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Abstract. Using Jack polynomials, Goulden and Jackson have introduced a one pa-
rameter deformation τb of the generating series of bipartite maps. The Matching-Jack
conjecture suggests that the coefficients cλ

µ,ν of the function τb in the power-sum ba-
sis are non-negative integer polynomials in the deformation parameter b. Dołęga and
Féray have proved in 2016 the “polynomiality” part in the Matching-Jack conjecture.
In this paper, we prove the “integrality” part.

The proof is based on a recent work of the author that deduces the Matching-Jack
conjecture for marginal sums cλ

µ,l from an analog result for the b-conjecture, established
in 2020 by Chapuy and Dołęga. A key step in the proof involves a new connection with
the graded Farahat–Higman algebra.

Keywords: Matching-Jack conjecture, Jack polynomials, Farahat–Higman algebra, top
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1 Introduction

1.1 Coefficients cλ
µ,ν and the Matching-Jack conjecture

Jack polynomials J(α)θ are symmetric functions that depend on a deformation parameter α

(see [14, 21, 19]). We consider the power-sum functions p := (p1, p2, . . .), q := (q1, q2, . . .)
and r := (r1, r2, . . .) associated to three different alphabets, and we denote by J(α)θ the
Jack polynomial of parameter α expressed in the power-sum basis. In [11], Goulden and
Jackson have introduced the function τb that depends on the parameter b := α− 1 and
defined by:

τb(t, p, q, r) := ∑
n≥0

tn ∑
θ⊢n

1

j(α)θ

J(α)θ (p)J(α)θ (q)J(α)θ (r),

where j(α)θ is the square norm of the Jack polynomial J(α)θ with the respect to an α-
deformation of the Hall scalar product.
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The main motivation of studying this function comes from the fact that it gives for b =
0 and b = 1 respectively, the generating series of bipartite maps on oriented and general
surfaces (see [12]). Maps are graphs embedded into surfaces, orientable or not. The
enumeration of maps involves various methods such as matrix integrals, representation
theory tools and bijective methods [4, 8, 18].

We consider the coefficients cλ
µ,ν(b) defined by

τb(t, p, q, r) = ∑
n≥0

tn ∑
λ,µ,ν⊢n

cλ
µ,ν(b)

zλ(1 + b)ℓ(λ)
pλqµrν. (1.1)

These coefficients are the main objects of the Matching-Jack conjecture, formulated by
Goulden and Jackson [11, Conjecture 3.5].

The Matching-Jack conjecture (Goulden and Jackson). For every partitions λ, µ, ν of size
n ≥ 1, the coefficient cλ

µ,ν is a polynomial in b with non-negative integer coefficients.

The Matching-Jack conjecture is equivalent to saying that τb is a generating series
of matchings with some particular weights (see [11, Conjecture 4.2]). There exists a
connected version of this conjecture called the b-conjecture. The b-conjecture suggests
that the function (1 + b) t∂

∂t log(τb) has also a positivity property and that it enumerates
bipartite maps with some weights [11, Conjectures 6.2 and 6.3]. Since bipartite maps can
be encoded with matchings (see, e.g., [2, 7, 12]), the Matching-Jack conjecture and the
b-conjecture are related. However, no implication between them has been proved and
both of them are still open.

1.2 Former results and main theorem

In addition to the special cases b = 0 and b = 1 that follow from connections with
representation theory (see [18, 11]), several partial results related to the Matching-Jack
conjecture have been established, we cite here some of them.

The first type of results is related to coefficients cλ
µ,ν for general partitions λ, µ, ν. It

follows from the Jack polynomials theory that these coefficients are rational functions in
b, the polynomiality has been proved by Féray and Dołęga.

Theorem 1.1 ([6, Corollary 4.2]). For all partitions λ, µ, ν ⊢ n ≥ 1, the coefficient cλ
µ,ν is

polynomial in b with rational coefficients.

Other properties about the structure of these polynomials have been proved in [17].
The second type of results gives the Matching-Jack conjecture for some family of

partitions (λ, µ, ν) and specializations of the function τb. The following has been estab-
lished in [2], it has been deduced from an analogous result for the b-conjecture proved
by Chapuy and Dołęga in [5].



Integrality in the Matching-Jack Conjecture 3

Theorem 1.2 ([2]). For every n, l ≥ 1 and for every partitions λ, µ ⊢ n, the marginal coefficient
cλ

µ,l defined by

cλ
µ,l := ∑

ℓ(ν)=l
cλ

µ,ν ,

is a polynomial in b with non-negative integer coefficients.

This previous theorem covers other partial results in this direction (see [16, 15]). The
main result of this paper gives integrality in the Matching-Jack conjecture.

Theorem 1.3. For every λ, µ, ν ⊢ n ≥ 1, the coefficient cλ
µ,ν is a polynomial in b with integer

coefficients.

The proof of this theorem is based on Theorem 1.2. Since the approach used here is
independent from the one considered in [6], it gives a new proof of Theorem 1.1.

1.3 The Farahat–Higman algebra

The Farahat–Higman algebra was introduced in [9] in order to study the structure co-
efficients of the conjugacy classes Cµ(n) in the center of the symmetric group algebra
Z(ZSn). It has been shown that the Farahat–Higman algebra is isomorphic to the al-
gebra of integral symmetric functions (see [10, 22]), it is also related to the algebra of
partial permutations introduced by Ivanov and Kerov in [13].

In Section 4, we will consider a graded version of the Farahat–Higman algebra that
we denote Z∞ and that has been introduced in [19, Example 24, page 131]. In Theo-
rem 4.4, we exhibit a new basis of Z∞, which is useful in the proof of the main theorem.

1.4 Steps of the proof

A key tool of the proof of Theorem 1.3 is the following multiplicativity property that can
be obtained using the orthogonality of the Jack polynomials (see [3] for more details).

Proposition 1.4. For every λ, µ, ν ⊢ n ≥ 1 and l ≥ 1, we have

∑
κ⊢n

cλ
µ,κcκ

ν,l = ∑
θ⊢n

cλ
θ,lc

θ
µ,ν. (1.2)

This property will be considered as a a system of linear equations that allows to
recover cλ

µ,ν from the coefficients cλ
µ,l (see Remark 1). We now give the key steps of the

proof of Theorem 1.3.

• We prove that for a particular choice of set of parameters λ, µ, ν, l, Equation (1.2)
gives a square linear system with some triangularity property that allows to obtain
information on cλ

µ,ν by induction on the length of ν (see Lemma 3.1).
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• We prove that the diagonal blocks of the matrix encoding this system, denoted
Q(r), contain some coefficients tρ

π, that are independent from b (see Section 2 and
Proposition 3.2).

• We prove that the matrix Q(r) is invertible in Z by proving that it is a change-of-
basis matrix in the graded Farahat–Higman algebra Z∞ (see Proposition 4.3 and
Theorem 4.4).

Using Remark 1 below and the combinatorial interpretation of the coefficients cλ
µ,l

given in [2], it is possible to give a new proof for the Matching-Jack conjecture for b = 0
and b = 1 that does not use representation theory (such a proof follows in a more
intricate way from [5], private communication). Unfortunately, the non-negativity of the
coefficients of cλ

µ,ν as polynomials in b seems to be out of reach with our approach. We
were also not able to use the same arguments to obtain integrality in the b-conjecture.
However, it is possible to obtain the integrality for the cumulants of cλ

µ,ν, which up to
rescaling by a factor of the form n

zλ(1+b)ℓ(λ)−1 , give the coefficients of the b-conjecture.

1.5 Some notations

An integer partition λ = [λ1, λ2, . . . , λl] is a sequence of weakly decreasing positive inte-
gers λ1 ≥ λ2 ≥ · · · ≥ λl > 0. The integer l is the length of the partition λ, i.e its number
of parts. It is denoted by ℓ(λ). We define the rank of a partition λ by rk(λ) := n− ℓ(λ).
We denote by λ− 1 the partition [λ1 − 1, λ2 − 1, . . . , λl − 1], and if r ≥ l, we denote by
λ⊕ 1r the partition [λ1 + 1, . . . , λl + 1, 1, 1, . . . , 1︸ ︷︷ ︸

r−l times

].

2 Top coefficients tρ
π

As announced in the introduction, the proof of Theorem 1.3 involves the resolution of a
linear system satisfied by the coefficients cλ

µ,ν. In this section, we introduce the matrices
Q(r) that encode this system. We start by the following lemma, which is a consequence
of Theorem 1.2 and some basic properties of the coefficients cλ

µ,l (see [3] for the proof).

Lemma 2.1. For every partitions λ, µ,⊢ n ≥ 1 and l ≥ 1, we have the following bound on the
degree of cλ

µ,l as a polynomial in b:

degb(c
λ
µ,l) ≤ n− l + ℓ(λ)− ℓ(µ).

We consider some stability properties of the coefficients cλ
µ,l for which the previous

bound is zero.
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Proposition 2.2. Let κ, ν, µ ⊢ n ≥ 1, such that rk(κ) = rk(ν) + rk(µ). We have

cκ
ν,µ = cκ∪1m

ν∪1m,µ∪1m , for every m ≥ 1.

In particular, for every κ, ν, µ ⊢ n ≥ 1, and l ≥ 1 such that rk(κ) = rk(ν) + n− l, we have

cκ
ν,l = cκ∪1m

ν∪1m,l+m, for every m ≥ 1.

Proof. This is a consequence of Proposition 4.1 and Equation (4.2) below.

We introduce the following definition.

Definition 2.1. Let ρ and π be two partitions of size r ≥ 1. We consider two partitions κ

and ν of the same size n ≥ r + ℓ(ρ), such that ρ = κ − 1 (or equivalently κ = ρ⊕ 1n−r),
ν = π ∪ 1n−r and l is such that n− l + rk(ν) = r. We define the top coefficient1 tρ

π := cκ
ν,l.

Note that given Proposition 2.2 this definition does not depend on n.

We consider the matrix of top coefficients Q(r) := (tρ
π)π,ρ⊢r. We give here Q(r) for

r = 3,
π\ρ [3] [2, 1] [13]
[3] 4 1 0
[2, 1] 6 4 3
[13] 1 1 1

.

The following theorem will be proved in Section 4 (see Theorem 4.4).

Theorem 2.3. The matrix Q(r) = (tρ
µ)ρ,µ⊢r is invertible in Z for every r ≥ 1.

There exists an explicit expression of the top coefficients tρ
π, see [1]. However, for the

proof of Theorem 2.3, it will be more natural to consider the algebraic definition of these
coefficients and see the matrix Q(r) as a change-of-basis matrix (see Proposition 4.3).

3 Proof of Theorem 1.3

The main purpose of this section is to prove that Theorem 2.3 implies Theorem 1.3.
We fix n > 0. For 1 ≤ r < n, we introduce the assertion A(r)

n :

A(r)
n : for every λ, µ, κ ⊢ n such that rk(κ) = r, cλ

µ,κ is an integer polynomial in b.

We will prove A(r)
n by induction on r.

1This terminology will be justified in Section 4
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Lemma 3.1. We fix 1 ≤ r < n, and we assume that the assertions A(i)
n hold for i < r. Let

λ, µ ⊢ n and let (ν, l) be a pair satisfying the condition

ν ⊢ n, rk(ν) < r and n− l + rk(ν) = r. (3.1)

Then we have that
P(r)

λ,µ,ν,l := ∑
rk(κ)=r

cλ
µ,κcκ

ν,l (3.2)

is an integer polynomial in b.

Proof. Note that with the conditions of the proposition, the right hand-side ∑θ⊢n cλ
θ,lc

θ
µ,ν

in Equation (1.2) is an integer polynomial in b (we use the induction hypothesis and
Theorem 1.2). This implies that the left hand-side ∑κ⊢n cλ

µ,κcκ
ν,l in Equation (1.2) is an

integer polynomial in b. We conclude using the two following facts:

• if rk(κ) > r then cκ
ν,l = 0. Indeed, from Lemma 2.1, we get that

degb(cκ
ν,l) ≤ n− l + rk(ν)− rk(κ) = r− rk(κ) < 0.

• if rk(κ) < r then we know that cλ
µ,κ is an integer polynomial from A(rk(κ))

n .

For fixed λ, µ ⊢ n and r < n, one can note that we get from the previous lemma more
equations of type (3.2) than variables cλ

µ,κ, where rk(κ) = r. In order to obtain a square
system, we consider equations (3.2) indexed by partitions (ν, l) satisfying the following
condition that refines condition (3.1):

(ν, l) = (π ∪ 1n−r, l), where π ⊢ r and n− l + rk(π) = r. (3.3)

We denote by S (r)λ,µ the linear system obtained by taking the equations (3.2) for (ν, l)

satisfying condition (3.3), and we denote by Q(r)
n the matrix associated to this system.

In other terms Q(r)
n = (cκ

ν,l) where indices κ of columns are partitions of n of rank r,
and indices of rows are pairs (ν, l) satisfying the condition (3.3). Note that this matrix
is independent from λ and µ. In the case 2r ≤ n, one can see that the system S (r)λ,µ is a

square system and that Q(r)
n is the matrix Q(r) defined in Section 2. The situation in the

case 2r > n is more intricate. In general, we have the following proposition:

Proposition 3.2. For every 1 ≤ r < n, the matrix Q(r)
n is a submatrix of Q(r) defined in

Section 2, obtained by erasing only columns. More precisely, Q(r)
n = (tρ

π), where the rows index
π is a partition of r and the columns index ρ is a partition of r such that ℓ(ρ) ≤ n− r.
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Proof. We have the following bijection

{κ such that κ ⊢ n and rk(κ) = r} ∼−−→ {ρ such that ρ ⊢ r and ℓ(ρ) ≤ n− r} ,

κ 7−→ κ − 1,
ρ⊕ 1n−r 7−→ρ,

Recall that tρ
π = cκ

π∪1n−r,n−r+rk(π), where κ = ρ⊕ 1n−r (see Definition 2.1). This concludes
the proof.

We now prove Theorem 1.3.

Proof of Theorem 1.3. We prove A(r)
n by induction on r. For r = 0, the only partition of

rank 0 is κ = [1n] and we know that cλ
µ,[1n]

= δλ,µ for all partitions λ, µ, where δλ,µ is the
Kronecker delta (see [11, Lemma 3.3]).

Now we fix r > 0 and we assume that A(j)
n holds for each j ≤ r − 1. We fix two

partitions λ, µ ⊢ n ≥ 1, and we consider the system S (r)λ,µ. It can be written as follows:

Q(r)
n X(r)

λ,µ = Y(r)
λ,µ, where Yλ,µ is the column vector containing the polynomials P(r)

λ,µ,ν,l for

(ν, l) satisfying (3.3), and X(r)
λ,µ is the column vector containing cλ

µ,κ for κ ⊢ n of rank r.

We denote the column vector X̃(r)
λ,µ := (xλ

µ,ρ) for ρ ⊢ r, where

xλ
µ,ρ :=

{
cλ

µ,ρ⊕1n−r if ℓ(ρ) ≤ n− r,

0 otherwise.

The system S (r)λ,µ can be rewritten as follows: Q(r)X̃(r)
λ,µ = Y(r)

λ,µ. But we know from Theo-

rem 2.3 that Q(r) is invertible in Z, and since the entries of Yλ,µ are integer polynomials

in b (see Lemma 3.1), we deduce that this is also the case for the entries of X̃(r)
λ,µ. Hence,

the coefficients cλ
µ,κ are integer polynomials in b, when the partition κ has rank r. This

gives the assertion A(r)
n .

Remark 1. Note that the previous proof implies that Equation (1.2) allows to recover
the coefficients cλ

µ,ν form their marginal sums. More precisely, if we have a family
(yλ

µ,ν)λ,µ,ν⊢n of rational functions in b indexed by partitions of size n, satisfying

yλ
µ,[1n] = δλ,µ and ∑

κ⊢n
yλ

µ,κcκ
ν,l = ∑

θ⊢n
cλ

θ,ly
θ
µ,ν,

then we have that yλ
µ,ν = cλ

µ,ν for every partitions λ, µ, ν ⊢ n.
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4 Graded Farahat–Higman Algebra

In this section we explain the main steps of the proof of Theorem 2.3. The main idea is
to see the matrix Q(r) as a change-of-basis matrix in the Farahat–Higman algebra.

If σ is a permutation of cyclic type λ, we define its reduced cyclic type as the partition
λ− 1 (see [20]). Hence if σ ∈ Sn ⊂ Sn+1 · · · , the reduced cyclic type of σ does not de-
pend on n. For every partition λ, we define Cλ(n) ∈ ZSn as the sum of all permutations
in Sn of reduced cyclic type λ. Note that Cλ(n) = 0 if |λ|+ ℓ(λ) > n. Hence, for every
n ≥ 0, the family (Cλ(n))|λ|+ℓ(λ)≤n form a basis of the center of the group algebra of Sn:

Z(ZSn) = SpanZ{Cλ(n), |λ|+ ℓ(λ) ≤ n}.

The multiplication in this algebra is given by

Cλ(n)Cµ(n) = ∑
|κ|+ℓ(κ)≤n

ρκ
λ,µ(n)Cκ(n), (4.1)

for some structure coefficients ρκ
λ,µ(n). The latter are linked to the coefficients cλ

µ,ν as
follows (see [11, Proposition 3.1]):

ρκ
λ,µ(n) =

cκ⊕1n−|κ|

λ⊕1n−|λ|,µ⊕1n−|µ|(0) if max (|λ|+ ℓ(λ), |µ|+ ℓ(µ), |κ|+ ℓ(κ)) ≤ n,

0 otherwise.
(4.2)

The following proposition is due to Farahat and Higman.

Proposition 4.1 ([9]). The structure coefficients ρκ
λ,µ satisfy the following properties:

1. ρκ
λ,µ = 0 if |κ| > |λ|+ |µ|.

2. ρκ
λ,µ is independent from n if |κ| = |λ|+ |µ|.

3. ρκ
λ,µ is a polynomial in n if |κ| < |λ|+ |µ|.

We are here interested in the structure coefficients ρκ
λ,µ in the case |κ| = |λ|+ |µ|, these

coefficients are called the top connection coefficients of the Farahat–Higman algebra. To
study these coefficients, we consider the graded algebra Zn associated to Z(ZSn) with
respect to the filtration deg(Cλ(n)) = |λ|. We denote by cλ(n) the image of Cλ(n) in Zn .
Concretely, Zn =

⊕
1≤r≤n−1Z

(r)
n , where Z (r)

n := SpanZ {cλ(n) : λ ⊢ r and ℓ(λ) ≤ n− r},
and the multiplication in Zn is defined by

cλ(n) cµ(n) = ∑
κ⊢|λ|+|µ|

ρκ
λ,µ(n) cκ(n) = ∑

κ⊢|λ|+|µ|
cκ⊕1n−|κ|

λ⊕1n−|λ|,µ⊕1n−|µ|(0) cκ(n).
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Note that compared to Equation (4.1), we keep only the top degree terms. The graded
algebra Zn comes with a linear isomorphism ϕn : Z(ZSn)

∼−→ Zn, that sends Cλ(n) to
cλ(n) (which is obviously not an algebra morphism). Since the structure coefficients
in Zn are independent from n (see Proposition 4.1 item 2), we can define a family of
Z-algebra morphisms:

ψn : Zn+1 −→Zn

cλ(n + 1) 7−→
{
cλ(n) if |λ|+ ℓ(λ) ≤ n,
0 otherwise.

Let Z∞ := lim←−Zn be the projective limit of the Zn’s, and let the limit cλ := lim←− cλ(n) in

Z∞. We also define Z (r)
∞ := SpanZ{cλ : λ ⊢ r}, hence Z∞ =

⊕
r≥1Z

(r)
∞ (see [19, Example

24, page 131] for further details about the construction of the algebra Z∞).
For every r ≥ 1, we set fr(n) := ∑λ⊢r cλ(n), and for every partition µ, fµ(n) := ∏i fµi

(n).
We also define gν(n) := cν−1(n) fℓ(ν)(n), for every partition ν. Note that

deg(fν(n)) = deg(gν(n)) = |ν|.

Finally we define the limits fµ := lim←− fµ(n) and gν := lim←− gν(n) in Z∞ . We have the
following theorem due to Farahat and Higman.

Theorem 4.2 ([9]). For every r ≥ 0, (fµ)µ⊢r is a Z-basis of Z (r)
∞ .

The following proposition relates the matrix Q(r) defined in Section 2 to the graded
Farahat–Higman algebra Z∞.

Proposition 4.3. For every partitions λ, µ ⊢ r ≥ 0, we have tλ
µ = [cλ] gµ . In other terms, for

every r > 0, the matrix (Q(r))T is the matrix of (gµ)µ⊢r in the basis (cλ)λ⊢r.

Hence, our goal is to prove the following theorem that implies Theorem 2.3:

Theorem 4.4. For every r ≥ 0, the family (gµ)µ⊢r is a Z-basis for Z (r)
∞ .

The proof of Theorem 4.4 involves studying triangularity properties of change-of-
basis matrices in the algebra Z∞. The indices of the different bases should be considered
with some particular orders on partitions that are not detailed here. We explain here the
different steps of the proof on examples for small values of r, the full proof is given in
[3]. The following diagram illustrates the different basis of Z (r)

∞ involved in the proof of
Theorem 4.4, and the associated transition matrices.
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(cλ)λ⊢r (gλ)λ⊢r

(fλ)λ⊢r (mλ)λ⊢r

M(r)
L(r)

(Q(r))T

N (r)

U (r)

In order to prove that (gλ) is a Z basis of Z∞, we consider its matrix N in the
basis (fλ). With elementary manipulations of the definitions, we can see that this matrix
is block upper triangular, when the partitions indexing the bases are considered with
some particular orders.

Example 4.1. We give here the matrix N (r) for r = 5 (the diagonal blocks are colored in
gray).

f \ g [15] [2, 13] [22, 1] [3, 12] [3, 2] [4, 1] [5]
[5] 1 0 0 0 0 0 0
[4, 1] 1 0 0 0 0 −4
[3, 2] 3 −1 −12 3 0
[3, 12] −2 1 0 0 4
[22, 1] 10 −3 2
[2, 13] −3 1 −4
[15] 1

We need to prove that each one of the diagonal blocks of this matrix has determinant
±1. To this purpose, we prove that these diagonal blocks are South-East blocks of the
matrixM(i), the matrix of (cλ)λ⊢i in (fλ)λ⊢i, where i ≤ r.

Example 4.2. For r = 3,

M(3) is given by

f \ c [13] [2, 1] [3]
[3] 10 −12 3
[2, 1] −7 10 −3
[13] 2 −3 1

andM(2) by
f \ c [12] [2]
[2] 3 −1
[12] −2 1

.

Note that the third diagonal block of the matrix N (3) given in Example 4.1 is equal to
the matrixM(2) and its fourth diagonal block is a South-East diagonal block ofM(3).

We need to show that the East-South blocks of M(r) have determinant 1. We show
that the matrixM(r) has a decompositionM(r) = U (r)L(r) where U (r) (respectively L(r))
is an upper (respectively lower) triangular matrix, with coefficients equal to 1 on the
diagonal. This decomposition is obtained by considering an intermediate basis (mλ),
defined as the evaluation of the monomial symmetric functions in the Jucys–Murphy
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elements. Indeed, this basis has the property that its transition matrices to both bases
(cλ) and (fλ) are triangular (we use a result of Matsumoto and Novak [20] and some
basic properties on symmetric functions). Finally, we note that this decomposition of the
matrixM(r) induces a similar decomposition for every one of its South-East block, and
hence these blocks have determinant 1.

Example 4.3. For r = 3, we have the decompositionM(3) = U (3)L(3), where

U (3) is given by

f \m [13] [2, 1] [3]
[3] 1 −3 3
[2, 1] 0 1 −3
[13] 0 0 1

and L(3) by

m \ c [13] [2, 1] [3]
[3] 1 0 0
[2, 1] −1 1 0
[13] 2 −3 1

.
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