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Abstract. We give a Type B analog of Whitehouse’s lifts of the Eulerian representa-
tions from Sn to Sn+1 by introducing a family of Bn-representations that lift to Bn+1. As
in Type A, we interpret these representations combinatorially via a family of orthogo-
nal idempotents in the Mantaci–Reutenauer algebra, and topologically as the graded
pieces of the cohomology of a certain Z2-orbit configuration space of R3. We show
that the lifted Bn+1-representations also have a configuration space interpretation, and
further parallel the Type A story by giving analogs of many of its notable properties,
such as connections to equivariant cohomology and the Varchenko–Gelfand ring.
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1 Introduction

Let V be a representation of a finite group H; then V is said to have a lift to a group
G containing H if there is a representation of G that restricts to V. The goal of this
abstract is to (1) identify a family of representations of the hyperoctahedral group Bn
that decompose the regular representation Q[Bn] and lift to Bn+1, and (2) interpret these
representations combinatorially and topologically.

This work is inspired by the well-documented Type A story of a family of Sn-
representations lifting to representations of Sn+1 studied by Whitehouse [21], Early–
Reiner [6], Mathieu [12], Getzler–Kapranov [9], Moseley–Proudfoot–Young [14], and oth-
ers. These Sn-representations and their lifts arose from two distinct perspectives. The
first is via a family of orthogonal idempotents {ek}0≤k≤n−1 known as the Eulerian idem-
potents. The ek are in Solomon’s descent algebra Σ[Sn], the subalgebra of Q[Sn] generated
by sums of permutations σ = (σ1, . . . , σn) with the same descent set

Des(σ1, . . . , σn) := {i ∈ [n− 1] : σi > σi+1}.

The Eulerian idempotents have been extensively researched in the world of algebraic
combinatorics, and generate the Eulerian representations ek Q[Sn], which lift to a family of
Sn+1-representations called the Whitehouse representations [21], defined in Section 2.1.
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The second viewpoint comes from the study of Confn(R
3), the configuration space

comprised of n distinct ordered points in R3. Through this lens, one obtains a family of
Sn-representations as the graded pieces of H∗ Confn(R

3), and lifted representations of
Sn+1 by considering the cohomology of a particular quotient of the configuration space of
S3, the one-point compactification of R3. The cohomology of Confn(R

3) is intrinsically
linked to H∗ Confn(R), a ring with an elegant combinatorial description via Heaviside
functions due to Varchenko–Gelfand [19] (see Section 2.2).

Though not obvious, both viewpoints turn out to be equivalent and serve as a beau-
tiful link between classical combinatorial objects and important topological ones.

Our goal here is to construct an analog to both perspectives for Type B. In our
analogy, Solomon’s descent algebra is replaced by the Type B Mantaci–Reutenauer algebra
Σ′[Bn], a combinatorially defined subalgebra of Q[Bn] generalizing Σ[Sn] and contain-
ing the Type B Descent algebra Σ[Bn]. The role of the Eulerian idempotents will be
played by a family of orthogonal idempotents {gk}0≤k≤n, obtained as a sum of certain
orthogonal idempotents in Σ′[Bn] introduced by Vazirani [20]. The Type B analog of
the space Confn(R

3) will be a Z2-orbit configuration space Conf⟨φ⟩n (R3) (defined in (4.3))
first introduced by Feichtner–Ziegler in [7], and its lift will be a quotient of the Z2-orbit
configuration space of S3 coming from the antipodal action on S3 (see (4.1)). In contrast
to Type A, the strategy we adopt here is to begin with the “lifted” Bn+1-representations
and use them to obtain representations of Bn which should lift.

Our main result is to give a full analogy to the Type A story by showing that the rep-
resentations gk Q[Bn] describe the graded pieces of H∗ Conf⟨φ⟩n (R3), and that these rep-
resentations lift to Bn+1, where they also have a cohomological interpretation. Further,
we fully flesh out the connection between Conf⟨φ⟩n (R3) and Conf⟨φ⟩n (R), and give a com-
binatorial description for H∗ Conf⟨φ⟩n (R) that parallels the one by Varchenko–Gelfand.

The remainder of the abstract proceeds as follows. Section 2 describes in detail
the Type A motivation, including a “wish list” of properties for a Type B analog (Sec-
tion 2.2.1); Sections 3 and 4 introduce the Type B representations and topology, respec-
tively. Section 5 then gives the main results, where we realize the properties on our
wishlist.
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2 Type A Motivation

2.1 The Eulerian and Whitehouse representations

The Eulerian idempotents {ek}0≤k≤n−1 were originally introduced by Reutenauer in [15],
and have been extensively studied and generalized since then; see for instance [16]. They
are obtained as a sum over a complete, primitive, orthogonal family of idempotents
{eλ}λ⊢n in Σ[Sn] constructed by Garsia–Reutenauer1 in [8]:

ek−1 := ∑
λ⊢n

ℓ(λ)=k

eλ. (2.1)

Our focus will be on the family of Sn-representations generated by the ek and de-
composing Q[Sn], called the Eulerian representations, E(k)

n := ek Q[Sn]. The Eulerian rep-
resentations have connections to many beloved objects such as the free Lie algebra [10],
hyperplane arrangements [3] and configuration spaces (see Section 2.2).

For the purposes of this abstract, we are most interested in a property observed by
Whitehouse in [21]: that each E(k)

n has a lift to Sn+1. View Sn ≤ Sn+1 as the subgroup
fixing the element n + 1, let λn+1 be the n + 1 cycle (12 . . . (n + 1)) ∈ Sn+1, and define

Λn+1 :=
1

n + 1

n

∑
i=0

(λn+1)
i.

Whitehouse shows the element f (k)n+1 := Λn+1e(k)n is an idempotent in Q[Sn+1], generat-

ing a family of representations F(k)
n+1 := f (k)n+1 Q[Sn+1] which we will call the Whitehouse

representations. She then proves that the F(k)
n+1 are lifts of the E(k)

n [21, Proposition 1.4].

Example 1 (n = 3). Denote by Sλ the irreducible symmetric group representation indexed
by the partition λ. Then the S3 Eulerian representations and their S4 lifts are

E(0)
3 = S(2,1) F(0)

4 = S(2,2)

E(1)
3 = S(2,1) ⊕ S(1,1,1) F(1)

4 = S(2,1,1)

E(2)
3 = S(3) F(2)

4 = S(4).

Each F(k)
4 restricts to the representation E(k)

3 via the symmetric group branching rules.

2.2 Configuration space cohomology

We will momentarily switch tracks here and focus on the topology of

Confn(R
d) := {(x1, . . . , xn) ∈ Rdn : xi ̸= xj},

1The definition of the eλ is technical and therefore omitted.
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a space with many fascinating and far-reaching mathematical connections. When d =
2, for example, Confn(R

2) is the classifying space of the pure Artin braid group, and
when d = 1, Confn(R) is the complement of the Braid arrangement. The symmetric
group naturally acts on Confn(R

d) by permuting coordinates, and this action induces a
representation in cohomology.2

In the case that d = 1, the space Confn(R) is a disjoint union of n! contractible pieces.
Each piece is parametrized by a relative ordering of x1, . . . , xn in R, and H∗ Confn(R) is
concentrated in degree 0, i.e. the space of linear functionals on Confn(R). Varchenko–
Gelfand give a combinatorial set of generators for H0 Confn(R) called Heaviside functions,

uij(x1, . . . , xn) :=

{
1 xi < xj

0 xi > xj

for i ̸= j ∈ [n] := {1, . . . , n}. The space of such Heaviside functions forms a Z-algebra,
where the uij are endowed with linear addition and component-wise multiplication:

uij · ukℓ(x1, . . . , xn) =

{
1 xi < xj and xk < xℓ
0 otherwise.

This implies certain natural relations, for example that u2
ij = uij. Similarly, one can

deduce that 1 − uij = uji, so that uij · ujk · (1 − uik) = 0, since it is impossible that
xi < xj < xk but xi > xk. This is the essential idea behind Theorem 2.

Theorem 2 ([19]). The ring H0 Confn(R) has presentation Z[uij]/ I , where I is generated by

(i) u2
ij = uij, (ii) uij = (1−uji), (iii) uijujk(1−uik)+ (1−uij)(1−ujk)uik = 0.

Call the ring Z[uij]/ I the Varchenko–Gelfand ring. The presentation in Theorem 2 im-
poses an ascending filtration on the Varchenko–Gelfand ring obtained from the natural
degree grading on Z[uij]/ I : the mth layer in the filtration is the span of monomials in
the variables uij having degree at most m. We will see that the associated graded coming
from this filtration, gr(H0 Confn(R)), is closely related to H∗ Confn(R

d) for d > 1.
The space Confn(R) is relevant in part because it has a “hidden” Sn+1-action. To

recover this action, let U(1) be the circle group and consider Confn+1(U(1)), the space
of n + 1 distinct points in U(1). The group U(1) acts (left) diagonally, and the quo-
tient by this action, V1

n+1 := Confn+1(U(1))/U(1) is Sn-equivariantly homeomorphic to
Confn(R) via the map

fA : V1
n+1

∼=−→ Confn(R), (2.2)

(p1, . . . , pn+1) 7→ (π(p−1
n+1p1), . . . , π(p−1

n+1pn)), (2.3)

2When considering representations of H∗ Confn(R
d), we will assume our coefficients are in Q. Other-

wise, we will use coefficients in Z, e.g., for Theorems 2 and 4.
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where π is the stereographic projection3 from U(1) to R. The intuition here is that V1
n+1

has representatives (p1, . . . , pn, 1) for pi ̸= pj ̸= 1 and like Confn(R), is comprised of n!
contractible pieces. Each disjoint piece of V1

n+1 is parametrized by a relative ordering
of p1, . . . , pn+1 around the circle; these disjoint pieces (Sn-equivariantly) biject with the
pieces of Confn(R). To move from V1

n+1 to Confn(R), read the ordering of p1, . . . , pn
around U(1) counter-clockwise beginning after pn+1.

The advantage of studying V1
n+1 is that it has an explicit Sn+1-action by coordinate

permutation as well as a natural Sn-action given by permuting only p1, . . . , pn.
When we move to cohomology, the Heaviside functions uij also lift to cyclic Heaviside

functions vijk ∈ V1
n+1, defined in [14] by Moseley–Proudfoot–Young as:

vijk(p1, . . . , pn) :=

{
1 pi < pj < pk in counter-clockwise order on U(1)
0 otherwise.

The vijk again form a Z-algebra and provide an elegant combinatorial description for the
ring H0 V1

n+1. In fact the presentation can be recovered from the presentation in Theorem
2 via the induced isomorphism f ∗A sending uij to vij(n+1), along with the additional
relation due to Early–Reiner [6]:

vijk − vijℓ + vikℓ − vjkℓ = 0;

see also [14]. As in the case of H0 Confn(R), the degree grading on H0 V1
n+1 from the

vijk imposes an ascending filtration with associated graded gr(H0 V1
n+1).

Example 3. Consider the two representatives q⃗ and r⃗ of V1
3 and their images under fA:

π(p1) π(p2)

fA (⃗q)

p1 p2

p3

q⃗

7−→
fA π(p2) π(p1)

fA (⃗r)

p2 p1

p3

r⃗

7−→
fA

Note that v123(⃗q) = u12( fA (⃗q)) = 1, while v123(⃗r) = u12( fA (⃗r)) = 0. On the other hand
v213(⃗q) = u21( fA (⃗q)) = 0 and v213(⃗r) = u21( fA (⃗r)) = 1.

When d ≥ 2, the space Confn(R
d) is no longer comprised of contractible, disjoint

pieces but nonetheless has an elegant presentation due to F. Cohen.

Theorem 4 ([4]). For d ≥ 2, the ring H∗ Confn(R
d) has presentation Z⟨uij⟩/J for distinct

i, j, k, ℓ ∈ [n], where J is generated by the relations uijukℓ = (−1)d+1ukℓuij and

(i) u2
ij = 0, (ii) uij = (−1)duji, (iii) uijujk + ujkuki + ukiuij = 0.

The generator uij lies in Hd−1 Confn(R
d), which together with the relations in J , implies

that H∗ Confn(R
d) is concentrated in degrees 0, (d− 1), 2(d− 1), . . . , (n− 1)(d− 1).

3The point ∞ here is 1 ∈ U(1), and since p−1
n+1 pi ̸= 1, the map π is well-defined.
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2.2.1 Property wish list for Type B

We are most concerned with the case that d = 3. In this situation, there are five notable
properties of H∗ Confn(R

3) which will inspire our Type B work.

1. There is an isomorphism of Sn-representations4 for 0 ≤ k ≤ n− 1:

E(n−1−k)
n

∼=Sn H2k Confn(R
3). (2.4)

This was first deduced by comparing a result of Sundaram–Welker for subspace
arrangements [18, Theorem 4.4(iii)] with descriptions of the characters of E(k)

n by
Hanlon [10], and was later proved in the context of Coxeter groups in [3].

2. Equation (2.4) “lifts” to an isomorphism of Sn+1 representations [6, Theorem]:

F(n−1−k)
n+1

∼=Sn+1 H2k(V3
n+1), (2.5)

where V3
n+1 := Confn+1(SU2)/SU2. Recall that SU2 is the group of 2× 2 unitary

matrices over C and is homeomorphic to S3; the quotient is by the diagonal action
of SU2 on Confn+1(SU2). Intuitively, (2.5) comes from a Sn-equivariant homeomor-
phism found in Early-Reiner [6] and Moseley-Proudfoot-Young [14] analogous to
(2.3). The notation V3

n+1 (resp. V1
n+1) indicates the relationship to S3 (resp. S1).

3. There is a recursion relating the Eulerian and Whitehouse representations of Sn:

E(k)
n = F(k−1)

n ⊕
(

S(n−1,1) ⊗ F(k)
n

)
, (2.6)

where S(n−1,1) is the reflection representation of Sn [6, Proposition 1].

4. The circle group U(1) acts on R3 by rotation around the x-axis, thereby inducing an
action on Confn(R

3). The filtration induced from the U(1)-equivariant cohomology
H∗U(1) Confn(R

3) implies a graded isomorphism of Sn-modules:

gr(H0 Confn(R)) ∼=Sn H∗ Confn(R
3), (2.7)

where gr(H0 Confn(R)) coincides with the associated graded coming from the fil-
tration by Heaviside functions [13].

5. Equation (2.7) also lifts to a graded Sn+1-module isomorphism [14]:

gr(H0 V1
n+1)

∼=Sn+1 H∗(V3
n+1), (2.8)

where again (2.8) comes from a U(1)-action on V3
n+1 and subsequent computation

of H∗U(1) V
3
n+1. The grading on the left-hand-side also coincides with the associated

graded coming from the filtration by cyclic Heaviside functions.

Our goal is to find a family of Bn-representations exhibiting analogs of these properties.

4In fact (2.4) holds for any d ≥ 3 and odd by replacing H2k Confn(R
d) with H(d−1)k Confn(R

d).
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3 The Mantaci–Reutenauer algebra and idempotents

We will begin our Type B story by introducing the family of Bn-representations arising in
a generalization Σ[Sn]. Perhaps the most obvious generalization of the Type A descent
algebra is the Type B descent algebra, with Coxeter length used to describe Des(σ).
However, it turns out that the corresponding Eulerian representations of Bn (studied by
the author in [3] for instance) do not lift to Bn+1!

Instead, we will work in the Type B Mantaci–Reutenauer algebra introduced in [11] and
defined as follows. Consider σ = (σ1, . . . , σn) ∈ Bn to be a signed permutation, meaning
that σi ∈ {−n, . . . ,−1, 1 · · · , n}. The Mantaci–Reutenauer descents of σ is the set

MRDes(σ) :=
{

i ∈ [n− 1] :
|σi| > |σi+1| and σi and σi+1 have the same sign or
σi and σi+1 have opposite signs

}
.

Note that MRDes(σ) partitions σ into |MRDes(σ)| + 1 ordered blocks between each
descent. Let [n]± := {1, 2, . . . , n, 1, 2, . . . , n}. A signed composition of n is a sequence
(a1, . . . , aℓ) where ai ∈ [n]± and |a1|+ · · ·+ |aℓ| = n. (Here |j| = j.) Denote by sh(σ)
the signed composition of n obtained from MRDes(σ), where each block {σi, . . . , σi+m}
contributes an m + 1 to sh(σ) if each σi is positive and an m + 1 if σi is negative.

Example 5. If σ = (3, 4,−1,−5,−2), then MRDes(σ) = {2, 4}, which partitions σ into
ordered blocks ({3, 4}, {−1,−5}, {−2}). Therefore sh(σ) = (2, 2, 1).

The Mantaci–Reutenauer algebra is the algebra Σ′[Bn] generated by xα ∈ Q[Bn] where

xα := ∑
σ∈Bn

sh(σ)=α

σ.

Within Σ′[Bn] is a family of complete, primitive and orthogonal idempotents5 g(λ+,λ−)
introduced by Vazirani in [20], where λ+, λ− are integer partitions with |λ+|+ |λ−| = n.

The analog of the Eulerian idempotents will come from summing over these g(λ+,λ−):

gk := ∑
(λ+,λ−)
ℓ(λ+)=k

g(λ+,λ−), (3.1)

and the analog of the Eulerian representations is precisely G(k)
n := gk Q[Bn] for 0 ≤ k ≤ n.

The above analogies are quite natural in the following sense.6 Let τ : Bn → Sn be
the projection which forgets the signs of σ ∈ Bn. In [1] Aguiar–Bergeron–Nyman study
the properties of τ and show that it extends to a surjective algebra homomorphism
τ : Σ′[Bn]→ Σ[Sn]. This homomorphism then relates the gk to the ek:

Proposition 6. We have τ(g0) = 0 and for 1 ≤ k ≤ n, τ(gk) = ek−1.
5As in the case of the eλ, the definition of these idempotents is technical and therefore omitted; see [20].
6The author is grateful to M. Aguiar for suggesting this line of inquiry.
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4 Topology in Type B

In contrast to Type A, in Type B it is more natural to begin with the topology of the
“hidden” action spaces analogous to V1

n+1 and V3
n+1. Recall that the antipodal map acts

on SU2 (e.g. S3), and U(1) (e.g. S1) by −1. One then has two Z2-orbit configuration spaces

ConfZ2
n+1(U(1)) := {(p1, . . . , pn+1) ∈ U(1)n : pi ̸= ±pj},

ConfZ2
n+1(SU2) := {(p1, . . . , pn+1) ∈ SUn

2 : pi ̸= ±pj},

and corresponding quotients by the diagonal action of U(1) and SU2, respectively:

Y1
n+1 := ConfZ2

n+1(U(1))/U(1), Y3
n+1 := ConfZ2

n+1(SU2)/SU2. (4.1)

4.1 Signed cyclic Heaviside functions and the d = 1 case

In direct analogy with Type A, the space Y1
n+1 is comprised of 2nn! contractible pieces,

each of which is parametrized by arrangements of p1, · · · , pn+1 and −p1, . . . ,−pn+1 on
U(1), where we require that each pi be opposite its antipode −pi. Given a point p⃗ =
(p1, . . . , pn+1) ∈ Y1

n+1, write C( p⃗) = C(p1, . . . , pn+1) as its arrangement with antipodes
on U(1) and −pi as pi. By convention i = i.

We define signed cyclic Heaviside functions yijk for distinct i, j, k ∈ [n + 1]± as

yijk( p⃗) :=

{
1 pi < pj < pk counter-clockwise in C( p⃗),
0 otherwise.

Once again, the yijk form a Z-algebra with multiplication given by

yijk · yqrs( p⃗) :=

{
1 pi < pj < pk and pq < pr < ps counter-clockwise in C( p⃗),
0 otherwise.

Analyzing the combinatorial properties of the yijk (and employing a standard Gröb-
ner basis argument) allows one to determine a presentation for H0(Y1

n+1).

Theorem 7. The ring H0(Y1
n+1) has presentation Z[yijk]/I ′ for distinct i, j, k ∈ [n + 1]±,

where I ′ is generated by the relations

(i) y2
ijk = yijk, (ii) yijk = 1− yjik, (iii) yi j k = yi j k,

(iv) yijk − yijℓ + yikℓ − yjkℓ = 0, (v) yijℓyjkℓ(1− yikℓ) + (1− yijℓ)(1− yjkℓ)yikℓ = 0.

Note that although the generators yijk are now indexed by [n+ 1]±, the only new rela-
tion needed for H0 Y1

n+1 compared to H0 V1
n+1 is relation (iii). Like H0 V1

n+1, there is an
ascending filtration on H0 Y1

n+1 by degree in the yijk, and the corresponding associated
graded gr(H0 Y1

n+1) will again play an important role in understanding H∗(Y3
n+1).
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In further parallel with Section 2.2, we would like to identify a genuine orbit config-
uration space of R (rather than a quotient) which is Bn-equivariantly homeomorphic to
Y1

n+1. However, in this context we must be careful about how the antipodal map behaves
under stereographic projection π : Sd → Rd. In particular,

π(−pi) =
−π(pi)

|π(pi)|2
:= φ(π(pi)).

Hence, using the same map as in (2.3), we obtain a Bn-equivariant homeomorphism:

fB : Y1
n+1

∼=−→ Conf⟨φ⟩n (R \{0}), (4.2)

where
Conf⟨φ⟩n (Rd \{0}) := {(x1, . . . , xn) ∈ (Rd \{0})n : xi ̸= xj ̸= φ(xj)}. (4.3)

Example 8. The space Conf⟨φ⟩2 (R \{0}) is the complement of the (non-linear!) spaces:

In cohomology, (4.2) induces an isomorphism of Bn-modules which identifies

yij(n+1) ←→
{

zij i ̸= j
zj i = j.

(4.4)

Theorem 7 then determines a presentation for H0 Conf⟨φ⟩n (R \{0}) in terms of zij and zi
for distinct i, j ∈ [n]±; it too has an ascending filtration coming from the degree grading
in the zi and zij. The zi variables can be interpreted as Heaviside-like functions where
zi(x⃗) = 1 if xi > 0 and 0 otherwise. Unfortunately, unlike the uij in Type A, the zij have
a decidedly more complicated description, which we omit for the sake of brevity.

4.2 The d = 3 case

In the case of H∗(Y3
n+1), there is also a simple presentation mirroring that of H∗(V3

n+1).

Theorem 9. The ring H∗(Y3
n+1) has presentation Z[yijk]/J ′ for distinct i, j, k ∈ [n + 1]±,

where J ′ is generated by the relations

(i) y2
ijk = 0, (ii) yijk = −yjik, (iii) yi j k = yi j k,

(iv) yijk − yijℓ + yikℓ − yjkℓ = 0, (v) yijℓyjkℓ − yikℓyijℓ − yikℓyjkℓ = 0.
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The generators yijk are of cohomological degree 2, and so Theorem 9 implies that
H∗(Y3

n+1) is concentrated in degrees 0, 2, . . . , 2n.
We would like to recover from Theorem 7 a presentation7 for the cohomology of

Conf⟨φ⟩n (R3 \{0}). As in the d = 1 case, there is a Bn-equivariant homeomorphism
between Y3

n+1 and Conf⟨φ⟩n (R3 \{0}) analogous to (2.3). This again induces a Bn-module
isomorphism in cohomology identifying the generator yij(n+1) with zij or zi as in (4.4).

From this identification, one can readily use Theorem 9 to obtain a presentation for
H∗ Conf⟨φ⟩n (R3 \{0}) with respect to zij and zi for i, j ∈ [n]±.

5 Main results: Type B wishlist realized

We now present an analog of the properties described in Section 2.2.1 for Type B.

Theorem 10.

1. There is an isomorphism of Bn-representations for 0 ≤ k ≤ n:

G(n−k)
n

∼=Bn H2k Conf⟨φ⟩n (R3 \{0}), (5.1)

and thus the total representation of H∗ Conf⟨φ⟩n (R3 \{0}) is Q[Bn].

2. The representation in (5.1) lifts to Bn+1, where it is described by H2k Y3
n+1;

3. For 0 ≤ k ≤ n, there is an isomorphism of Bn-representations:

H2k Conf⟨φ⟩n (R3 \{0}) ∼=Bn H2(k−1)(Yn)⊕
(

V ⊗ H2k(Yn)
)

,

where V = χ((n−1,1),0) ⊕ χ((n−1),(1)); this notation refers to the fact that irreducible repre-
sentations of Bn are indexed by partitions (λ+, λ−) where |λ+|+ |λ−| = n; see [17].

4. The circle group U(1) acts on R3 by rotation around the x-axis, inducing an action on
Conf⟨φ⟩n (R3 \{0}). The filtration induced from the U(1)-equivariant cohomology implies
a graded isomorphism of Bn-modules:

gr(H0 Conf⟨φ⟩n (R \{0})) ∼=Bn H∗ Conf⟨φ⟩n (R3 \{0}), (5.2)

where gr(H0 Conf⟨φ⟩n (R \{0})) coincides with the associated graded coming from the fil-
tration by degree in the variables zi and zij for distinct i, j ∈ [n]±.

7This question was first studied in [7]. However, the presentation given has an error (Lemma 7) which
is corrected using the lifted presentation in Theorem 9 and identification of generators in (4.4).
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5. Equation (5.2) also lifts to a graded Bn+1-module isomorphism

gr(H0 Y1
n+1)

∼=Sn+1 H∗(Y3
n+1), (5.3)

where again (5.3) comes from a U(1)-action on Y3
n+1 and subsequent computation of

H∗U(1) Y
3
n+1. Once more gr(H0 Y1

n+1) coincides with the filtration by degree in the signed
cyclic Heaviside functions yijk for distinct i, j, k ∈ [n]±.

Proof idea.

1. The isomorphism (5.1) comes from a combination of character computations of
g(λ+,λ−) Q[Bn] in [5], adapting techniques in [2, Theorem 9.1], and analyzing a finer

(descending) filtration of the ring H∗ Conf⟨φ⟩n (R3 \{0}) by degree in the variable zi
for i ∈ [n]±.

2. The lift follows by using the Bn-equivariant homeomorphism Conf⟨φ⟩n (R3 \{0}) ∼=
Y3

n+1.

3. The recursion comes from studying the Bn-action on the cohomology induced by
the spectral sequence SU2 \ {±p1,±p2, . . . ,±pn} −→ Y3

n+1 −→ Y3
n .

4. The techniques used to prove (5.2) are adapted from [13, Lemma 4.2].

5. The techniques used to prove (5.3) are adapted from [14, Remark 2.9].
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