose
edges are those with exactly one vertex in I. Then G′ is bipartite and planar. Further, G′

has at least two vertices in I (as each vertex in G has a non-neighbor) and at least two
(in fact 4) vertices in the complement of I (as each vertex in I has degree at least 4 by
flagness). Thus, G′ has at most 2n − 4 edges (this is known, see, e.g., [5, Lemmas 4.2, 4.3]
for a proof). On the other hand,

|B| = ∑
v∈I

deg(v) ≥ 4|I|,

as each vertex in G has degree at least 4, and for all v ∈ I the degree is preserved when
passing to G′. Thus 4|I| ≤ 2n − 4, hence |I| ≤

⌊n−2
2

⌋
.
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