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Peaks Are Preserved Under Run-Sorting
(Extended Abstract)
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Abstract. We study a sorting procedure (run-sorting) on permutations, where runs
are rearranged in lexicographic order. We describe a rather surprising bijection on
permutations of length n, with the property that it sends the set of peak-values to
the set of peak-values after run-sorting. We further show that the descent generating
polynomials, An(t) for run-sorted permutations, RSP(n) are real rooted, and satisfy
an interlacing property similar to that satisfied by the Eulerian polynomials.
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1 Introduction

This is an extended abstract of [1]. For a fixed positive integer n, set [n] := {1, 2, . . . , n}.
We shall use the one-line notation, σ(1)σ(2) · · · σ(n) to represent a permutation σ ∈ Sn.
A permutation σ can be decomposed into maximal increasing subsequences called runs.
For instance, σ = 1289 346 57 has three runs namely 1289, 346 and 57. If the runs of
σ are lexicographically ordered, then we say that σ is a run-sorted permutation , which
constitutes a subset of Sn, the set of all permutations of {1, 2, . . . , n}. For example,
σ = 128934657 is a run-sorted permutation over [9] but σ′ = 85136472 is not run-sorted.
We let RSP(n) denote the set of run-sorted permutations of length n. We say that the
word σ ∈ Sn has k as a descent if σ(k) > σ(k + 1). The descent set of σ is denoted by
DES(σ) and des(σ) is the cardinality of DES(σ). A peak of a permutation σ ∈ Sn, is
an integer i, 1 < i < n such that σ(i − 1) < σ(i) > σ(i + 1) and the corresponding
σ(i) is a peak-value of σ. Given a permutation σ, we let runsort(σ) denote the permu-
tation obtained by rearranging the runs of σ lexicographically. Hence, if σ ∈ Sn, then
runsort(σ) ∈ RSP(n). We let PKV(σ) denote the set of peak-values of the permu-
tation σ, and SPV(σ) := PKV(runsort(σ)). We define the set of descent bottoms of a
permutation σ as DB(σ) := {σi+1 : i ∈ [n − 1] and σi > σi+1} and the set of left-to-right
minima as LRMin(σ) := {σi : σi = min{σ1, σ2, . . . , σi}}. The set of 132-peak-values of a
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permutation σ is defined as PKV∗(σ) := {σi : 1 < i < n and σi−1 < σi+1 < σi}. Note that
PKV∗(σ) ⊆ PKV(σ).

We present a recursive bijection on permutations, where we keep track of the peak
values before and after run-sorting a permutation. In particular, we prove the following
main result. We use the notation xS := xs1 xs2 · · · xsk whenever S is a finite set of positive
integers. For example, xDB(π) is short for ∏j∈DB(π) xj.

Theorem 1.1. For n ≥ 1, we have that

∑
π∈Sn

xDB(π)yLRMin(π)zPKV∗(π)wPKV(π) = ∑
π∈Sn

xDB(π)yLRMin(π)zPKV∗(π)wSPV(π).

From this result, we see that this bijection after applying the runsort(σ) function not
only preserves peak values, but also other statistics namely; descent bottoms, left-to-right
minima and 132-peak-values.

In Section 2, we give the detailed recursive bijection which keeps track of the peak
values before applying the runsort function, as well as other statistics such as the de-
scent bottoms, left-to-right minima and 132-peak-values. The main recursions are given
in Lemma 2.1 and Theorem 2.3. It is from these recursions that we are able to arrive at
Theorem 1.1. In Section 3, we compute the expected number of descents after run-sorting
a uniformly random permutation in Sn. In Section 4, we prove that the descent gener-
ating polynomials, An(t) for run-sorted permutations are real rooted, and give some
consequences of this result. We also explore possible multivariate analogs of this state-
ment. For example, in Theorem 4.9 we prove that the multi-variate Eulerian polynomials
are same-phase stable, and ask if the multivariate An(x) has the same property.

2 The peak-value distribution is preserved under run-sort

Let b̂n,k denote the number of permutations in Sn with exactly k peaks. In [8, p.24], it
was discovered that the numbers b̂n,k satisfy the recursion

b̂n,k =


1 if n = 1, k = 0,
(2k + 2)b̂n−1,k + (n − 2(k − 1)− 2)b̂n−1,k−1 if 0 ≤ k < n

2 ,
0 if 2k ≥ n or k < 0.

(2.1)

and these numbers have been refined in different forms since then. Let us set

B̂n(t) := ∑
j≥0

b̂n,jtj.
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In [11], it is proved that B̂n(t) satisfy the recursion

B̂n(t) = (2 + t(n − 2))B̂n−1(t) + 2t(1 − t)B̂′
n−1(t), for n ≥ 2 (2.2)

and are real-rooted. We generalize this recursion further in in Proposition 2.2 by keeping
track of the peak values. This is through a recursive process of constructing a permu-
tation in Sn from a permutation in Sn−1 by inserting n somewhere. For π ∈ Sn−1 and
a ∈ [n − 1], we let Staya(π) denote the permutation obtained from π by inserting n
immediately after a. We also let Stay∅(π) denote the permutation obtained from π by
inserting n before π in one-line notation. Hence we have the following lemma.

Lemma 2.1. For any n ≥ 1, the bijection

B : {∅, 1, 2, . . . , n − 1} × Sn−1 → Sn

defined via B(a, π) := Staya(π), has the following properties. For simplicity, we set π′ :=
Staya(π) and we let k be the value immediately succeeding a in π (unless a is the last entry in
π).

(1) a = ∅, so PKV(π′) = PKV(π).

(2) a is the last entry of π, so PKV(π′) = PKV(π).

(3) a ∈ PKV(π). Then
PKV(π′) = (PKV(π) \ {a}) ∪ {n}.

(4) k ∈ PKV(π). Then
PKV(π′) = (PKV(π) \ {k}) ∪ {n}.

(5) a is not the last entry of π, and neither a or k are in PKV(π). Then

PKV(π′) = PKV(π) ∪ {n}.

Proof. First note that the map B is indeed a bijection, as we can easily recover a from
π′. Moreover, we have that π is recovered from π′ by removing n. The other properties
regarding the peaks follow via case-by-case analysis.

As a corollary of Lemma 2.1, we can now easily deduce (2.1), and prove the following
multivariate generalization of (2.2).

Proposition 2.2. We have that the multivariate polynomials B̂n(x) satisfy the recursion

B̂n = (2 + (n − 2)xn)B̂n−1 + 2xn

n

∑
j=3

(1 − xj) · ∂xj B̂n−1. (2.3)
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2.1 A recursion which tracks peak-values after run-sort

In Lemma 2.1, we have recursively constructed permutations, while tracking the peak-
values. We now want to track the peak-values after applying the run-sort function.
Constructing this bijection is rather complicated, with several cases. As in Lemma 2.1,
we still keep track of the position of insertion of n. Let SPV(π) := PKV(runsort(π)) be
the set of peak-values obtained after run-sorting π. In this subsection, we shall mainly
consider the runs of π ∈ Sn−1 arranged in lexicographical order. The following result is
now an analog of Lemma 2.1, and is the main result in this section.

Theorem 2.3. For any n ≥ 1, there is a bijection

C : {∅, 1, 2, . . . , n − 1} × Sn−1 → Sn

which has the following properties. For simplicity, we set π′ := C(a, π) and we let k be the value
immediately succeeding a in runsort(π), unless a is the last entry in runsort(π):

(1) a = ∅, and SPV(π′) = SPV(π).

(2) a is the last entry of runsort(π), and SPV(π′) = SPV(π).

(3) a ∈ SPV(π). Then
SPV(π′) = (SPV(π) \ {a}) ∪ {n}.

(4) k ∈ SPV(π). Then
SPV(π′) = (SPV(π) \ {k}) ∪ {n}.

(5) a is not the last entry of runsort(π), and neither a or k are in SPV(π). Then

SPV(π′) = SPV(π) ∪ {n}.

A few words about the proof, as it is too intricate to describe in detail here. Cases 1, 2
and 3 are easy to handle, i.e., by simply using Staya on the permutation. In the remaining
cases, we (greedily) apply Staya whenever it has the desired property. Otherwise, we first
need to perform some additional modification of the permutation, and carefully track
in what situations the Staya map does not act as wanted. This leads to a handful of
involutions, constructed in such a way that the total net effect of “bad things” cancel.

Since the recursions in Lemma 2.1 and Theorem 2.3 have the same structure, this
allows us to construct an implicit bijection,

η : Sn → Sn,

such that PKV(σ) = PKV(runsort(η(σ)). With careful analysis of η (essentially, examin-
ing the five cases for each of B and C), one can actually deduce that η preserves several
other combinatorial statistics. This leads us to the following theorem which is the main
result in this section.



Peaks Are Preserved Under Run-Sorting 5

Theorem 2.4. For n ≥ 1, we have that

∑
π∈Sn

xDB(π)yLRMin(π)zPKV∗(π)wPKV(π) = ∑
π∈Sn

xDB(π)yLRMin(π)zPKV∗(π)wSPV(π).

Interestingly, the runsort(π) function seems to be attracting a lot of attention, with
more researchers extending it to find more properties of permutations. For example,
Coopman and Rubey, see [5] have recently proved that the number of inversions among
permutations is equi-distributed with the number of occurrences of the vincular pattern
13 − 2 after sorting the set of runs.

3 Probabilistic statements

It is a natural question for one to ask about the expected number of descents after ap-
plying the runsort on a uniformly random permutation in Sn. That hence leads us to the
following theorem.

Theorem 3.1 (See also [11, p.110]). Let σ ∈ Sn, with n ≥ 2 be uniformly chosen. Then

E[des(runsort(σ))] = E[peaks(runsort(σ))] = E[peaks(σ)] = (n − 2)/3.

Proof. The first equality follows from the fact that every descent in a run-sorted per-
mutation necessarily associated with a peak. The second identity follows immediately
from Theorem 2.4, so it suffices to compute the expected number of peaks in a permuta-
tion.

The runsort function led us to the question below.

Question 3.2. Let σ ∈ Sn be a uniformly chosen permutation, and let σ′ := runsort(σ).
Rescaling the permutation matrix with entries equal to 1 at (i, σ′

i ), i ∈ [n] gives a distinctive
curve as seen in Figure 1, where a distinctive curve is seen. As n → ∞ does this curve approach
some limit curve?

Fortunately, this question has recently been answered in the affirmative by Alon,
Defant and Kravitz, see [2].

4 Realrootedness and interlacing roots

We now turn to proving real-rootedness and interlacing properties of some polynomials
related to peaks and descents. We first need the following definitions.
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Figure 1: A random permutation matrix σ′ after lexsort, for n = 20000. The entries
equal to 1 are shaded black.

Definition 4.1 (see [10]). Let g be a polynomial of degree n with non-positive roots
g1 ≤ g2 ≤ · · · ≤ gn. If f is a degree n − 1 polynomial with non-positive roots f1 ≤ f2 ≤
· · · ≤ fn−1, we say that the roots of f interlace those of g, if

g1 ≤ f1 ≤ g2 ≤ f2 ≤ · · · ≤ fn−1 ≤ gn ≤ 0.

Moreover, we say that f alternates left of g if deg( f ) = deg(g) = d and

f1 ≤ g1 ≤ f2 ≤ · · · ≤ fd ≤ gd.

We say that f interleaves g if either f interlaces g or f alternates left of g. We write this
as f ≪ g.

Below in Theorem 4.4, we show that the polynomials

An(t) := ∑
σ∈RSP(n)

tdes(σ)

are real-rooted. Moreover, the roots of An−1(t) interlace the roots of An(t).
We let fn,k be the number of run-sorted permutations of [n] having k runs. In [9], it

was proved that the numbers fn,k satisfy the recurrence relation

fn,k = k fn−1,k + (n − 2) fn−2,k−1 whenever 1 ≤ k < n. (4.1)

Hence we have that
tAn(t) = ∑

π∈RSP(n)
tdes(π)+1 = ∑

k≥1
tk fn,k. (4.2)

From (4.2), let us set Rn(t) := tAn(t).



Peaks Are Preserved Under Run-Sorting 7

Lemma 4.2. Rn(t) satisfies the recurrence

Rn(t) = tR′
n−1(t) + t(n − 2)Rn−2(t), R1(t) = R2(t) = t. (4.3)

Proof. By (4.1), we have that

Rn(t) = ∑
k

tk (k fn−1,k + (n − 2) fn−2,k−1) = t ∑
k

ktk−1 fn−1,k + t(n − 2) ∑
k−1

tk−1 fn−2,k−1.

This is now recognized as (4.3).

From (4.3), we then prove Theorem 4.4 using the lemma below as a main tool.

Lemma 4.3 (See D.Wagner, [10, Sec. 3]). Let f , g, h ∈ R[t] be real-rooted polynomials with
only real, non-positive roots and positive leading coefficients. Then

(i) if f ≪ h and g ≪ h then f + g ≪ h.

(ii) if h ≪ f and h ≪ g then h ≪ f + g.

(iii) g ≪ f if and only if f ≪ tg.

Theorem 4.4. The polynomials

Rn(t) = ∑
π∈RSP(n)

tdes(π)+1

satisfy Rn−1 ≪ Rn for all n ≥ 1. In particular, they are all real-rooted.

Proof. For n = 1, R0 ≪ R1. By induction over n, we fix n ≥ 2 and assume that we
have Rn−2 ≪ Rn−1. It suffices to prove that Rn−1 ≪ Rn. By Rolle’s theorem, we have
that R′

n−1 interlaces Rn−1 i.e., R′
n−1 ≪ Rn. Using Lemma 4.3, we have that Rn−1 ≪

tR′
n−1 + t(n − 2)Rn−2, and by using (4.3), we conclude that Rn−1 ≪ Rn, which in turn

implies that An−1 ≪ An, hence real-rootedness. for all n > 1.

Finally, we end with a recursion for a multivariate extension of An(t).

Theorem 4.5. For all integers n ≥ 1, let

An(x) := ∑
π∈RSP(n)

∏
j∈DES(π)

xn−j.

Then

An(x) = 1 +
n−2

∑
i=1

((
n − 1

i

)
− 1

)
xi Ai(x) (4.4)

and

∑
n≥0

An+1(t)
un

n!
= exp [u + t(eu − u − 1)] . (4.5)

Note the indexing of the descent set from the end.
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In particular, we solve an open problem given in [9], where an explicit formula for
function for the exponential generating function of the An(t) was asked for.

Below, we illustrate A5(x) where x = (x1, x2, x3, x4, x5) for all π ∈ RSP(5), which
keeps track of the descent set by indexing from the end. We find that A5(x) = 1 + 3x3 +
5x2 + 3x1 + 3x3x1.

1 12345
x3 13245, 14235, 15234
x2 12435, 12534, 13425, 13524, 14523
x1 12354, 12453, 13452

x3x1 13254, 14253, 15243

4.1 Multivariate Eulerian polynomials

We noted that the An(t) are similar to the Eulerian polynomials, and that the An(t) are
real-rooted. In this subsection, we consider the multivariate generalization An(x), as well
as the corresponding multivariate Eulerian polynomial En(x). We manage to show that
En(x) satisfies a multivariate analog of real-rootedness, and we conjecture that An(x)
does too.

Definition 4.6. A multivariate polynomial P ∈ C[z1, . . . , zn] is called stable if it does not
vanish on Hn, where H ⊂ C denote the upper half-plane {z ∈ C : im(z) > 0}.

The multivariate polynomials

Ẽn(x) := ∑
π∈Sn

∏
πj>πj+1

xπj

are proved to be stable, see [6, Theorem 2.5], and [4]. It is worth noting that we can
recover the classical Eulerian polynomials by setting xi → t which in turn implies that
the Eulerian polynomials are real-rooted.

We now describe a weaker notion of stability introduced in [7] below.

Definition 4.7. A polynomial p(x1, . . . , xn) ∈ R[x1, . . . , xn] is said to be same-phase stable
if for every λ ∈ Rn

+, we have that the univariate polynomial p(λ1t, λ2t, . . . , λnt) ∈ R[t] is
real-rooted.

Definition 4.8. A sequence { f1, f2, . . . , fn} of polynomials with positive leading coeffi-
cients is said to be an interlacing sequence 1 if fi ≪ f j for all 1 ≤ i < j ≤ n. We let F+

n
denote the set of all such interlacing sequences.

1Interleaving sequence would be a better name, but here we follow [3].
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Let En(x) be the multivariate Eulerian polynomial

En(x) := ∑
π∈Sn

xDES(π).

However, the En(x) are not stable—we the following counter-example2. The polynomial

E5(x) = 6x2x1 + 4x2x3x1 + 16x3x1 + 9x2x4x1

+ x2x3x4x1 + 9x3x4x1 + 11x4x1

+ 4x1 + 9x2 + 11x2x3 + 9x3 + 16x2x4

+ 4x2x3x4 + 6x3x4 + 4x4 + 1

vanishes at

x1 = −39
16

+
7i

512
, x2 = −16 + i, x3 = i, x4 =

−6523999 + 73341i
5671874

.

However, we shall now show that the polynomials En(x) are same-phase stable and satisfy
a type of interlacing.

Theorem 4.9. Let λ1, λ2, . . . be a fixed sequence of positive real numbers. Then for all n ≥ 1,

En−1(λ1t, λ2t, . . . , λnt) ≪ En(λ1t, λ2t, . . . , λnt).

Proof. We refine the polynomial En(x) by introducing

Ei
n(x) := ∑

π∈Sn
π(n)=i

xDES(π).

We have that En−1(x) = En
n(x), since removing the last entry (which is n) in a permuta-

tion counted by En
n(x), gives a bijection with elements counted by En−1(x). To be more

detailed, we set

vi
n(t) := Ei

n(λ1t, λ2t, . . . , λnt), vn(t) := En(λ1t, λ2t, . . . , λnt).

Next we prove that Vn := {vn−i
n }n

i=1 is an interlacing sequence mimicking the approach
used in [3, Example 7.8.8], and note that by conditioning on π(n − 1) = k, we have

vi
n+1(t) = ∑

k≥i
λnt · vk

n(t) + ∑
k<i

vk
n(t). (4.6)

2We found this by simply using the Mathematica command FindInstance.
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Equation (4.6) can be re-written as

vn+1
n+1

vn
n+1

vn−1
n+1
...

v3
n+1

v2
n+1

v1
n+1


=



1 1 1 . . . 1 1
λnt 1 1 . . . 1 1
λnt λnt 1 . . . 1 1
λnt λnt λnt . . . 1 1

...
... . . . . . . ...

λnt λnt . . . λnt λnt 1
λnt λnt . . . λnt λnt λnt





vn
n

vn−1
n
...

v3
n

v2
n

v1
n


(4.7)

where we denote the big matrix by Gn ∈ R(n+1)×n. Using [3, Theorem 7.8.5] allows us
to easily verify that Gn maps F+

n to F+
n+1. Hence by induction, it follows that Vn is an

interlacing sequence for all n.
We now have that

vn−1(t) = vn
n(t) and vn(t) = v1

n(t) + · · ·+ vn
n(t).

Since vn−1(t) interleaves all polynomials in {vi
n(t)}n

i=1, it must also interleave the sum,
so vn−1 ≪ vn(t), and we are done.

Conjecture 4.10. Let An(x) be as in (4.4). Then An(x) is same-phase stable, and for all n ≥ 1,
we have that

An−1(λ1t, λ2t, . . . , λn−1t) ≪ An(λ1t, λ2t, . . . , λnt),

whenever λ1, λ2, . . . is a fixed sequence of positive real numbers.

As mentioned earlier, it has been shown that the B̂n(t) defined in (2.2) are real-rooted.
Through computer experiments with mathematica, we were able to come up with the
following conjecture.

Conjecture 4.11. The polynomials B̂n(x) = ∑π∈Sn xPKV(π), are all stable. Furthermore, if
λ1, λ2, . . . is a fixed sequence of positive real numbers, then

B̂n−1(λ1t, λ2t, . . . , λn−1t) ≪ B̂n(λ1t, λ2t, . . . , λnt) for all n > 1.

We simply randomly generate positive real numbers λi, and verify (symbolically)
that the polynomials are real-rooted. The interlacing property can then be checked nu-
merically. We then performed several hundreds of such Monte-Carlo checks for each
n ≤ 10.

One possible approach to solve this conjecture is to use the multivariate recursion in
Proposition 2.2, and use some sort of multivariate analog of Lemma 4.3.
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