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A statistic for regions of braid deformations
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Abstract. An arrangement of hyperplanes in Rn is a finite collection of hyperplanes.
The regions are the connected components of the complement of the union of these
hyperplanes. By a theorem of Zaslavsky, the number of regions of a hyperplane ar-
rangement is the sum of the absolute values of the coefficients of its characteristic poly-
nomial. Arrangements that contain hyperplanes parallel to subspaces whose defining
equations are xi − xj = 0 form an important class called the deformations of the braid
arrangement. In a recent work, Bernardi showed regions of certain deformations are
in one-to-one correspondence with certain labeled trees. In this article, we define a
statistic on these trees such that the distribution is given by the coefficients of the char-
acteristic polynomial. In particular, our statistic applies to the well-studied families
like extended Catalan, Shi, Linial and semiorder.
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1 Introduction

A hyperplane arrangement A is a finite collection of affine hyperplanes (i.e., codimension
1 subspaces and their translates) in Rn. A region of A is a connected component of
Rn \ ⋃A. The number of regions of A is denoted by r(A). The poset of non-empty
intersections of hyperplanes in an arrangement A ordered by reverse inclusion is called
its intersection poset denoted by L(A). The ambient space of the arrangement (i.e., Rn)
is an element of the intersection poset; considered as the intersection of none of the
hyperplanes. The characteristic polynomial of A is defined as

χA(t) := ∑
x∈L(A)

µ(0̂, x) tdim(x),

where µ is the Möbius function of the intersection poset and 0̂ corresponds to Rn. Using
the fact that every interval of the intersection poset of an arrangement is a geometric
lattice, we have

χA(t) =
n

∑
i=0

(−1)n−iciti, (1.1)
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where ci is a non-negative integer for all 0 ≤ i ≤ n [10, Corollary 3.4]. The characteristic
polynomial is a fundamental combinatorial and topological invariant of the arrangement
and plays a significant role throughout the theory of hyperplane arrangements.

In this article our focus is on the enumerative aspects of (rational) arrangements in
Rn. In that direction we have the following seminal result by Zaslavsky.

Theorem 1.1 ([12]). Let A be an arrangement in Rn. The number of regions of A is given by

r(A) = (−1)nχA(−1)

=
n

∑
i=0

ci.

When the regions of an arrangement are in bijection with a certain combinatorially
defined set, one could ask if there is a corresponding ‘statistic’ on the set whose dis-
tribution is given by the ci’s. For example, the regions of the braid arrangement in Rn

(whose hyperplanes are given by the equations xi − xj = 0 for 1 ≤ i < j ≤ n) corre-
spond to the n! permutations of [n]. The characteristic polynomial of this arrangement is
t(t − 1) · · · (t − n + 1) [10, Corollary 2.2]. Hence, ci’s are the unsigned Stirling numbers
of the first kind. Consequently, the distribution of the statistic ‘number of cycles’ on the
set of permutations is given by the coefficients of the characteristic polynomial.

In this paper, we consider arrangements where each hyperplane is of the form xi −
xj = s for some s ∈ Z. Such arrangements are called deformations of the braid arrange-
ment. Recently, Bernardi [3] obtained a method to count the regions of any deformation
of the braid arrangement using certain objects called boxed trees. For certain special
deformations, which he calls transitive, he also obtained an explicit bijection between
the regions of the arrangement and a certain set of trees. Our main aim is to obtain a
statistic on such trees whose distribution is given by the coefficients of the characteristic
polynomial of the corresponding arrangement.

For any finite set of integers S, we associate a deformation of the braid arrangement
AS(n) in Rn with hyperplanes

{xi − xj = k | k ∈ S, 1 ≤ i < j ≤ n}.

Important examples of such arrangements are the Catalan, Shi, Linial and semiorder
arrangements. These correspond to S = {−1, 0, 1}, {0, 1}, {1}, and {−1, 1} respec-
tively. For any m ≥ 1, the extended Catalan arrangement, or m-Catalan arrange-
ment, in Rn is AS(n) where S = {−m, . . . , m}. Similarly, the extended Shi, Linial, and
semiorder arrangements correspond to S = {−m + 1, . . . , m}, {−m + 1, . . . , m} \ {0},
and {−m, . . . , m} \ {0} respectively.

If the set S satisfies certain conditions (see Definition 2.5), then the arrangements
AS(n) are called transitive. The extended Catalan, Shi, Linial, and semiorder arrange-
ments are all transitive. We note here that Bernardi [3] considers a larger class of ar-
rangements to be transitive, but we only focus on such arrangements.
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From [3, Theorem 3.8], we know that if S is transitive, then the regions of AS(n)
are in bijection with a certain set of trees TS(n) (see Definition 2.4). For example, when
S = {0, 1} which corresponds to the Shi arrangement, T{0,1}(n) is the set of labeled
binary trees with n nodes where any right node has a label smaller than its parent.

Example 1.2. A tree in T{0,1}(4) is shown in Figure 1.

4

2

3 1

Figure 1: A tree in T{0,1}(4)

For such a tree, we define the trunk to be the path from the root to the leftmost leaf.
Using the nodes on the trunk, we obtain a sequence of numbers. A node in this sequence
that is greater than all the nodes after it is called a branch node. For the tree in Figure 1,
the sequence on the trunk is 4, 2, 3 and the branch nodes are 4 and 3. These definitions
can be generalized to trees in TS(n) for other sets S.

The main theorem of this article is:

Theorem 1.3. For a transitive set S, the absolute value of the coefficient of tj in χAS(n)(t) is the
number of trees in TS(n) with j branch nodes.

The article begins with a short account of Bernardi’s work [3] in Section 2. In Section 3
the branch statistic is introduced and the main theorem is proved. In Section 4 we discuss
the class of extended Catalan arrangements and derive some properties of the coefficients
of the characteristic polynomial.

2 Preliminaries

A tree is a graph with no cycles. A rooted tree is a tree with a distinguished vertex called
the root. We will draw rooted trees with their root at the bottom. Children of a vertex v
in a rooted tree are those vertices w that are adjacent to v and such that the unique path
from the root to w passes through v. Similarly, we can define the parent of a vertex v to
be the vertex w for which v is the child of w. Any non-root vertex has a unique parent.
All the vertices that have at least one child are called nodes and those that do not are
called leaves.
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A rooted plane tree is a rooted tree with a specified ordering for the children of each
node. When drawing a rooted plane tree, the children of any node will be ordered from
left to right. The left siblings of a vertex v are the vertices that are also children of the
parent of v but are to the left of v. We denote the number of left siblings of v as lsib(v).

Definition 2.1. An (m + 1)-ary tree is a rooted plane tree where each node has exactly
(m + 1) children. We will denote by T (m)(n) the set of all (m + 1)-ary trees with n nodes
labeled with distinct elements from [n].

For trees in T (m)(n), we will denote the node having label i ∈ [n] by just i.

Definition 2.2. If a node i in a tree T ∈ T (m)(n) has at least one child that is a node, the
cadet of i is the rightmost such child, which we denote by cadet(i).

Example 2.3. Figure 1 shows an element of T (1)(4) where

• 4 is the root,

• lsib(2) = 0, lsib(3) = 0, lsib(1) = 1,

• cadet(4) = 2, and cadet(2) = 1.

Definition 2.4. For any finite set of integers S with m = max{|s| | s ∈ S}, define TS(n) to
be the set of trees in T (m)(n), such that if cadet(i) = j:

• lsib(j) /∈ S ∪ {0} implies i < j and

• − lsib(j) /∈ S implies i > j.

Definition 2.5. A finite set of integers S is said to be transitive if for any s, t /∈ S,

• st > 0 implies s + t /∈ S and

• s > 0 and t ≤ 0 implies s − t /∈ S and t − s /∈ S.

Example 2.6. As mentioned in Section 1, for any m ≥ 1, the sets {−m, . . . , m}, {−m +
1, . . . , m}, {−m, . . . , m} \ {0}, and {−m + 1, . . . , m} \ {0} are all transitive.

We can now state the result for arrangements AS(n) where S is transitive. Though
Bernardi [3] derived results for more general deformations, we will only be focused on
these.

Theorem 2.7 ([3, Theorem 3.8]). For any transitive set of integers S, the regions of the arrange-
ment AS(n) are in bijection with the trees in TS(n).
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Before looking at the characteristic polynomials of such arrangements, we recall a
few results from [9]. Suppose that c : N → N is a function and for each n, j ∈ N, we
define

cj(n) = ∑
{B1,...,Bj}∈Πn

c(|B1|) · · · c(|Bj|),

where Πn is the set of partitions of [n]. Define for each n ∈ N,

h(n) =
n

∑
j=0

cj(n).

From [9, Example 5.2.2], we know that in such a situation,

∑
n,j≥0

cj(n)tj xn

n!
=

(
∑
n≥0

h(n)
xn

n!

)t

.

Informally, we consider h(n) to be the number of “structures” that can be placed on an
n-set where each structure can be uniquely broken up into a disjoint union of “connected
sub-structures”. Here c(n) denotes the number of connected structures on an n-set
and cj(n) denotes the number of structures on an n-set with exactly j connected sub-
structures.

We now consider the characteristic polynomials of arrangements of the form AS(n).
For a fixed set S, the sequence of arrangements (AS(1),AS(2), . . .) forms what is called
an exponential sequence of arrangements (ESA).

Definition 2.8 ([10, Definition 5.14]). A sequence of arrangements (A1,A2, . . .) is called
an ESA if

• An is a braid deformation in Rn and

• for any k-subset I of [n], the arrangement

AI
n = {H ∈ An | H is of the form xi − xj = s for some i, j ∈ I}

satisfies L(AI
n)

∼= L(Ak) (isomorphic as posets).

The result on ESAs that we will need is the following.

Theorem 2.9 ([10, Theorem 5.17]). If (A1,A2, . . .) is an ESA, then

∑
n≥0

χAn(t)
xn

n!
=

(
∑
n≥0

(−1)nr(An)
xn

n!

)−t

.

Remark 2.10. We note that this is also a special case of [3, Theorem 5.2].
Using this result, the form of a characteristic polynomial given in (1.1), and the above

discussion on connected structures, we note that interpreting the coefficients of the poly-
nomial χAS(n)(t) is equivalent to defining a notion of “connected structures” for trees in
TS(n). We do this in the next section.
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3 A branch statistic

A label set is a finite set of positive integers. For any label set V, we define T (m)(V)
to be the set of (m + 1)-ary trees with |V| nodes labeled distinctly using V. Note that
T (m)([n]) = T (m)(n).

We now describe the method we use to break up a tree in T (m)(V) into “connected
sub-structures”, which we call branches.

Definition 3.1. The trunk of a tree in T (m)(V) is the path from the root to the leftmost
leaf. The nodes on the trunk of the tree break up the tree into sub-trees, which we call
twigs (see Figure 2).

Let the nodes on the trunk of a tree be v1, v2, . . . , vk, where v1 is the root and vi+1 is the
leftmost child of vi for any i ∈ [k− 1]. If vi = max{v1, . . . , vk}, then the first branch of the
tree consists of the twigs corresponding to the nodes v1, . . . , vi. If vj = max{vi+1, . . . , vk},
then the second branch of the tree consists of the twigs corresponding to the nodes
vi+1, . . . , vj. Continuing this way, we break up the tree into branches.

Note that the number of branches of the tree is just the number of right-to-left maxima
of the sequence v1, v2, . . . , vk of nodes on the trunk, i.e., the number of vi such that vi > vj
for all j > i. We will call such vi the branch nodes of the trunk.

Example 3.2. The tree in Figure 2 has 3 twigs and 2 branches. The first branch consists of
just the first twig since 6 is the largest node in the trunk. The second branch consists of
the second and third twigs since 5 is larger than 4. Here 6 and 5 are the branch nodes.

6

234

5 71

8

Figure 2: A labeled 3-ary tree with twigs and branches specified.

We use the notation T (m)
j (V) to denote the trees in T (m)(V) having j branches. To

prove that this is indeed a break-up of trees into connected sub-structures, we have to
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prove that
|T (m)

j (V)| = ∑
{B1,...,Bj}∈ΠV

|T (m)
1 (B1)| · · · |T

(m)
1 (Bj)|.

Hence, “connected” trees are those with exactly one branch, i.e., trees where the last
node of the trunk is the one with the largest label.

The connected components associated to a given tree are the branches of the tree.

Example 3.3. The connected components associated to the tree in Figure 2 are given in
Figure 3.

6

23
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5

7

1
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Figure 3: Connected components of the tree in Figure 2.

Comparing the labels on the trunks, it can be checked that a collection of connected
trees (with disjoint label sets) can be put together in exactly one way to form a tree for
which they are the branches.

Example 3.4. The labels on the trunks of the connected trees in Figure 3 are 4, 5 and 6, of
which 6 is the largest. This means that the tree on the right, call it T1, must form the first
branch. Hence, the only tree whose branches are these trees is the one formed by gluing
the tree on the left, call it T2, to T1 by replacing the leftmost leaf of T1 with the root of
T2. This gives back the tree in Figure 2.

We define the set TS(V) analogously to Definition 2.4. We set TS :=
⋃
V
TS(V) where

the union is over all label sets V. We now show that

1. the connected components of any tree in TS are also in TS and

2. trees that are built using connected trees in TS are also in TS.

We first note that (1) follows since the condition for a tree to be in TS is a local
condition. To prove (2), we only have to check that conditions in Definition 2.4, which
we call Condition S, are satisfied for the branch nodes of a tree built using connected
trees in TS. If a branch node does not have a cadet, Condition S is trivially satisfied. If a
branch node u has a cadet v, we consider two cases:
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• If the cadet is not the first child, then Condition S is satisfied since it is satisfied by
the connected components of the tree.

• If the cadet is the first child, then we must have u > v since u is a branch node.
This makes sure that Condition S is satisfied since we have lsib(v) = 0 and hence
lsib(v) ∈ S ∪ {0}.

Hence, from the discussion in Section 2, we get the following result.

Theorem 3.5. For a transitive set of integers S, the absolute value of the coefficient of tj in
χAS(n)(t) is the number of trees in TS(n) with j branches.

Example 3.6. When S = {0}, we obtain the braid arrangement. Here, T{0}(n) corresponds
to permutations of [n] and Theorem 3.5 states that the absolute value of the coefficient
of tj in χA{0}(n)(t) is the number of permutations of [n] with j right-to-left maxima. By
[8, Corollary 1.3.11], this agrees with the observation in Section 1 that the coefficients are
the Stirling numbers of the first kind.

Example 3.7. The Linial arrangement Ln in Rn is the deformation A{1}(n). The trees in
T{1}(n), called Linial trees, are those labeled binary trees where

• any right node has a label less than that of its parent and

• any left node whose sibling is a leaf has smaller label than that of its parent.

The Linial trees for n = 3 are given in Figure 4. Counting the branches in these trees, we
get χL3(t) = t3 + 3t2 + 3t, which agrees with the known formula for the characteristic
polynomial (for example, see [2, Theorem 4.2]).

4 Extended Catalan arrangement

We now focus on the case when S = {−m,−m + 1, . . . , m − 1, m} for some m ≥ 1. The
corresponding arrangement AS(n) is called the m-Catalan arrangement in Rn. Here
TS(n) = T (m)(n) and from Theorem 3.5 we get that the absolute value of the coefficient
of tj in χAS(n)(t) is

C(m, n, j) :=
n

∑
k=j

Tm(n, k)
(

n
k

)
c(k, j)(n − k)!

where

• c(k, j) is the number of permutations of [k] with j right-to-left maxima (unsigned
Stirling number of first kind), and
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Figure 4: Linial trees for n = 3.

• Tm(n, k) is the number of unlabeled (m + 1)-ary trees with n nodes, k of which are
on its trunk, given by

mk
(m + 1)n − k

(
(m + 1)n − k

n − k

)
.

This follows from the bijection between trees and Dyck paths (for example, see [3,
Section 8]) and the discussion about returns in Dyck paths in [4, Page 4].

Noting that for any m, n, k ≥ 1,

Bm(n, k) :=
(n − 1)!
(k − 1)!

(
(m + 1)n

n − k

)
is the number of ways to partition [n] into k blocks and associate to each block B a
tree in T (m)(B) (for example, using [9, Theorem 5.3.10]), we get another expression for
C(m, n, j).

Proposition 4.1. For any m, n, j ≥ 1,

C(m, n, j) =
n

∑
k=j

(−1)k−jBm(n, k)c(k, j).

Remark 4.2. The triangle of numbers C(1, n, j) is listed in the OEIS [6] as A038455. For
m ≥ 2, the triangle C(m, n, j) does not seem to be listed.

https://oeis.org/A038455
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Using the known formula for |T (m)(n)| (see [9, Section 5.3]), we have

C(m)(n) :=
n

∑
j=1

C(m, n, j) =
n!

mn + 1

(
(m + 1)n

n

)
.

The following properties of C(m, n, j) are easy consequences of Theorem 3.5.

Proposition 4.3. For any m, n, j ≥ 1, we have

1. C(m, n, j) ≤ C(m + 1, n, j),

2. C(m)(n) ≤ C(m + 1, n, 1),

3. C(m, n, j) ≤ C(m, n + 1, j),

4. C(m)(n) ≤ C(m, n + 1, 1).

Using a slightly different break-up of trees into “connected components”, we obtain
the following results. The details and a generalization are given in [5].

Proposition 4.4. For any m, n ≥ 1, we have

C(m, n, 1) ≥
n

∑
j=2

C(m, n, j).

Proposition 4.5. For any m, n, j ≥ 1, we have

C(m, n, j) ≥ C(m, n, j + 1).

There are several combinatorial objects that correspond to the regions of the extended
Catalan arrangement (especially in the case m = 1, see [11]). One such is the generalized
Dyck paths. We now describe a corresponding statistic for these Dyck paths.

A labeled m-Dyck path on [n] is a sequence of (m + 1)n terms where

• n terms are ‘+m’,

• mn terms are ‘−1’,

• the sum of any prefix of the sequence is non-negative, and

• each +m term is given a distinct label from [n].

A labeled m-Dyck path on [n] can be drawn in R2 in the natural way. Start the path
at (0, 0), read the labeled m-Dyck path and for each term move by (1, m) if it is +m and
by (1,−1) if it is −1. Also, label each +m step with its corresponding label in [n].
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A Dyck path breaks up into primitive parts based on when it touches the x-axis. If
a labeled Dyck path has k primitive parts, then we break the path into compartments as
follows. If the number n is in the ith

1 primitive part, then the primitive parts up to the
ith
1 form the first compartment. Let j be the largest number in [n] \ A where A is the set

of numbers in first compartment. If j is in the ith
2 primitive part then the primitive parts

after the ith
1 up to the ith

2 form the second compartment. Continuing this way, we break
up a labeled Dyck path into compartments.

Example 4.6. The labeled 1-Dyck path on [7] given in Figure 5 has 3 primitive parts and
2 compartments.

4

7

2

6

3

1

5

Figure 5: A labeled 1-Dyck path with compartments specified.

It can be checked that this is a valid break-up of Dyck paths into connected structures.
Thus have the following.

Result 4.7. The number of labeled m-Dyck paths on [n] with j compartments is C(m, n, j).

We say that a labeled Dyck path has j right-to-left maxima if the string of labels before
its first down step has j right-to-left maxima. For example, the string of labels before
the first down step in the Dyck path in Figure 5 is 4, 7, 2. Hence, it has 2 right-to-left
maxima.

Using the bijection between labeled trees and labeled Dyck paths given in [3] and
the result in Section 3, we get the another statistic on labeled Dyck paths with the same
distribution.

Result 4.8. The number of labeled m-Dyck paths on [n] with j right-to-left maxima is C(m, n, j).

5 Concluding remarks

We note that a combinatorial interpretation for the coefficients of the characteristic poly-
nomial of the Linial arrangement is already given in [7, Corollary 4.2]. This is in terms
of alternating trees.
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For various deformations of the braid arrangement, expressions for the characteristic
polynomials are known (for example, see [1, 2]). Hence, for transitive sets S, these can
be used to extract coefficients and hence give formulas for the number of trees in TS
according to number nodes and branches.
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