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Abstract. We present a formula for the joint distribution of major index and descent
statistic on signed multiset permutations. It allows a description in terms of the h∗-
polynomial of a certain polytope. We associate a family of polytopes to (generalised)
permutations of types A and B. We use this connection to study properties of the (gen-
eralised) Eulerian numbers, such as palindromicity and unimodality, by identifying
certain properties of the associated polytope.
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In this note we present some of the material of the preprint [17]. We develop a signed
analogue of a formula of MacMahon to which we refer in the following as MacMahon’s
formula. Throughout we denote by η = (η1, . . . , ηr) a composition of n ∈ N. The
formula reads as the following identity of rational functions [13]

∑w∈Sη
qmaj(w)tdes(w)

∏n
i=0(1 − qit)

= ∑
k≥0

r

∏
i=1

(
k + ηi

ηi

)
q
tk ∈ Q(q, t), (MM)

where Sη denotes the set of multiset permutations and (n
k)q the q-binomial coefficient.

By work of Chapoton [6] and Stanley [14], the series on the right hand side of (MM) can
be interpreted as a q-Ehrhart series of products of simplices, counting weighted lattice
points in a polytope. In the special case η = (1, . . . , 1) and q = 1, we obtain the Eulerian
polynomial on the left hand side and the Ehrhart series of products of one-dimensional
simplices, i.e. of the cube, on the right hand side of (MM):

∑w∈Sn tdes(w)

(1 − t)n+1 = ∑
k≥0

(k + 1)ntk.

Since Sn is a Coxeter group of type A, we refer to (MM) as MacMahon’s formula of
type A. By passing from permutations to signed permutations we obtain the hyperocta-
hedral group Bn, a Coxeter group of type B, and its generalisation Bη, the set of signed

*etielker@math.uni-bielefeld.de. Partially supported by the Deutsche Forschungsgemeinschaft DFG
through grant No. 80258175.

mailto:etielker@math.uni-bielefeld.de


2 E. Tielker

multiset permutations. We give new definitions of major index and descent statistic on
signed multiset permutations. This generalisation of MacMahon’s formula proceeds on
the side of the (q-) Ehrhart series: instead of counting (weighted) lattice points in prod-
ucts of simplices, we count those in products of cross polytopes, which can be seen as
signed analogues of simplices. Our main theorem (Theorem 2.2), a type-B analogue of
MacMahon’s formula, establishes the following identity:

∑w∈Bη
qmaj(w)tdes(w)

∏n
i=0(1 − qit)

= ∑
k≥0

(
r

∏
i=1

ηi

∑
j=0

(
q

j(j−1)
2

(
ηi

j

)
q

(
k − j + ηi

ηi

)
q

))
tkQ(q, t). (MB)

Furthermore it interprets the right hand side as a q-Ehrhart series of products of ηi-
dimensional cross polytopes. We refer to Section 2 for further details.

We will explain what is needed to understand both sides of each (MM) and (MB) in
Section 1. Our main result is stated in Section 2. We will use the connection between
permutations statistics and Ehrhart theory to study properties like palindromicity and
unimodality of the (generalised) Eulerian numbers of types A and B. Further possible
generalisations of our result are discussed in Section 3.

1 Preliminaries

1.1 Permutations statistics

The left hand side of MacMahon’s formula of types A and B is described in terms of
statistics on (signed) multiset permutations.

1.1.1 Multiset permutations

A multiset permutation w is a rearrangement of the letters of the multiset

{{1, . . . , 1︸ ︷︷ ︸
η1

, 2, . . . , 2︸ ︷︷ ︸
η2

, . . . , r, . . . , r︸ ︷︷ ︸
ηr

}}.

We write w = w1 . . . wn (using the one-line notation) for such a permutation and denote
by Sη the set of all permutations of the multiset given by η. The descent set is defined to
be Des(w) = {i ∈ {1, . . . , n − 1} : wi > wi+1}. The major index and the descent statistic
are

maj(w) = ∑
i∈Des(w)

i and des(w) = |Des(w)|.
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If, for example, η = (2, 3), then w = 22121 is a permutation of the corresponding multiset
{{1, 1, 2, 2, 2}}. Here, Des(w) = {2, 4} and therefore maj(w) = 6 and des(w) = 2.

The coefficients of the descent polynomial given by ∑w∈Sη
tdes(w) are called gener-

alised Eulerian numbers (of type A). Note that for η = (1, . . . , 1) we have Sη = Sn and
the coefficients of ∑w∈Sn tdes(w) are the Eulerian numbers.

1.1.2 Signed multiset permutations

In the following we introduce signed multiset permutations and give definitions of the
major index and descent statistic generalising those discussed in Section 1.1.1.
Recall that signed permutations are obtained from permutations w = w1 · · ·wn ∈ Sn (in
one-line notation), where each letter wi is independently equipped with a sign ±1. We
denote by Bn the set of signed permutations on the letters 1, . . . , n.

Similarly, we obtain the set of signed multiset permutations Bη from the set of multiset
permutations Sη by ’adding signs’: more precisely, the elements of Bη are given by a
multiset permutation w ∈ Sη and ϵ : {1, . . . , n} → {±1}, a sign vector which attaches
every i (or wi) with a positive or negative sign. It is sometimes useful to write an element
of Bη as a pair wϵ := (w, ϵ), where w ∈ Sη and ϵ : {1, . . . , n} → {±1} encodes the signs
appearing in wϵ.

In one-line notation, we write i instead of −i. For example, for η = (2) the set of
signed multiset permutations is

Bη = {(11, (1, 1)), (11, (1,−1)), (11, (−1, 1)), (11, (−1,−1))}

which we abbreviate by {11, 11, 11, 11}.

For the definition of a descent set of an element w ∈ Bη we need a notion of stan-
dardisation. We use the map std : Sη → Sn, which is known for multiset permutations,
defined as follows: for an element w ∈ Sη we obtain std(w) ∈ Sn by substituting the η1
1s from left to right with 1, . . . , η1, the η2 2s from left to right with η1 + 1, . . . , η1 + η2 and
so on. In [17] we extend this standardisation to signed multiset permutations

Bη → Bn,
(w, ϵ) 7→ (std(w), ϵ).

We denote both the standardisation on Sη and the one on Bη by std. For instance,
std(22121) = 34152.

In [17] we define the descent set of a signed multiset permutation wϵ ∈ Bη to be

Des(wϵ) := {i ∈ {0, . . . , n − 1} : std(wϵ)i > std(wϵ)i+1},
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where std(wϵ)0 := 0. In other words, for wϵ = (w, ϵ) ∈ Bη

Des(wϵ) = {i ∈ {0, . . . , n − 1} : ϵ(i) = ϵ(i + 1) = 1 and wi > wi+1,
or ϵ(i) = ϵ(i + 1) = −1 and wi ≤ wi+1, or ϵ(i) = 1 and ϵ(i + 1) = −1},

where w0 := 0 and ϵ(0) := 1. In particular, 0 ∈ Des(wϵ) if and only if ϵ(1) = −1.
Note that on elements in Bn our definition of the descent set coincides with the Coxeter-
theoretic one; see [2, Proposition 8.1.2].

Further, the major index and descent statistics are

maj(wϵ) := ∑
i∈Des(wϵ)

i and des(wϵ) := |Des(wϵ)|.

For instance, for 22121 ∈ B(2,3) we have Des(22121) = Des(34152) = {0, 1, 4}, hence
maj(22121) = 5 and des(22121) = 3. Different definitions of major index and descent
for signed multiset permutations appear in [9] and [12].

We call the coefficients of the descent polynomial ∑w∈Bη
tdes(w) generalised Eulerian

numbers of type B. Note that for η = (1, . . . , 1), we have Bη = Bn and the coefficients of
∑w∈Bn tdes(w) are the Eulerian numbers of type B.
Our goal is to construct for each η and X ∈ {Sη, Bη} a polytope such that the generating
function

∑w∈X qmaj(w)tdes(w)

∏n
i=0(1 − qit)

is a weighted Ehrhart series. For X = Sη this is MacMahon’s formula (of type A).

1.2 Ehrhart theory

As we shall now explain, both the rational functions in (MM) and in (MB) may be
interpreted as weighted Ehrhart series of certain polytopes. We start with the special
case where q = 1, viz. classical Ehrhart theory.

1.2.1 Classical Ehrhart theory

Throughout, let P = Pn be an n-dimensional lattice polytope in Rn. The lattice point
enumerator of P is the function LP : N := N ∪ {0} → N0 given by LP (k) := |kP ∩ Zn|.
For details on polytopes and Ehrhart theory see [1] and [18].
A fundamental result in this theory is Ehrhart’s Theorem [8], which states that the func-
tion LP (k) is a polynomial in k, the so-called Ehrhart polynomial. Equivalently, its gener-
ating function, the Ehrhart series of P , is of the form

EhrP (t) := ∑
k≥0

LP (k)tk =
h∗(t)

(1 − t)n+1 ∈ Q(t),
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where the numerator, the so-called h∗-polynomial of P , has degree at most n.
Ehrhart series of products of polytopes can be described in terms of Hadamard prod-

ucts. For series A(t) = ∑k≥0 aktk, B(t) = ∑k≥0 bktk ∈ Q(t) we denote their Hadamard
product (with respect to t) by (A ∗ B)(t) := ∑k≥0 akbktk.

Remark 1.1. For η = (η1, . . . , ηr) a composition of n, let Pηi be an ηi-dimensional polytope
for i ∈ {1, . . . , r}. Let further LPηi

(k) be the Ehrhart polynomial and EhrPηi
(t) the Ehrhart

series of Pηi . The product Pη := Pη1 × · · · × Pηr is a ∑r
i=1 ηi-dimensional polytope with

Ehrhart polynomial ∏r
i=1 LPηi

(k). Therefore its Ehrhart series is given by

EhrPη
(t) = ∑

k≥0

r

∏
i=1

LPηi
(k)tk =

r∗
i=1

EhrPηi
(t).

The polytopes which are relevant for us are products of simplices or cross polytopes.

Example 1.2. The h∗-polynomials of products of simplices and cross polytopes can be
described through permutations statistics:

(a) The n-dimensional standard simplex is the convex hull of zero and the unit vectors
denoted by ∆n := conv{0, e1, . . . , en}. Its Ehrhart series is given by

Ehr∆n(t) = ∑
k≥0

(
n + k

n

)
tk =

1
(1 − t)n+1 =

∑w∈S(n) tdes(w)

(1 − t)n+1 .

For the n-dimensional unit cube □n := [0, 1]n, which is the product of n one-
dimensional simplices, we obtain

Ehr□n(t) = ∑
k≥0

(k + 1)ntk =
∑w∈Sn tdes(w)

(1 − t)n+1 .

(b) For the n-dimensional cross polytope ⋄n := conv{0, e1,−e1, . . . , en,−en}, the Ehr-
hart series is given by

Ehr⋄n(t) = ∑
k≥0

n

∑
j=0

(
n
j

)(
k + n − j

n

)
tk =

(1 + t)n

(1 − t)n+1 =
∑w∈B(n)

tdes(w)

(1 − t)n+1 .

For the n-dimensional cube (centered at the origin) ⊡n := [−1, 1]n, which is the
product of n one-dimensional cross polytopes, we obtain

Ehr⊡n
(t) = ∑

k≥0
(2k + 1)ntk =

∑w∈Bn tdes(w)

(1 − t)n+1 .

The first three Ehrhart series can be found in [1, Section 2], the last one follows
from (2.1), a special case of Theorem 2.2, which was already shown in [3, Theorem 3.4].
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1.2.2 Weighted Ehrhart theory

We obtain q-analogues of Ehrhart series of simplices and cross polytopes by refining the
lattice point enumeration. Inspired by [6] and [14] we define for each k ∈ N a weight
function µk,n : k∆n → N0 on the kth dilate of ∆n such that

Ehr∆n,µn
(q, t) := ∑

k≥0
∑

x∈k∆n∩Zn
qµk,n(x)tk =

1
∏n

i=0(1 − qit)

=
∑w∈S(n) qmaj(w)tdes(w)

∏n
i=0(1 − qit)

 .

(1.1)

We denote the family of weight functions (µk,n) by µn. We call the series in (1.1) the q-
Ehrhart series (or weighted Ehrhart series) of ∆n. Note that for q = 1 we obtain the classical
Ehrhart series.

We omit the precise definition of the µn, which utilises a bijection between k∆n and
the kth dilate of the so-called order polytope of an n-chain and some linear form on Zn,
see [17] for details. The weight functions we define are no longer linear forms, so this
gives rise to a different approach defining weighted Ehrhart series than Chapoton uses.
It turns out that the weight function behaves well under taking products, i.e.

Ehr∆η ,µn
(q, t) =

r∗
i=1

Ehr∆ηi ,µηi
(q, t). (1.2)

This leads to a q-analogue of Example 1.2 (a):

Example 1.3. For the n-dimensional standard simplex this procedure yields

Ehr∆n,µn
(q, t) = ∑

k≥0

(
n + k

n

)
q
tk =

1
∏n

i=0(1 − qit)
.

The q-Ehrhart series of the n-dimensional unit cube is given by

Ehr□n,µn
(q, t) = ∑

k≥0

(
1 + k

1

)n

q
tk =

∑w∈Sn qmaj(w)tdes(w)

∏n
i=0(1 − qit)

.

Generalising Example 1.3 to products of ηi-dimensional simplices and to permuta-
tion statistics on Sη, we obtain MacMahon’s formula of type A (Theorem 2.1).

Next we extend the weight functions above to cross polytopes. Lattice points of the
cross polytope and its dilates can be described as lattice points in disjoint unions of
(shifted) simplices. Figure 1 illustrates how we obtain the new weight function µn from
µn for the third dilate of the two-dimensional cross polytope: we map a lattice point, e.g.,
a point in the red simplex in the left cross polytope in Figure 1, to one in the standard
simplex by taking absolute values of the entries. This point then lies in the red simplex
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Figure 1: A subdivision of 3⋄2 ∩Z2 into (shifted) standard simplices. The red simplex
in the cross polytope on the left is identified with the red one on the right.

in the cross polytope on the right of Figure 1. Since the points in red simplex on the
right are contained in 3∆2, we associate a weight to this point by applying the weight
function µ3,2 on the 3∆2 we determined above.

As sketched above we define weight functions µk,n : k⋄n → N0 which fulfill

Ehr⋄n,µn
(q, t) := ∑

k≥0
∑

x∈k⋄n∩Zn
qµk,n(x)tk =

∏n−1
i=0 (1 + qit)

∏n
i=0(1 − qit)

=
∑w∈B(n)

qmaj(w)tdes(w)

∏r
i=1(1 − qit)

 .

(1.3)

Analogously to (1.2) we obtain

Ehr⋄η ,µn
(q, t) =

r∗
i=1

Ehr⋄ηi ,µηi
(q, t). (1.4)

The essence of our type-B analogue of MacMahon’s formula (see Theorem 2.2) is an
explicit description of the numerator of (1.4).

2 MacMahon’s formula of type B

We obtain an interpretation of MacMahon’s formula and its generalisation of type B

in terms of weighted Ehrhart series. We use this connection to study properties like
palindromicity of the sequences of (generalised) Eulerian numbers of types A and B.

Theorem 2.1 (MacMahon’s formula of type A, [6, 13, 14]). The joint distribution of major
index and descent on the set of multiset permutations is a q-analogue of the h∗-polynomial of
products of standard simplices, i.e.

∑w∈Sη
qmaj(w)tdes(w)

∏n
i=0(1 − qit)

= ∑
k≥0

r

∏
i=1

(
k + ηi

ηi

)
q
tk = Ehr∆η ,µn

(q, t).
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The first identity was proven by MacMahon [13, §462, Vol. 2, Ch. IV, Sect. IX], the
second is due to Chapoton [6, Section 4] and Stanley [14, Section 8]. Our main result is
a ‘signed analogue’ of Theorem 2.1:

Theorem 2.2 (MacMahon’s formula of type B, [17]). The joint distributions of major index
and descent on signed multiset permutations is a q-analogue of the h∗-polynomial of products of
cross polytopes, i.e.

∑w∈Bη
qmaj(w)tdes(w)

∏n
i=0(1 − qit)

= ∑
k≥0

(
r

∏
i=1

ηi

∑
j=0

(
q

j(j−1)
2

(
ηi

j

)
q

(
k − j + ηi

ηi

)
q

))
tk = Ehr⋄η ,µn

(q, t).

We obtain the following corollaries as special cases of Theorem 2.2, which are (the
missing) q-analogues of Example 1.2 (b).

For r = 1 we recover (1.3) as the q-Ehrhart series of a n-dimensional cross polytope
on the right hand side of Theorem 2.2:

∑w∈B(n)
qmaj(w)tdes(w)

∏n
i=0(1 − qit)

=
∏n−1

i=0 (1 + qit)
∏n

i=0(1 − qit)
= Ehr⋄n,µn

(q, t).

Let ηi = 1 for all i, so Bη = Bn. Then

∑w∈Bn tdes(w)qmaj(w)

∏n
i=0(1 − qit)

= ∑
k≥0

((
k + 1

1

)
q
+

(
k
1

)
q

)n

tk = Ehr⊡n,µn
(q, t). (2.1)

The first identity is also known by [7, Equation 26].

We use the special case of Theorem 2.1 and Theorem 2.2 where q = 1 to re-prove
palindromicity of the generalised Eulerian numbers of type A and real-rootedness of the
Eulerian numbers of types A and B. These properties are known by [5, Proposition 2.12],
[10], and [3]. Moreover, we obtain new results for the generalised Eulerian numbers of
type B, which turn out to be palindromic and unimodal.

The h∗-polynomial of a polytope P is palindromic, i.e. h∗k = h∗n−k for all 0 ≤ k ≤ n
2 ,

if and only is P is Gorenstein; see [1, Section 4]. Analysing products of simplices and
cross products yields:

Proposition 2.3.

(a) The generalised Eulerian numbers of type A are palindromic if and only if η is a rectangle
(i.e. all parts are equal).

(b) The generalised Eulerian numbers of type B are palindromic for every η.
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Corollary 2.4.

(a) The generalised Eulerian polynomial (of type A) satisfies a functional equation

∑
w∈Sη

(t−1)des(w) = t−(r−1)m ∑
w∈Sη

tdes(w)

for some m ∈ N0 if and only if η is the rectangle η = (m, . . . , m).

(b) The generalised Eulerian polynomial of type B satisfies a functional equation for all η

∑
w∈Bη

(t−1)des(w) = t−n ∑
w∈Bη

tdes(w).

In [17] we show that products of cross polytopes are reflexive and anti-blocking (see
also [11] for the relevant definitions). The h∗-polynomial of such polytopes are known
to be unimodal due to [11, Theorem 3.4].

Proposition 2.5. The generalised Eulerian numbers of type B are unimodal.

Further it is known that the Eulerian numbers (of type A) can be interpreted as the h-
vector of the barycentric subdivision of the boundary of the simplex; see [4, Theorem 2.2].
Interpreting the simplex as a type-A polytope and the cross polytope a type-B analogue
is supported by the following proposition. Supplementing the Coxeter-theoretic proof,
we show the result in an elementary and self-contained way also in [17].

Proposition 2.6 ([3, Theorem 2.3]). The h-vector of the barycentric subdivision of the boundary
of the cross polytope is given by the Eulerian numbers of type B.

Using [4, Theorem 3.1] this leads to the following.

Corollary 2.7. The Eulerian polynomials of types A and B only have real roots. In particular,
the sequences of their coefficients are log-concave and unimodal.

3 Further generalisations: coloured multiset permutations

It may seem natural to seek a type D analogue of MacMahon’s formula. A first step
towards this would be to find an n-dimensional polytope Pn such that

∑w∈Dn tdes(w)

(1 − t)n+1 = EhrPn(t).

However, at present, we do not know how to generalise elements in Dn to even signed
multiset permutations without losing the product structure of the corresponding Ehrhart
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Figure 2: The distorted cross polytope C3
2 .

series.

A natural way for a generalisation comes from considering Bn as the wreath product
of the cyclic group of order two by the symmetric group. This leads to the study of
coloured permutations Sc

n := Z/cZ ≀ Sn.
Generalising this further in [17] we define coloured multiset permutations. We denote

a coloured multiset permutation wγ := (w, γ) by the indexed permutation wγ = wγ1
1 · · ·wγn

n ,
where w ∈ Sη and γ : {1, . . . , n} → {0, . . . , c − 1}. Denote by Sc

η the set of all coloured
multiset permutations. Fixing an ordering, e.g., 1c−1 < · · · < rc−1 < · · · < 10 < · · · < r0,
we define a descent statistic as

des(wγ) = |{i ∈ {0, . . . , n − 1} : γi = γi+1 = 0 and wi > wi+1,
or γi = γi+1 > 0 and wi ≥ wi+1, (3.1)
or γi < γi+1}|,

where wγ0
0 := 00. For instance, for η = (2, 3) and c = 3 we obtain des(2121122210) = 3.

In the special case of Sc
η = Sc

n our definition of descents coincides with the one in [16]
and for c = 2 we obtain the descent statistic from Section 1.1.2.

We are able to show that in a special case the descent polynomial of Sc
η is an h∗-

polynomial of a polytope. Intuitively, compared to Bη we increase the number of nega-
tives by adding colours. This leads to a product of distorted cross polytopes

Cc
n := conv{e1, . . . , en,−(c − 1)e1, . . . ,−(c − 1)en}.

As an example, C3
2 is illustrated in Figure 2.

Question 3.1. Does there exist a description of a function stat as a permutation statistic on Sc
η

such that

∑w∈Sc
η

tstat(w)

(1 − t)n+1 =
r∗

i=1
EhrCc

ηi
(t)? (3.2)
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In the special case that η = (η1, . . . , ηr) with ηi ≤ 2 for every i, we answer Question 3.1
affirmatively.

Proposition 3.2 ([17]). For η = (η1, . . . , ηr) with ηi ≤ 2 for every i, we have

∑w∈Sc
η

tdes(w)

(1 − t)n+1 =
r∗

i=1
EhrCc

ηi
(t). (3.3)

In the special case where Sc
η = Sc

n the corresponding polytope is the cth dilate of the
n-dimensional unit cube.

Corollary 3.3 ([16, Theorem 32]).

∑w∈Sc
n

tdes(w)

(1 − t)n+1 =
n∗

i=1
EhrCc

1
(t) = Ehr∏n

i=1 Cc
1
(t) = Ehrc□n(t).

The statement of (3.3) of Proposition 3.2 fails for larger η, even for η = (3). Com-
putations with SageMath [15] show that in general the descent polynomial defined by
(3.1) is not an h∗-polynomial of a polytope.
At least a necessary condition for a positive answer to Question 3.1 is satisfied. In-
deed, a lemma in Ehrhart theory ([1, Corollary 3.21]) states that the coefficients of the
h∗-polynomial sum up to the normalised volume of the n-dimensional polytope, i.e.
h∗n + · · ·+ h∗0 = n! vol(P).

Proposition 3.4 ([17]). For t = 1, the numerator of both sides in (3.2) coincide, that is

|Sc
η| = n! vol

(
r

∏
i=1

Cc
ηi

)
.
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