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Abstract. The quantum alcove model is a uniform combinatorial model in the repre-
sentation theory of quantum affine algebras and Schubert calculus on flag manifolds.
Given a weight λ, the model is based on a sequence of roots called a λ-chain. When
λ is dominant, the independence of the model from the chosen λ-chain was shown
using certain elementary transformations called quantum Yang–Baxter moves. The
purpose of the present work is to generalize the quantum Yang–Baxter moves to an
arbitrary weight λ. As an application, we give a combinatorial proof of the Cheval-
ley formula in the equivariant K-group of semi-infinite flag manifolds, first proved by
Lenart–Naito–Sagaki.

Résumé. Le modèle des alcôves quantique est un modèle combinatoire uniforme dans
la théorie des représentations des algèbres affines quantiques et le calcul de Schu-
bert sur les variétés de drapeaux. Étant donné un poids λ, le modèle est basé sur
une séquence de racines appelée λ-chaîne. Lorsque λ est dominant, l’indépendance
du modèle de la λ-chaîne choisie a été montrée en utilisant certaines transformations
élémentaires appelées mouvements de Yang–Baxter quantiques. Le but de ce travail
est de généraliser les mouvements de Yang–Baxter quantiques à un poids arbitraire.
Comme application, nous donnons une preuve combinatoire de la formule de Cheval-
ley dans la K-théorie équivariante des variétés de drapeaux semi-infinies, prouvé pour
la première fois par Lenart–Naito–Sagaki.
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1 Introduction

The quantum alcove model, introduced by Lenart–Lubovsky [7], is a uniform combinato-
rial model, which appears in many branches of mathematics related to root systems; for
example, Schubert calculus of semi-infinite/ordinary flag manifolds, the representation
theory of quantum affine algebras, and the theory of Macdonald polynomials.

Let g be a simple Lie algebra over C with Weyl group W, weight lattice P, and coroot
lattice Q∨. In the theory of the quantum alcove model, one fixes w ∈ W, λ ∈ P, and
a certain sequence Γ of roots corresponding to λ, called a λ-chain; then, one considers
the collection A(w, Γ) of so-called admissible subsets. In general, for a fixed λ ∈ P, we
have several λ-chains, and hence several collections of admissible subsets (depending on
them and some w ∈W). If λ is dominant and the λ-chains are “reduced” (defined later),
then these collections are known to be mutually isomorphic (as combinatorial models
for certain Kashiwara crystals). More precisely, Lenart–Lubovsky [8] proved that, given
reduced λ-chains Γ1 and Γ2 such that Γ2 is obtained from Γ1 by a certain deformation
procedure, called a Yang–Baxter transformation, there exists a bijection Y : A(e, Γ1) →
A(e, Γ2), with e the identity of W; moreover, the bijection preserves some important
statistics, including wt(·) and height(·). This bijection is called a quantum Yang–Baxter
move, and the above statement works for any reduced λ-chains Γ1 and Γ2 if we use a
sequence of such moves. In [8] it is explained that the quantum Yang–Baxter moves
provide a root system generalization of the well-known jeu de taquin on semi-standard
Young tableaux.

The purpose of the present work is to give a generalization of the quantum Yang–
Baxter moves to the case of an arbitrary (not necessarily dominant) weight λ ∈ P, and an
arbitrary w ∈W. This proves the independence of the quantum alcove model associated
with λ and w from the chosen λ-chain. Here we should mention that our generalized
quantum Yang–Baxter moves are no longer bijections, but sijections, i.e., “signed bijec-
tions”; recall from [2] that for two signed sets S, T, a sijection from S to T is a triple
(ιS, ιT, ϕ) consisting of the maps ιS, ιT, and ϕ, where ϕ is a sign-preserving bijection
between subsets S0 ⊂ S and T0 ⊂ T, and ιS (resp., ιT) is a sign-reversing involution
on S \ S0 (resp., T \ T0). By regarding collections of admissible subsets as signed sets
equipped with certain sign functions, our generalized quantum Yang–Baxter moves can
be viewed as sijections.

We give an application of generalized quantum Yang–Baxter moves to Schubert cal-
culus of semi-infinite flag manifolds. Let G be a connected, simply-connected sim-
ple algebraic group over C with Lie algebra g, H ⊂ G a maximal torus of G, and
(H ⊂) B ⊂ G a Borel subgroup with unipotent radical N. The semi-infinite flag mani-
fold Qrat

G is the ind-scheme of infinite type whose set of C-valued points is Qrat
G (C) =

G(C((z)))/(H(C) · N(C((z)))), where z is an indeterminate (for details, see [3]). For each
element x of the affine Weyl group Waf associated to g, Qrat

G has the corresponding orbit
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under the action of the Iwahori subgroup of G(C[[z]]); the closure of this orbit is de-
noted by QG(x), and called a semi-infinite Schubert variety. We set QG := QG(e), and
let KH×C∗(QG) denote the (H × C∗)-equivariant K-group of QG, introduced in [4]. Let
[O(λ)] ∈ KH×C∗(QG) be the class of the line bundle associated to λ ∈ P, and [Ox] the
class of the structure sheaf of the semi-infinite Schubert variety QG(x) corresponding to
x ∈ Waf. We set W≥0

af := {wtξ | w ∈ W, ξ ∈ Q∨,+}; here Q∨,+ := {ξ ∈ Q∨ | ξ ≥ 0}, and
tξ for ξ ∈ Q∨ denotes the translation element. The expansion of the product [O(λ)] · [Ox]
in KH×C∗(QG) of the following form plays an important role in the study of the structure
of KH×C∗(QG): for λ ∈ P and x ∈W≥0

af ,

[O(λ)] · [Ox] = ∑
y∈W≥0

af

cy
x,λ[Oy], (1.1)

where cy
x,λ ∈ Z[P]((q−1)). An explicit description (in terms of the quantum alcove model)

of the coefficients cy
x,λ in equation (1.1) is given by the Chevalley formula, which is proved

by Lenart–Naito–Sagaki [9] based on the Yang–Baxter equation for quantum Bruhat op-
erators. By making use of generalized quantum Yang–Baxter moves, we can give a
combinatorial proof of this Chevalley formula.

This paper is an extended abstract of our paper [6], which is a part of the first author’s
Ph. D. thesis [5].

2 Basic definitions

First, we recall the definition of the quantum Bruhat graph, which was introduced by
Brenti–Fomin–Postnikov [1]. Take a Cartan subalgebra h of g, and set h∗ := HomC(h, C).
We denote by 〈·, ·〉 the canonical pairing of h∗ and h. Let ∆ be the root system of g, ∆+

the set of all positive roots, and set ρ := (1/2)∑α∈∆+ α. For each α ∈ ∆, we denote by α∨

the coroot of α, and by sα ∈ W the corresponding reflection. Also, we denote by `(·) the
length function on W.

Definition 1 ([1, Definition 6.1]). The quantum Bruhat graph QBG(W) is the ∆+-labeled
directed graph whose vertex set is W, and whose (directed) edges are defined as follows:
x α−→ y for x, y ∈W and α ∈ ∆+ if and only if y = xsα and one of the following conditions
holds:

(B) `(y) = `(x) + 1;

(Q) `(y) = `(x)− 2〈ρ, α∨〉+ 1.

If condition (B) (resp., (Q)) holds, then the corresponding edge is called a Bruhat (resp.,
quantum) edge.
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Next, following [10] and [9], we briefly review the quantum alcove model. Set h∗R :=
P⊗Z R. For each α ∈ ∆ and k ∈ Z, we define a hyperplane Hα,k by

Hα,k := {ν ∈ h∗R | 〈ν, α∨〉 = k}.

In this setting, connected components of the space

h∗R \
⋃

α∈∆, k∈Z

Hα,k

are called alcoves. In particular, the specific alcove A◦ defined by

A◦ := {ν ∈ h∗R | 0 < 〈ν, α∨〉 < 1 for all α ∈ ∆+}

is called the fundamental alcove. Also, for each λ ∈ P, we define Aλ by

Aλ := A◦ + λ = {ν + λ | ν ∈ A◦}.

For two adjacent alcoves A and B and for β ∈ ∆, we write A
β−→ B if the common wall

of A and B is contained in the hyperplane Hβ,k for some k ∈ Z, and β (viewed as a
direction vector) points in the direction from A to B.

Definition 2 ([10, Definitions 5.2, 5.4]).

(1) A sequence (A0, . . . , Ar) of alcoves is called an alcove path if Ai−1 and Ai are adja-
cent for all i = 1, . . . , r.

(2) An alcove path (A0, . . . , Ar) is called reduced if r is minimal among all alcove paths
from A0 to Ar.

(3) Let λ ∈ P. A sequence Γ = (β1, . . . , βr) of roots is called a λ-chain if there exists an
alcove path (A0, . . . , Ar) of the form

A◦ = A0
−β1−−→ · · · −βr−−→ Ar = A−λ;

if this alcove path is reduced, then Γ is said to be reduced.

We recall the definition of an admissible subset, which is the main object of study in
the theory of the quantum alcove model. For β ∈ ∆, we set

sgn(β) :=

{
1 if β ∈ ∆+,
−1 if β ∈ −∆+,

and set |β| := sgn(β)β.
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Definition 3 ([9, Definition 17], [7, Definition 3.4]). Let λ ∈ P, and take a λ-chain
(β1, . . . , βr). Let w ∈ W. The subset A = {j1 < · · · < jt} ⊂ {1, . . . , r} is said to be
w-admissible if

p(A) : w = w0
|β j1
|

−−→ · · ·
|β jt |−−→ wt =: end(A)

is a directed path in QBG(W). We denote by A(w, Γ) the collection of all w-admissible
subsets.

Following [9, Equations (12), (13)], we define some important statistics for admissible
subsets. Let λ ∈ P and w ∈ W. Let Γ = (β1, . . . , βr) be a λ-chain. For A = {j1 < · · · <
jr} ∈ A(w, Γ), we set

A− :=
{

j ∈ A
∣∣∣∣ the edge wj−1

|β j|−−→ wj in p(A) is a quantum one
}

,

and define down(A) by
down(A) := ∑

j∈A−
|β j|∨.

Let
A◦ = A0

−β1−−→ · · · −βr−−→ Ar = A−λ

be the alcove path corresponding to Γ. For i = 1, . . . , r, let li ∈ Z be such that the
common wall of Ai−1 and Ai is contained in Hβi,−li . For each α ∈ ∆ and k ∈ Z, we
denote by sα,k the reflection with respect to Hα,k. Then wt(·) and height(·) are defined
as follows:

wt(A) := −wsβ j1,−lj1
· · · sβ jt ,−ljt

(−λ),

height(A) := ∑
j∈A−

sgn(β j)(〈λ, β∨j 〉 − lj).

Also, for each A ∈ A(w, Γ), we define n(A) by

n(A) := |{j ∈ A | β j ∈ −∆+}|.

3 Quantum Yang–Baxter moves

In this section, we explain our generalization of quantum Yang–Baxter moves. First, we
review quantum Yang–Baxter moves introduced by Lenart–Lubovsky [8]. For this, we
need to recall certain deformation procedures for λ-chains. Let λ ∈ P, and take a λ-chain
Γ = (β1, . . . , βr). The procedures (YB) and (D) are given as follows (see [10, Lemma 9.3],
and also [9, Remark 38]):
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(YB) Take a segment (βt+1, . . . , βt+q) of Γ such that

• 〈βt+1, β∨t+q〉 ≤ 0, and

• if we set α := βt+1 and β := βt+q, then

(βt+1, . . . , βt+q) = (α, sα(β), sαsβ(α), . . . , sβ(α), β).

Then, we define a new λ-chain Γ′ by

Γ′ := (β1, . . . , βt, βt+q, βt+q−1, . . . , βt+1, βt+q+1, . . . , βr);

namely, we reverse the segment (βt+1, . . . , βt+q).

(D) Take a segment (βt+1, βt+2) of Γ such that βt+2 = −βt+1, and we define a new
λ-chain Γ′ by

Γ′ := (β1, . . . , βt, βt+3, . . . , βr);

namely, we delete the segment (βt+1, βt+2).

The procedure (YB) (resp., (D)) is called a Yang–Baxter transformation (resp., deletion). It
is known from [9, Remark 38] (see also [10, Lemma 9.3]) that one obtains an arbitrary
reduced λ-chain from any (not necessarily reduced) λ-chain by repeated application of
the procedures (YB) and (D).

Lenart–Lubovsky proved the following theorem in the case that λ is dominant.

Theorem 4 ([8, Sections 3.1, 3.2]). Let λ ∈ P+, and take reduced λ-chains Γ1 and Γ2 such that
Γ2 is obtained from Γ1 by (YB). Then, there exists a bijection Y : A(e, Γ1) → A(e, Γ2) such that
for A ∈ A(e, Γ1),

• end(Y(A)) = end(A),

• down(Y(A)) = down(A),

• wt(Y(A)) = wt(A), and

• height(Y(A)) = height(A).

The bijection Y above is called a quantum Yang–Baxter move. In fact, Lenart–Lubovsky
proved that quantum Yang–Baxter moves are isomorphisms of crystals (see [8, Theo-
rem 3.8]). By taking composites of quantum Yang–Baxter moves, we see that the col-
lections A(e, Γ) for all reduced λ-chains Γ are mutually isomorphic as crystals (see [8,
Corollary 3.9]).
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Remark 5. As mentioned in [8, Corollary 3.14], quantum Yang–Baxter moves for dom-
inant weights realize combinatorial R-matrices for tensor products of column-shape
Kirillov–Reshetikhin crystals; also, in type A, combinatorial R-matrices can be realized
by Schützenberger’s jeu de taquin (sliding algorithm) for type A root systems (see [8,
Example 3.1]). More precisely, assume that g is of type An−1. For r ∈ {1, . . . , n− 1}, we
denote by Br,1 the column-shape Kirillov–Reshetikhin crystal (realized by column-shape
semi-standard Young tableaux of height r with entries in {1, . . . , n}). Let p = (p1, . . . , pk),
with p1, . . . , pk ∈ {1, . . . , n − 1}, be a composition, and p′ = (p′1, . . . , p′k) a composi-
tion obtained from p by permuting its parts. It is known (see, for example, [8, Re-
marks 2.2 (2)]) that there exists a unique A(1)

n−1-crystal isomorphism

B⊗p := Bp1,1 ⊗ · · · ⊗ Bpk,1 ∼−→ B⊗p′ := Bp′1,1 ⊗ · · · ⊗ Bp′k,1,

called a combinatorial R-matrix. Let I be the index set for the simple roots of g; in our
case, I = {1, . . . , n− 1}. Let αi, i ∈ I, be the simple roots, and vi, i ∈ I, the fundamental
weights. For each k ∈ I, the sequence Γ(k) of roots given as

Γ(k) := (αk, αk + αk+1, · · · , αk + · · ·+ αn−1,
αk−1 + αk, αk−1 + αk + αk+1, · · · , αk−1 + · · ·+ αn−1,

· · ·
α1 + · · ·+ αk, α1 + · · ·+ αk+1, · · · , α1 + · · ·+ αn−1)

is a vk-chain (see [10, Corollary 15.4]). Let Γ (resp., Γ′) be the concatenation Γ(p1) ∗ · · · ∗
Γ(pk) of Γ(p1), . . . , Γ(pk) (resp., Γ(p′1) ∗ · · · ∗ Γ(p′k) of Γ(p′1), . . . , Γ(p′k)) in this order. Then,

there exists a unique A(1)
n−1-crystal isomorphism between A(e, Γ) (resp., A(e, Γ′)) and the

subgraph of B⊗p (resp., B⊗p′) having only the dual Demazure arrows ([8, Corollary 3.10
and Remark 3.13]). Thus the bijection A(e, Γ) ∼−→ A(e, Γ′), given by quantum Yang–
Baxter moves, can be viewed as a realization of the combinatorial R-matrix B⊗p ∼−→ B⊗p′ .
To summarize, we have the following commutative diagram:

A(e, Γ) A(e, Γ′)

B⊗p B⊗p′

quantum Yang–Baxter moves

combinatorial R-matrix
(jeu de taquin)

' '

The purpose of this work is to generalize quantum Yang–Baxter moves to the case
of an arbitrary (not necessarily dominant) λ ∈ P. However, for λ ∈ P and w ∈ W, two
collections A(w, Γ1) and A(w, Γ2) of admissible subsets for λ-chains Γ1 and Γ2 can have
different cardinalities; hence we cannot construct any bijection A(w, Γ1) → A(w, Γ2) in
general. For this reason, we need the notion of “sijection”, i.e., signed bijection, to state
a generalization of quantum Yang–Baxter moves.
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Theorem 6 ([6, Theorems 3.2, 3.4; Proposition 5.3]). Let λ ∈ P and w ∈ W. Take λ-chains
Γ1 and Γ2 such that Γ2 is obtained from Γ1 by applying (YB), or by applying (D) in which a
segment (β,−β) of Γ1, with β not a simple root, is deleted. Then, there exist explicit subsets
A0(w, Γ1) ⊂ A(w, Γ1) and A0(w, Γ2) ⊂ A(w, Γ2) satisfying the following.

(1) There exists a bijection Y : A0(w, Γ1)→ A0(w, Γ2) such that for A ∈ A0(w, Γ1),

• end(Y(A)) = end(A),

• down(Y(A)) = down(A),

• wt(Y(A)) = wt(A), and

• height(Y(A)) = height(A).

Also, this bijection Y is “sign-preserving”; that is, (−1)n(Y(A)) = (−1)n(A) for all A ∈
A(w, Γk).

(2) For k = 1, 2, set AC
0 (w, Γk) := A(w, Γk) \ A0(w, Γk). Then, there exists an involution Ik

on AC
0 (w, Γk) such that

• end(Ik(A)) = end(A),

• down(Ik(A)) = down(A),

• wt(Ik(A)) = wt(A), and

• height(Ik(A)) = height(A).

Also, this involution Ik is “sign-reversing”; that is, (−1)n(Ik(A)) = −(−1)n(A) for all
A ∈ AC

0 (w, Γk).

Remark 7 ([6, Remark 3.3]). We now recall from Fischer–Konvalinka [2] the notion of
sijection. Let S (resp., T) be a signed set equipped with a sign function S → {±1}
(resp., T → {±1}), and S0 ⊂ S (resp., T0 ⊂ T) a subset of S (resp., T). Then, a sijection
S⇒ T is a triple (ιS, ιT, ϕ) consisting of a sign-reversing involution ιS (resp., ιT) on S \ S0
(resp., T \ T0) and a sign-preserving bijection ϕ : S0 → T0. Roughly speaking, a sijection
is a “signed bijection” between signed sets. In this terminology, the maps I1, I2, Y in
Theorem 6 provide a sijection (I1, I2, Y) : A(w, Γ1) ⇒ A(w, Γ2). This sijection can be
thought of as a generalization of the quantum Yang–Baxter move A(e, Γ1)→ A(e, Γ2) in
the case of a dominant weight.

Example 8. Assume that g is of type A2; in this example, I = {1, 2}. Let Γ1 := (−α1 −
α2,−α1, α2, α1 + α2), Γ2 := (α2,−α1,−α1 − α2, α1 + α2), and Γ3 := (α2,−α1). We see that
Γ1, Γ2, and Γ3 are (−v1 + v2)-chains. Also, Γ2 is obtained from Γ1 by applying (YB) in
which the segment (−α1− α2,−α1, α2) in Γ1 is reversed, while Γ3 is obtained from Γ2 by
applying (D) in which the segment (−α1− α2, α1 + α2) in Γ2 is deleted; note that α1 + α2
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is not a simple root. Below we will describe explicitly generalized quantum Yang–Baxter
moves A(s1, Γ1)⇒ A(s1, Γ2) and A(s1, Γ2)⇒ A(s1, Γ3).

First of all, we give A ∈ A(s1, Γk), k = 1, 2, 3, together with end(A) and down(A), in
Tables 1, 2, and 3.

Table 1: List of A ∈ A(s1, Γ1)

A n(A) end(A) down(A)
∅ 0 s1 0
{1} 1 s2s1 0
{2} 1 e α∨1
{3} 0 s1s2 0
{4} 0 s2s1 0
{1, 2} 2 s2 α∨1
{1, 3} 1 s1s2s1 0
{2, 3} 1 s2 α∨1
{1, 2, 3} 2 e α∨1 + α∨2
{1, 2, 4} 2 s1s2 α∨1
{1, 3, 4} 1 e α∨1 + α∨2
{2, 3, 4} 1 s1s2 α∨1

Table 2: List of A ∈ A(s1, Γ2)

A n(A) end(A) down(A)
∅ 0 s1 0
{1} 0 s1s2 0
{2} 1 e α∨1
{3} 1 s2s1 0
{4} 0 s2s1 0
{1, 2} 1 s1s2s1 0
{1, 2, 3} 2 e α∨1 + α∨2
{1, 2, 4} 1 e α∨1 + α∨2

Table 3: List of A ∈ A(s1, Γ3)

A n(A) end(A) down(A)
∅ 0 s1 0
{1} 0 s1s2 0
{2} 1 e α∨1
{1, 2} 1 s1s2s1 0

Let us describe the sijection A(s1, Γ1)⇒ A(s1, Γ2) as follows. We set

A0(s1, Γ1) := {∅, {1}, {2}, {3}, {4}, {1, 3}, {1, 2, 3}, {1, 3, 4}},
AC

0 (s1, Γ1) := {{1, 2}, {2, 3}, {1, 2, 4}, {2, 3, 4}},
A0(s1, Γ2) := A(s1, Γ2),

AC
0 (s1, Γ2) := ∅.

Then, the bijection Y : A0(s1, Γ1) → A0(s1, Γ2) and the involution I1 on AC
0 (s1, Γ1) are

given in Tables 4 and 5; here, the involution I2 on AC
0 (s1, Γ2) = ∅ is trivial.

Let us describe the sijection A(s1, Γ2)⇒ A(s1, Γ3) as follows. We set

A0(s1, Γ2) := {∅, {1}, {2}, {1, 2}},
AC

0 (s1, Γ2) := {{3}, {4}, {1, 2, 3}, {1, 2, 4}},
A0(s1, Γ3) := A(s1, Γ3),

AC
0 (s1, Γ3) := ∅.

Then, the bijection Y : A0(s1, Γ2) → A0(s1, Γ3) and the involution I1 on AC
0 (s1, Γ2) are

given in Tables 6 and 7; here, the involution I2 on AC
0 (s1, Γ3) = ∅ is trivial.
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Table 4: Description of Y
A ∈ A0(s1, Γ1) Y(A) ∈ A0(s1, Γ2)

∅ ∅
{1} {3}
{2} {2}
{3} {1}
{4} {4}
{1, 3} {1, 2}
{1, 2, 3} {1, 2, 3}
{1, 3, 4} {1, 2, 4}

Table 5: Description of I1

A ∈ AC
0 (s1, Γ1) I1(A) ∈ AC

0 (s1, Γ1)
{1, 2} {2, 3}
{2, 3} {1, 2}
{1, 2, 4} {2, 3, 4}
{2, 3, 4} {1, 2, 4}

Table 6: Description of Y
A ∈ A0(s1, Γ2) Y(A) ∈ A0(s1, Γ3)

∅ ∅
{1} {1}
{2} {2}
{1, 2} {1, 2}

Table 7: Description of I1

A ∈ AC
0 (s1, Γ2) I1(A) ∈ AC

0 (s1, Γ2)
{3} {4}
{4} {3}
{1, 2, 3} {1, 2, 4}
{1, 2, 4} {1, 2, 3}

For details of the construction of Y, I1, and I2, see [6, Section 4.6 and Proposition 5.3].

Remark 9. Theorem 6 for a procedure (D) does not hold if β is a simple root; see [6,
Remark 5.4].

4 Schubert calculus of semi-infinite flag manifolds

In this section, we apply generalized quantum Yang–Baxter moves to the study of the
equivariant K-group KH×C∗(QG) of the semi-infinite flag manifold QG. For this purpose,
we need additional notation. Following [9, Sections 4.1, 4.3], for λ = ∑i∈I mivi with
mi ∈ Z, we define Par(λ) by

Par(λ) :=
{

χ = (χ(i))i∈I

∣∣∣∣ χ(i) is a partition of length less than or
equal to max{mi, 0}

}
;

here I is the index set for the simple roots of g. Also, by writing the partition χ(i) for
i ∈ I as (χ

(i)
1 ≥ · · · ≥ χ

(i)
li
), we set

|χ| := ∑
i∈I

li

∑
k=1

χ
(i)
k , ι(χ) := ∑

i∈I
χ
(i)
1 α∨i ;

if χ(i) = ∅, then we understand that li = 0 and χ
(i)
1 = 0.
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By making use of our generalized quantum Yang–Baxter moves, we can give a com-
binatorial proof of the Chevalley formula in the equivariant K-group of semi-infinite flag
manifolds, first proved by Lenart–Naito–Sagaki based on the Yang–Baxter equation for
quantum Bruhat operators.

Theorem 10 ([9, Theorem 33]). Let λ ∈ P and x ∈ W≥0
af . Write x = wtξ for w ∈ W and

ξ ∈ Q∨,+. Let Γ be a reduced λ-chain. Then, in KH×C∗(QG), the following identity holds:

[O(−w◦λ)] · [Ox]

= ∑
A∈A(w,Γ)

∑
χ∈Par(λ)

(−1)n(A)q− height(A)−〈λ,ξ〉−|χ|ewt(A)[Oend(A)tξ+down(A)+ι(χ)
],

where w◦ ∈W denotes the longest element of W.

To prove this identity, we employ certain generating functions.

Definition 11 ([6, Definition 5.1]). Let λ ∈ P, and take a λ-chain Γ. For x = wtξ ∈ Waf
with w ∈ W and ξ ∈ Q∨, we define the generating function GΓ(x) ∈ (Z[q, q−1])[P][Waf]
by

GΓ(x) := ∑
A∈A(w,Γ)

(−1)n(A)q− height(A)−〈λ,ξ〉ewt(A) end(A)tξ+down(A).

The generalized quantum Yang–Baxter moves in Theorem 6 imply the following
preservation of generating functions (Theorem 12).

Theorem 12 ([6, Propositions 5.2, 5.3]). Let λ ∈ P and x ∈Waf.

(1) Take λ-chains Γ1 and Γ2 such that Γ2 is obtained from Γ1 by applying (YB). Then we have
GΓ1(x) = GΓ2(x).

(2) Take λ-chains Γ1 and Γ2 such that Γ2 is obtained from Γ1 by applying (D) in which the
segment (β,−β), with β not a simple root, is deleted. Then we have GΓ1(x) = GΓ2(x).

Remark 13. In the same way as Theorem 6, Theorem 12 (2) does not hold if β is a simple
root; see [6, Remark 5.4].

Proof of Theorem 10. Theorem 12 plays a crucial role in our proof of Theorem 10. First,
we write λ as the sum λ− + λ+, with λ− ∈ −P+ and λ+ ∈ P+. Then, we take a
“lex” λ±-chain Γ± (see [11, Proposition 4.2] and [9, Section 4.2]). Note that we already
know from [9, Theorems 29, 32] (see also [4, Theorem 5.13] and [12, Corollaries C.3,
9.1]) the Chevalley formulas for the dominant weight λ+ and the anti-dominant weight
λ−. Let Γ0 denote the concatenation of Γ− and Γ+ in this order. Then we deduce that
GΓ− ◦GΓ+(x) = GΓ0(x) (see [6, Theorem 5.10]). Here, by [9, Claim 46.1] and [4, Propo-
sition 5.8], we obtain the given reduced λ-chain Γ from the Γ0 by repeated application
of (YB), and by that of (D) in which the segment (β,−β), with β not a simple root,
is deleted. Therefore, Theorem 12 yields the equality GΓ0(x) = GΓ(x). This equality
immediately implies Theorem 10. For the details of this proof, see [6, Section 5].
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