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Abstract. In several cases, a sequence of free cumulants that counts certain binary
plane trees corresponds to a sequence of classical cumulants that counts the decreas-
ing versions of the same trees. Using two new operations on binary plane trees that
we call insertion and decomposition, we prove that this surprising phenomenon holds
for families of trees that we call troupes. The proof relies on two new formulas, each of
which is given as a sum over objects called valid hook configurations. The first of these
formulas provides detailed information about the preimages of a permutation under
the postorder traversal that lie in a given troupe; the second is a new combinatorial for-
mula that converts from a sequence of free cumulants to the corresponding sequence
of classical cumulants. The unexpected connection between troupes and cumulants
provides a powerful new tool for analyzing the stack-sorting map s (which is defined
via the postorder traversal) that hinges on free probability theory. We give numerous
applications of this method. For example, we show that if σ ∈ Sn−1 is chosen uni-
formly at random and des denotes the descent statistic, then the expected value of
des(s(σ)) + 1 is (

3 −
n

∑
j=0

1
j!

)
n.

Furthermore, the variance of des(s(σ)) + 1 is asymptotically (2 + 2e − e2)n. We obtain
similar results concerning the expected number of descents of postorder readings of
decreasing binary plane trees of various types. We also obtain improved estimates for
|s(Sn)| and an improved lower bound for the degree of noninvertibility of s : Sn → Sn.
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1 Introduction

Cumulants are fundamental combinatorial tools in noncommutative probability theory
that encode different notions of independence. There has been a great deal of recent
work aimed at finding combinatorial formulas that convert from cumulants of one type
to cumulants of another (see [1, 5, 8] and the references therein). In this extended abstract
of the article [5], we provide a new formula, which we call the VHC Cumulant Formula,
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that converts from free cumulants to classical cumulants via a sum over objects called
valid hook configurations. The VHC Cumulant Formula appears to be the first combina-
torial cumulant conversion formula with applications beyond the specific combinatorial
objects involved in the formula. This is due to the surprising fact that valid hook con-
figurations feature prominently in a different formula concerning postorder traversals of
decreasing binary plane trees; we call this other formula the Refined Tree Fertility For-
mula. Postorder traversals are very closely related to West’s stack-sorting map, a specific
well-studied combinatorial operator on the set Sn of permutations of [n] = {1, . . . , n}.
We will also introduce troupes, which are families of binary plane trees that are closed
under two new operations called insertion and decomposition, as well as the notion of an
insertion-additive tree statistic. Many classical families of rooted plane trees found in the
literature are troupes, and several interesting statistics are insertion-additive.

The article [5] has three main aspects. The first, which concerns troupes and cu-
mulants, explains how troupes encode the relationship between (univariate) free and
classical cumulants. Indeed, we will show that if T is a troupe, then a sequence of free
cumulants that counts trees in T according to some insertion-additive tree statistics cor-
responds to a sequence of classical cumulants that counts decreasing labeled versions
of the trees in T according to the same statistics. The proof of this theorem relies on
combining the VHC Cumulant Formula with the Refined Tree Fertility Formula, even
though the statement makes no reference to postorder traversals. The second aspect con-
cerns cumulants and stack-sorting. We will outline several instances where tools from
combinatorial free probability yield deep facts about the stack-sorting map and, more
generally, postorder traversals. Finally, the third aspect, which concerns stack-sorting
and troupes, explains how troupes provide a very broad framework for generalizing
results about the stack-sorting map. We will not discuss this aspect of the paper here.

The fact that valid hook configurations appear naturally in both the Refined Tree
Fertility Formula and the VHC Cumulant Formula is extremely mysterious and is re-
sponsible for a great deal of unexpected structure underlying the stack-sorting map.

2 Troupes and Tree Traversals

A binary plane tree is a rooted tree in which each vertex has at most 2 children and each
child is designated as either a left or a right child. Let BPT denote the set of binary plane
trees. For T ⊆ BPT, we let Tn denote the set of trees in T that have n vertices.

Let T1 and T2 be nonempty binary plane trees, and let v be a vertex of T1. Let us
replace v with two vertices that are connected by a left edge. This produces a new tree
T∗

1 with one more vertex than T1. We call the lower endpoint of the new left edge v,
identifying it with the original vertex v. We denote the upper endpoint of the new left
edge by v∗. The insertion of T2 into T1 at v, denoted ∇v(T1, T2), is the tree formed by
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attaching T2 as the right subtree of v∗ in T∗
1 . For instance, if

T1 = and T2 = ,

where v is as indicated, then we have

T∗
1 = and ∇v(T1, T2) = .

One can reverse the above procedure. Let T be a binary plane tree, and suppose v∗

is a vertex in T with 2 children. Let v be the left child of v∗ in T, and let T2 be the right
subtree of v∗ in T. Let T∗

1 be the tree obtained by deleting T2 from T, and let T1 be the
tree obtained from T∗

1 by contracting the edge connecting v and v∗ into a single vertex.
We call this contracted vertex v, identifying it with the original v. We say the pair (T1, T2)
is the decomposition of T at v∗ and write ∆v∗(T) = (T1, T2).

We say a collection T ⊆ BPT is insertion-closed if for all nonempty trees T1, T2 ∈ T
and every vertex v of T1, the tree ∇v(T1, T2) is in T. We say T is decomposition-closed
if for every T ∈ T and every vertex v∗ of T that has 2 children, the pair ∆v∗(T) is in
T × T. A troupe is a set of binary plane trees that is insertion-closed and decomposition-
closed. The article [5] shows that there are uncountably many troupes and characterizes
troupes in terms of their branch generators, which are essentially their “indecomposable”
elements.

Remark 1. There is actually a more general definition of a troupe in which one is allowed
to color the vertices of the trees. This more general setup allows one to give further
examples of the interactions between troupes and cumulants. Here, we have limited our
definition of a troupe to uncolored trees for the sake of brevity.

Let us say a binary plane tree is full if every vertex has either 0 or 2 children. A
Motzkin tree is a binary plane tree in which every vertex that has a right child also has
a left child. Let FBPT and Mot denote the set of full binary plane trees and the set of
Motzkin trees, respectively. Then BPT, FBPT, and Mot are all examples of troupes.

Let X be a finite set of positive integers. A decreasing binary plane tree on X is a
binary plane tree whose vertices are bijectively labeled with the elements of X so that
every nonroot vertex has a label that is smaller than the label of its parent. If T is a
decreasing binary plane tree, then the skeleton of T , denoted skel(T ), is the binary plane
tree obtained by removing the labels from T . Given a set T of binary plane trees, we
let DT denote the set of decreasing binary plane trees T such that skel(T ) ∈ T. Thus,
DBPT is the set of all decreasing binary plane trees.
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A tree statistic is a function f : BPT → C. If we are given a tree statistic f : BPT → C,
we define a function f̈ : DBPT → C by f̈ (T ) = f (skel(T )). We say a tree statistic f is
insertion-additive if

f (∇v(T1, T2)) = f (T1) + f (T2)

for all nonempty binary plane trees T1 and T2 and all vertices v in T1. Two examples of
insertion-additive tree statistics are the functions T 7→ right(T) + 1 and T 7→ prol(T) + 1,
where right(T) is the number of right edges of T and prol(T) is the number of vertices
in T that have two children (sometimes called prolific vertices).

A permutation of X is an ordering of the elements of X, which we write as a word in
one-line notation. Let Sn be the set of permutations of [n]. A descent of a permutation
π = π1 · · ·πn is an index i ∈ [n − 1] such that πi > πi+1. A peak of π is an index
i ∈ {2, . . . , n − 1} such that πi−1 < πi > πi+1. We write des(π) and peak(π) for the
number of descents of π and the number of peaks of π, respectively.

The in-order traversal I and the postorder traversal P are two functions that send de-
creasing binary plane trees on X to permutations of X. If T is the empty tree, then
I(T ) and P(T ) are both just the empty permutation. Now suppose T is a nonempty
decreasing binary plane tree on X. Let TL and TR be the (possibly empty) left and right
subtrees of the root of T , respectively. Let m = max(X) be the label of the root of T .
The in-order and postorder traversals are defined recursively by

I(T ) = I(TL)m I(TR) and P(T ) = P(TL)P(TR)m.

It is known that I is a bijection from the set of decreasing binary plane trees on X to the
set of permutations of X. Therefore, given a permutation π, we let I−1(π) denote the
unique decreasing binary plane tree whose in-order traversal is π.

The stack-sorting map is a function s : Sn → Sn that West introduced in his disserta-
tion [12] as a deterministic version of Knuth’s stack-sorting machine [9]. It has received
vigorous attention over the last three decades (see [2, 4, 5] and the references therein).
There are various ways to define s, one of which makes use of tree traversals. Namely,

s = P ◦ I−1. (2.1)

For example,

246153 I−1
−−→ P−−→ 241356,

so s(246153) = 241356.

3 Valid Hook Configurations

The plot of a permutation π = π1 · · ·πn is the diagram showing the points (i, πi) for all
i ∈ [n]. A hook of π is a rotated L shape connecting two points (i, πi) and (j, πj) with
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i < j and πi < πj, as in Figure 1. The point (i, πi) is the southwest endpoint of the hook,
and (j, πj) is the northeast endpoint of the hook. For example, Figure 1 shows the plot of
the permutation π = 426315789. The hook shown in this figure has southwest endpoint
(3, 6) and northeast endpoint is (8, 8).

Figure 1: The plot of 426315789 along with a single hook. We have labeled the points
in the plot with their heights.

Let π be a permutation with descents d1 < · · · < dk. A valid hook configuration of π is
a tuple H = (H1, . . . , Hk) of hooks of π that satisfy the following properties:

1. For each i ∈ [k], the southwest endpoint of Hi is (di, πdi).

2. No point in the plot of π lies directly above a hook in H.

3. No two hooks in H intersect or overlap each other unless the northeast endpoint
of one is the southwest endpoint of the other.

Let VHC(π) denote the set of valid hook configurations of π. We make the convention
that a valid hook configuration includes its underlying permutation as part of its identity
so that VHC(π) ∩ VHC(π′) = ∅ when π ̸= π′. Given a set S of permutations, let
VHC(S) =

⋃
π∈S VHC(π). If π is monotonically increasing, then VHC(π) contains a

single element: the empty valid hook configuration of π, which has no hooks.
Fix π = π1 · · ·πn with des(π) = k. Each valid hook configuration H= (H1, . . . , Hk) ∈

VHC(π) induces a coloring of the plot of π. To begin this coloring, draw a sky over the
entire diagram, and color the sky blue. Assign arbitrary distinct colors other than blue
to the hooks H1, . . . , Hk. In order to decide how to color a point (i, πi), imagine that
this point looks directly upward. If it sees a hook when looking upward, it receives the
same color as the hook that it sees. If it does not see a hook, it must see the sky, so it
receives the color blue. However, if (i, πi) is the southwest endpoint of a hook, then it
must look around (on the left side of) the vertical part of that hook. We also require
that the northeast endpoint of Hi must receive the same color as Hi. Figure 2 shows the
coloring of the plot of a permutation induced by a valid hook configuration.
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Figure 2: A valid hook configuration and its induced coloring.

Consider the coloring of the plot of a permutation π ∈ Sn−1 induced by a valid hook
configuration H ∈ VHC(π). We obtain a partition |H of the set [n] by declaring that
two numbers lie in the same block of the partition if and only if the points with those
heights have the same color; here, we think of the sky as a blue point with height n.1 For
example, if H is the valid hook configuration whose coloring appears in Figure 2, then

|H = {{1, 4, 5, 9}, {2, 6}, {3, 8, 12, 14, 15}, {7, 11, 16}, {10, 13}}.

4 Cumulants

Let K be a field. Let Π(X) denote the collection of all set partitions of a totally ordered
finite set X. We let Π(n) = Π([n]). We say two distinct blocks B, B′ of a set partition
ρ ∈ Π(X) form a crossing if there exist i, j ∈ B and i′, j′ ∈ B′ such that either i < i′ < j < j′

or i > i′ > j > j′. A partition is noncrossing if no two of its blocks form a crossing. Let
NC(X) be the set of noncrossing partitions in Π(X), and let NC(n) = NC([n]).

A noncommutative probability space over K is a pair (A, φ), where A is a unital asso-
ciative algebra and φ : A → K is a unital linear functional (meaning φ(1A) = 1K). Given
a1, . . . , an ∈ A and B = {b1 < · · · < br} ⊆ [n], let aB = (ab1 , . . . , abr). One of the goals of
noncommutative probability theory is to understand the joint moments

mn(a1, . . . , an) = φ(a1 · · · an).

1The notation |H comes from the fact that the partition is obtained by considering the vertical coordi-
nates of the points. There is a different set partition H discussed in [5], which is obtained by considering
the horizontal coordinates.



Troupes, Cumulants, and Stack-Sorting 7

The classical cumulants are the elements cn(a1, . . . , an) of K that satisfy the formula

mn(a1, . . . , an) = ∑
ρ∈Π(n)

∏
B∈ρ

c|B|(aB). (4.1)

The free cumulants, originally introduced by Speicher [11], are the elements κn(a1, . . . , an)
of K that satisfy the formula

mn(a1, . . . , an) = ∑
η∈NC(n)

∏
B∈η

κ|B|(aB). (4.2)

The preceding paragraphs describe moments, classical cumulants, and free cumu-
lants that are multivariate in the sense that they involve several (possibly) distinct ele-
ments a1, a2, . . . of A. In many applications, it will suffice to consider the univariate case
in which the elements a1, a2, . . . are all equal. In this case, we drop the notation express-
ing the dependence on a1, a2, . . . and simply write mn, cn, and κn. In fact, we will rarely
need to refer to the noncommutative probability space (A, φ).

We can view an arbitrary sequence (κn)n≥1 of elements of K as a sequence of free
cumulants and use (4.2) to compute the corresponding moment sequence (mn)n≥1. We
can then invert (4.1) (using Möbius inversion on the partition lattice) in order to obtain a
sequence (cn)n≥1. For example, one can show that c4 = κ4 − κ2

2. Thus every sequence of
free cumulants corresponds to a unique sequence of classical cumulants. Similarly, every
sequence of classical cumulants corresponds to a unique sequence of free cumulants.
Several recent articles (see [1, 8, 5] and the references therein) have focused on finding
combinatorial formulas that convert from one sequence of cumulants to another (there
are also other types of cumulants that we will not discuss). In the next section, we will
state the VHC Cumulant Formula, which expresses classical cumulants in terms of free
cumulants via a sum over valid hook configurations.

One can also use known techniques to convert from the ordinary generating function
∑n≥1 κnzn to the exponential generating function ∑n≥1 cnzn/n!. To do so, one combines
Voiculescu’s R-transform with an inverse Laplace transform and the Exponential For-
mula (see [5] for more details). Performing these computations explicitly is often infeasi-
ble because the expressions become too unwieldy. However, occasionally, the generating
functions are nice enough that the computations can be performed. In these cases, we
can sometimes combine the generating function techniques with the VHC Cumulant
Formula and the Refined Tree Fertility Formula to prove new difficult facts about the
stack-sorting map and postorder traversals.

5 The Two Main Formulas

In this section, we state the two main formulas that are given by sums over valid hook
configurations; the proofs can be found in [5]. The first formula is the Refined Tree Fertil-
ity Formula; the word “fertility” originates from West’s thesis [12], where the fertility of



8 C. Defant

a permutation π is defined to be the number of preimages of π under the stack-sorting
map s.

Theorem 1 (Refined Tree Fertility Formula [5]). Let T be a troupe, and let f1, . . . , fr be
insertion-additive tree statistics. For every permutation π, we have

∑
T ∈P−1(π)∩DT

x f̈1(T )
1 · · · x f̈r(T )

r = ∑
H∈VHC(π)

∏
B∈|H

∑
T∈T|B|−1

x f1(T)
1 · · · x fr(T)

r .

To gain intuition about the preceding theorem, let us restrict to the case in which
r = 0. Under this specialization, the Refined Tree Fertility Formula tells us that the
number of decreasing binary plane trees in DT with postorder traversal π is given by
∑H∈VHC(π) ∏B∈|H |T|B|−1|. To be even more concrete, we can consider the case in which
r = 0 and T = BPT. In this case, it follows from (2.1) that |P−1(π) ∩ DBPT| = |s−1(π)|
is the fertility of π. Furthermore, |BPTm| = Cm = 1

m+1(
2m
m ) is the m-th Catalan number.

Thus, the Refined Tree Fertility Formula expresses the fertility of an arbitrary permuta-
tion π as a sum of products of Catalan numbers, where the sum ranges over the valid
hook configurations of π. The author has used this formula to uncover several new facts
about the stack-sorting map (see [4, 5] and the references therein).

Our second main formula is the VHC Cumulant Formula.

Theorem 2 (VHC Cumulant Formula [5]). If (κn)n≥1 is a sequence of free cumulants, then
the corresponding classical cumulants are given by

−cn = ∑
H∈VHC(Sn−1)

∏
B∈|H

(−κ|B|).

For example, the two elements of VHC(S3), drawn with their induced colorings, are

and .

The associated set partitions are {{1, 2, 3, 4}} and {{1, 3}, {2, 4}}, so −c4 = −κ4 +
(−κ2)

2 = −κ4 + κ2
2.

The VHC Cumulant Formula actually extends to the multivariate setting (see [5]).
However, the univariate version of the formula is sufficient for all of our applications.

6 Troupes and Cumulants

Suppose we define a sequence (κn)n≥1 of free cumulants by κn = −Cn−1, where Cm =
1

m+1(
2m
m ) is the m-th Catalan number. Then the corresponding sequence of classical cu-

mulants (cn)n≥1 is given by cn = −(n − 1)!. Indeed, this is equivalent to the fact that
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the sequences ((−1)n−1Cn−1)n≥1 and ((−1)n−1(n − 1)!)n≥1 give the Möbius invariants
of noncrossing partition lattices and partition lattices, respectively. On the other hand,
Cn−1 is the number of binary plane trees with n − 1 vertices, while (n − 1)! is the num-
ber of decreasing binary plane trees with n − 1 vertices. The main result of this section
shows that this is no coincidence.

In what follows, our free and classical cumulants belong to the field K = C(x1, . . . , xr)
of rational functions in the variables x1, . . . , xr. Given a set T of binary plane trees, let us
write DTm for the set of decreasing binary plane trees in DT on the set [m].

Theorem 3 ([5]). Let T be a troupe. Let f1, . . . , fr be insertion-additive tree statistics, and let
x1, . . . , xr be variables. If (κn)n≥1 is the sequence of free cumulants defined by

κn = − ∑
T∈Tn−1

x f1(T)
1 · · · x fr(T)

r ,

then the corresponding sequence (cn)n≥1 of classical cumulants is given by

cn = − ∑
T ∈DTn−1

x f̈1(T )
1 · · · x f̈r(T )

r .

Proof. By combining the Refined Tree Fertility Formula with the VHC Cumulant For-
mula, we find that

−cn = ∑
H∈VHC(Sn−1)

∏
B∈|H

(−κ|B|) = ∑
π∈Sn−1

∑
H∈VHC(π)

∏
B∈|H

(−κ|B|)

= ∑
π∈Sn−1

∑
T ∈P−1(π)∩DT

x f̈1(T )
1 · · · x f̈r(T )

r = ∑
T ∈P−1(Sn−1)∩DT

x f̈1(T )
1 · · · x f̈r(T )

r .

The desired result follows since P−1(Sn−1) ∩DT = DTn−1.

Remark 2. Although the statement of Theorem 3 is quite simple, its proof relies on the Re-
fined Tree Fertility Formula and the VHC Cumulant Formula, which are quite nontrivial
to prove. Furthermore, both of these formulas rely on the carefully-defined notions of
valid hook configurations and their induced set partitions.

7 Applications to Stack-Sorting

7.1 Descents After Stack-Sorting

Recall that s denotes the stack-sorting map. Viewing s as a sorting operator, it is natural
to consider des(s(σ)) as a measure of how “far” s(σ) is from the identity permutation. It
is known that if σ ∈ Sn−1, then 0 ≤ des(s(σ)) ≤ n−2

2 ; moreover, each of these bounds is
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attained by some choice of σ. What happens if we choose σ ∈ Sn−1 uniformly at random?
Then des(s(σ)) is a random variable, and we can ask about its expected value. It is not
at all clear how one would gain any nontrivial information about this expected value
using elementary methods. However, tools from free probability allow us to compute
it exactly, and as we will see below, it has a shockingly simple form! In fact, the article
[5] outlines an algorithmic procedure for computing the higher moments of this random
variable as well. These results are derived from the following theorem.

Theorem 4 ([5]). Let Fx(z) =
1
2
(−x − x2z) + x

√
1 − 4z + 2xz + x2z2. Then

∑
n≥1

(
∑

σ∈Sn−1

xdes(s(σ))+1

)
zn

n!
= − log(1 + L−1{Fx(1/t)/t}(z)),

where L−1 denotes the inverse Laplace transform with respect to the variable t.

Proof sketch. The main idea is to define free cumulants κn over the field C(x) by κn =
−xCn−1. Combining the VHC Cumulant Formula with the Refined Tree Fertility For-
mula (in the special case where T = BPT and r = 0), one can show that the correspond-
ing classical cumulants are given by cn = −∑σ∈Sn−1

xdes(s(σ))+1. The descent statistic
comes into play here because if H ∈ VHC(π), then the number of blocks of the partition
|H is des(π) + 1. Indeed, this follows from the definitions of valid hook configurations
and the partitions |H. One can then use the generating function techniques mentioned
at the end of Section 4 to show that ∑n≥1 cnzn/n! = log(1 + L−1{Fx(1/t)/t}(z)).

The article [5] explains how to derive the next theorem (and more) from Theorem 4.

Theorem 5. If σ ∈ Sn−1 is chosen uniformly at random, then

E[des(s(σ)) + 1] =

(
3 −

n

∑
j=0

1
j!

)
n ∼ (3 − e)n.

Furthermore, Var[des(s(σ)) + 1] ∼ (2 + 2e − e2)n.

The techniques used to derive the preceding results are not limited to the stack-
sorting map; the same methods generalize readily to allow us to understand postorder
readings of trees arising from several other troupes. For brevity, we will state results
for just two other troupes, and we will focus on just the expected values of the relevant
random variables. Recall the troupe FBPT of full binary plane trees and the troupe Mot

of Motzkin trees from Section 2. Let us also recall the notation DTm from Section 6.

Theorem 6. If n ≥ 2 is even and T ∈ DFBPTn−1 is chosen uniformly at random, then

E[des(P(T )) + 1] =
(

1 − En

nEn−1

)
n ∼

(
1 − 2

π

)
n,

where Em denotes the m-th Euler number.
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Theorem 7. If T ∈ DMotn−1 is chosen uniformly at random, then

E[des(P(T )) + 1] ∼
(

1 − 3
√

3
2π

(e
π

3
√

3 − 1)

)
n.

7.2 Uniquely Sorted Permutations

For our next application, we consider uniquely sorted permutations, which are permuta-
tions with exactly 1 preimage under s. These permutations were introduced by En-
gen, Miller, and the current author in [6]. In that article, it was shown that there are
no uniquely sorted permutations of even size and that the number of uniquely sorted
permutations of size 2k − 1 is the k-th term in Lassalle’s sequence. This is a fascinat-
ing sequence introduced by Lassalle in [10], who settled a conjecture of Zeilberger’s by
showing that its terms are positive and increasing. Lassalle asked for a combinatorial
interpretation of this sequence, which uniquely sorted permutations provide (Josuat-
Vergès gave a different interpretation in [8]). It turns out that the terms in Lassalle’s
sequence are the absolute values of the (nonzero) classical cumulants of the standard
semicircular distribution, a probability distribution that is fundamental in free probabil-
ity theory. Thus, the combination of the VHC Cumulant Formula and the Refined Tree
Fertility Formula neatly explains why uniquely sorted permutations are counted by Las-
salle’s sequence. The details are given in [5].

7.3 Sorted Permutations

Bousquet-Mélou [3] defined a permutation to be sorted if it is in the image of the stack-
sorting map. She found a recurrence relation that provides a polynomial-time algorithm
for counting sorted permutations; however, the asymptotic behavior of the resulting
sequence is still not well understood. The following asymptotic bounds were derived
in [5]. The proof of the upper bound of 0.75260 relies heavily on the Refined Tree
Fertility Formula, the VHC Cumulant Formula, and the generating function techniques
mentioned at the end of Section 4.

Theorem 8. The limit lim
n→∞

(
|s(Sn)|

n!

)1/n
exists and lies in the interval [0.68631, 0.75260].

7.4 Degree of Noninvertibility

Given a finite set X and a function f : X → X, Propp and the author [7] defined the
degree of noninvertibility

deg( f : X → X) =
1
|X| ∑

x∈X
| f−1(x)|2
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as a measure of how far the function f is from being invertible. They showed that
the limit lim

n→∞
deg(s : Sn → Sn)

1/n exists and lies in the interval [1.12462, 4], and they

conjectured that it actually lies in the interval (1.68, 1.73). In [5], the author combined
the Refined Tree Fertility Formula with the VHC Cumulant Formula in order to apply
tools from free probability (namely, the generating function techniques mentioned at the
end of Section 4) to obtain an improved lower bound of 1.62924 for the limit.
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