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Abstract. We introduce and study a class of multivariate rational functions associated
with hyperplane arrangements, called flag Hilbert–Poincaré series. These series are
intimately connected with Igusa local zeta functions of products of linear polynomials,
and their motivic and topological relatives. Our main results include a self-reciprocity
result for central arrangements defined over fields of characteristic zero. We also prove
combinatorial formulae for a specialization of the flag Hilbert–Poincaré series for irre-
ducible Coxeter arrangements of types A, B, and D in terms of total partitions of the
respective types. We show that a different specialization of the flag Hilbert–Poincaré
series, which we call the coarse flag Hilbert–Poincaré series, exhibits intriguing non-
negativity features and — in the case of Coxeter arrangements — connections with
Eulerian polynomials. For numerous classes and examples of hyperplane arrange-
ments, we determine their (coarse) flag Hilbert–Poincaré series. Some computations
were aided by a SageMath package we developed.

Keywords: Hyperplane arrangements, Igusa’s local zeta function, Eulerian polyno-
mials, Stirling numbers of the second kind, Hilbert series, Hadamard products, topo-
logical zeta functions, total partitions, representable matroids, Coxeter arrangements,
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1 Introduction

We present some of the main results of [7], an abridged version of [6]. A hyper-
plane arrangement over a field K is a finite set A of affine hyperplanes in Kd for
some integer d := dim(A). We introduce and study a multivariate rational function
fHPA(Y, T) ∈ Q(T)[Y], called the flag Hilbert–Poincaré series of A, encompassing much
of the topology and combinatorics of A. As we shall explain, various substitutions yield
connections to several enumeration problems associated with hyperplane arrangements.

In order to define fHPA, we introduce some further notation. Let L(A) be the in-
tersection poset of A, ordered by reverse-inclusion. Two hyperplane arrangements are
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equivalent if their intersection posets are isomorphic. We denote by 0̂ (resp. 1̂) the bottom
(resp. top) element of a poset (provided 1̂ exists). Observe that 1̂ ∈ L(A) if and only if
A is central, i.e.

⋂
H∈A H 6= ∅. Define L̃(A) = L(A) \ {0̂} and L(A) = L(A) \ {0̂, 1̂}.

For x ∈ L(A), we write rk(x) := rkL(A)(x) for the rank of x, viz. the supremum over the
lengths of all chains from 0̂ to x. For a poset P, the order complex ∆(P) associated with
P is the simplicial complex with vertex set P, whose simplices are the flags of P. For
x ∈ L(A), define hyperplane arrangements

Ax = {H ∈ A | x ⊆ H} (subarrangement),
Ax = {x ∩ H | H ∈ A \Ax, x ∩ H 6= ∅} (restriction).

SetA∅ := A. Interlacing these constructions we obtain, for x, y ∈ L(A), the arrangement
Ax

y := (Ax)y = (Ay)x. Recall further the Poincaré polynomial [8, Definition 2.48]

πA(Y) = ∑
x∈L(A)

µ(0̂, x)(−Y)rk(x) ∈ Z[Y]

associated with A, where µ is the Möbius function on L(A); cf. [15, Definition 3.15]. The
Poincaré polynomial is closely related to the characteristic polynomial χA(Y) of A via
the identity (see [8, Definition 2.52])

χA(Y) = YdπA(−Y−1).

We require the following flag generalization: for F = (x1 < x2 < · · · < x`) ∈ ∆(L(A))
(possibly empty), set x0 = 0̂ and x`+1 = ∅, and define

πF(Y) =
`

∏
k=0

πAxk
xk+1

(Y) ∈ Z[Y].

The following function is the main protagonist of [6].

Definition 1.1. Let T := (Tx)x∈L̃(A) be indeterminates. The flag Hilbert–Poincaré series
associated with A is

fHPA(Y, T) = ∑
F∈∆(L̃(A))

πF(Y) ∏
x∈F

Tx

1− Tx
∈ Q(T)[Y].

If A is central, then

fHPA(Y, T) =
1

1− T1̂
∑

F∈∆(L(A))
πF(Y) ∏

x∈F

Tx

1− Tx
.

We remark that fHPA(0, T) is the (fine) Hilbert series of the Stanley–Reisner ring of the
order complex of L̃(A); see Proposition 4.2.
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Example 1.2. Suppose A2 := {Hij | 1 6 i < j 6 3} ⊂ Q3 is the arrangement, where Hij
is the set of zeros to Xi − Xj. This is also known as the Coxeter arrangement of type A2.
Then, writing Tij for THij , we have

fHPA2(Y, T) =
1

1− T1̂

(
(1 + Y)(1 + 2Y) + (1 + Y)

(
T12

1− T12
+

T13

1− T13
+

T23

1− T23

))
.

The following self-reciprocity result for central arrangements over fields of character-
istic zero is our first main theorem. The rank of A, denoted by rk(A), is the rank of a
maximal element of L(A).

Theorem A (Self-reciprocity). Let A be a central hyperplane arrangement over a field of char-
acteristic zero. Then

fHPA
(

Y−1, (T−1
x )x∈L̃(A)

)
= (−Y)− rk(A)T1̂ · fHPA(Y, T).

The restriction to fields of characteristic zero reflects our method of proof rather than
any known counterexamples in positive characteristic.

Various substitutions of the variables of the flag Hilbert–Poincaré series yield connec-
tions to seemingly different enumeration problems:

First, we explain in Section 2 that flag Hilbert–Poincaré series encode the same in-
formation as certain p-adic integrals associated with hyperplane arrangements (see The-
orem B). In Section 3 we explicate the specific connections to the well-studied class of
(both uni- and multivariate) Igusa local zeta functions associated with products of linear
polynomials. In [6, Section 2.2], we also consider topological zeta functions, which are
closely related to the Igusa zeta functions. Another bivariate substitution relates the flag
Hilbert–Poincaré series of a hyperplane arrangement A with the motivic zeta function
ZM(A)(Y, T) introduced in [3, Definition 1.1] associated with the (representable) matroid
M(A) determined by A.

Second, we discuss in Section 2 an alternative combinatorial formula (see Theorem C)
for specific multivariate substitutions, viz. atom zeta functions, associated with classical
Coxeter arrangements — viz. irreducible Coxeter arrangements of types A, B, or D — in
terms of total partitions and rooted trees.

Third, we focus in Section 4 on coarse flag Hilbert–Poincaré series, viz. the bivariate
“coarsening” of the flag Hilbert–Poincaré series fHPA(Y, T) obtained by setting Tx = T
for all x. Our Theorem D presents coarse flag Hilbert–Poincaré series associated with
Coxeter arrangements as “Y-analogs” of Hilbert series of the Stanley–Reisner rings of the
first barycentric subdivisions of standard simplices. On the level of rational generating
functions, this is reflected by an intriguing connection with Eulerian polynomials.

We record some examples of the rational functions fHPA in Section 5. The case of
Boolean arrangements A = An

1 (see Section 5.1) is of particular interest: specific sub-
stitutions of the functions fHPAn

1
arise in the study [11] of the average sizes of kernels
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of generic matrices with support constraints over finite quotients of compact discrete
valuation rings; see [6, Section 4.8].

2 Flag Hilbert–Poincaré series and p-adic integrals

For general arrangements A over fields of characteristic zero, the functions fHPA are
universal objects from which various p-adic integrals associated with A may be obtained
via specializations. To discuss this connection, we first recall some representability prop-
erties of hyperplane arrangements.

If K is a field and AK is a hyperplane arrangement defined over K such that L(A) ∼=
L(AK) as posets, then we say that A is K-representable and call AK a K-representation
of A. If, as we now assume, A is a hyperplane arrangement defined over a field K of
characteristic zero, there exists a finite extension K of Q such that A is K-representable;
cf. [9, Proposition 6.8.11]. Having fixed such a K-representation of A, we may further
assume, without loss of generality, that each H ∈ A is of the form H = V(L), where
L(X) = cL + ∑d

j=1 αL,jXj ∈ OK[X] is an affine linear polynomial over OK, the ring of in-
tegers of the number field K. These choices allow us, in fact, to identify the arrangement
A with the collection of polynomials L arising in this way. We will use this freedom
frequently.

In the sequel we denote by o a compact discrete valuation ring (cDVR) with an OK-
module structure. This could be a finite extension of the completion OK,p of OK at a
nonzero prime ideal p (in characteristic zero) or a power series ring of the form FqJXK,
where Fq is the residue field of such a ring (in positive characteristic).

Denoting by p the unique maximal ideal of o, we write A(o/p) for the reduction of A
modulo p. If L(A) ∼= L(A(o/p)), then A is said to have good reduction over Fq, provided
o/p has cardinality q. It is well-known that A has good reduction over Fq for all such q
not divisible by finitely many (“bad”) primes; cf. [14, Chap. 5.1].

We now explain the connection between the flag Hilbert–Poincaré series fHPA and
various (multi- and univariate) p-adic integrals associated with the hyperplane arrange-
ment A.

Definition 2.1. The analytic zeta function of A over o is

ζA(o)(s) =
∫
odim(A) ∏

x∈L̃(A)
‖Ax‖sx |dX|,

where sx is a complex variable for each x ∈ L̃(A), further ‖X ‖ := max{| f | | f ∈ X} for
a finite set X ⊂ o, where | f | is the p-adic absolute value on o, and |dX| is the additive
Haar measure on odim(A), normalized so that odim(A) has measure 1.
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Example 2.2. The analytic zeta function of A2, cf. Example 1.2, over o is

ζA2(o)(s) =
∫
o3
|X1 − X2|s12 |X1 − X3|s13 |X2 − X3|s23 ‖X1 − X2, X1 − X3, X2 − X3‖s1̂ |dX|

=
1

1− q−2−s12−s13−s23−s1̂

(
(1− q−1)(1− 2q−1)

+(1− q−1)2
(

q−1−s12

1− q−1−s12
+

q−1−s13

1− q−1−s13
+

q−1−s23

1− q−1−s23

))
.

One sees the striking similarity between the rational functions in Example 1.2 and
Example 2.2. Our next main result establishes that the functions ζA(o)(s) and fHPA(Y, T)
determine each other, in the following precise sense.

Theorem B. Let A be a hyperplane arrangement over a number field K. For indeterminates
s := (sx)x∈L̃(A) and r := (rx)x∈L̃(A) and x ∈ L̃(A), let

gx(s) = rk(x) + ∑
y∈L̃(Ax)

sy,

hx(r) = ∑
y∈L̃(Ax)

(ry − rk(y))µ(y, x).

If o is a cDVR and an OK-module with residue field cardinality q such that A has good reduction
over Fq, then

ζA(o) (s) = fHPA

(
−q−1,

(
q−gx(s)

)
x∈L̃(A)

)
,

fHPA
(
−q−1, (q−rx)x∈L̃(A)

)
= ζA(o)

(
(hx(r))x∈L̃(A)

)
.

The interpretation of fHPA in terms of the p-adic integrals ζA(o) expressed by Theo-
rem B is key to our proof of Theorem A.

3 Igusa and atom zeta functions

Assume now, as in Section 2, that A is a K-representation and o is a cDVR and an
OK-module. An important specialization of the multivariate function ζA(o) (s) yields
the (univariate) Igusa local zeta function (over o) associated with the product fA(X) :=
∏L∈A L(X) of linear polynomials L ∈ OK[X] (see [2]):

Z fA,o(s) := ζA(o)

((
s · δ|Ax|=1

)
x∈L̃(A)

)
=
∫
odim(A)

| fA|s|dX|; (3.1)
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here s is a complex variable. Motivic zeta functions related with such integrals have
been studied and can be used to understand the topological zeta function associated
with fA(X). This is executed, for example, in [1] for generic central arrangements,
among others; cf. Section 5.2. See Section 5.3 for a formula for Igusa’s local zeta function
associated with the braid arrangement A3.

The specialization Z fA,o(s) defined in (3.1) loses sight of all variables not correspond-
ing to atoms (i.e. minimal elements in L̃(A)) and cannot distinguish atoms. We consider
the following, slightly more distinguishing p-adic specialization of ζA(o)(s).

Definition 3.1. The atom zeta function of A is

ζat
A(o) ((sL)L∈A) = ζA(o)

(
(sx · δ|Ax|=1)x∈L̃(A)

)
=
∫
odim(A) ∏

L∈A
|L|sL |dX|.

Here we identified atoms with elements L ∈ A. We note that the independent vari-
ables (sL)L∈A allow for the treatment of multi-arrangements in the sense of [1].

We remark that the atom zeta function is the finest coarsening of the multivariate
zeta function ζA(o)(s) that is, in general, multiplicative with respect to direct products
of hyperplane arrangements. Namely, if A and A′ are arrangements of hyperplanes in
(disjoint vector spaces) Kd and Kd′ and o is as above, then, by Fubini’s theorem,

ζat
(A×A′)(o)((s, s′)) = ζat

A(o)(s)ζ
at
A′(o)(s

′).

Our next result paraphrases an explicit combinatorial formula for atom zeta functions
associated with classical Coxeter arrangements; cf. [6, Theorem 5.6]. There we define, in
particular, for n ∈ N, the sets TPX,n of total partitions of type Xn; for type X = A, these
are also defined in [13, Example 5.2.5] and related to Schröder’s fourth problem.

Theorem C. Let X ∈ {A,B,D} and n ∈ N, with n > 2 if X = D. Then there exist, for
all τ ∈ TPX,n, explicitly determined polynomials πX,τ(Y) ∈ Z[Y] and products of geometric
progressions CgpX,τ (Z, (TL)L∈Xn) such that the following holds: for all cDVR o with residue
field cardinality q, assumed to be odd unless X = A,

ζat
Xn(o)

((sL)L∈Xn) =
1

1− q−n−∑L∈Xn sL ∑
τ∈TPX,n

πX,τ(−q−1)CgpX,τ

(
q−1, (q−sL)L∈Xn

)
.

As a consequence of Theorem C, we obtain an explicit formula for Igusa’s local zeta
function Z fAn ,o(s) in terms of (unlabeled) rooted trees with n + 1 leaves; see Section 5.3.

4 Coarse flag Hilbert–Poincaré series

Consider now the bivariate specialization of the flag Hilbert–Poincaré series fHPA ob-
tained by setting Tx = T for each x ∈ L̃(A):
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Definition 4.1. The coarse flag Hilbert–Poincaré series of A is

cfHPA(Y, T) = ∑
F∈∆(L̃(A))

πF(Y)
(

T
1− T

)|F|
∈ Q(T)[Y].

We define the polynomial NA(Y, T) ∈ Q[Y, T] by the formula

cfHPA(Y, T) =
NA(Y, T)

(1− T)rk(A) .

We explore a number of remarkable properties of these rational functions, including
nonnegativity features of NA(Y, T) and — in the case of Coxeter arrangements — con-
nections with Eulerian and Stirling numbers.

In Proposition 4.2, we observe that NA(0, T) has nonnegative coefficients. Its proof
is based on the fact that cfHPA(0, T) is the coarse Hilbert series of the Stanley–Reisner
ring of the order complex of L̃(A). The Cohen–Macaulayness of this complex implies
the nonnegativity of the associated h-vector, i.e. the coefficients of NA(0, T).

Recall that the nth Eulerian polynomial En(T) is defined via

En(T) = ∑
w∈Sn

Tdes(w) ∈ Z[T],

where des(w) := |{i ∈ [n− 1] | w(i) > w(i + 1)}|. Let S(n, k) be the Stirling number of
the second kind; see [15, Section 1.9]. It is well-known that

En(T)
(1− T)n =

n

∑
k=1

k! S(n, k)
(

T
1− T

)k−1

(4.1)

is the (coarse) Hilbert series of the Stanley–Reisner ring F[sd(∂∆n−1)] associated with the
first barycentric subdivision of the boundary of the (n − 1)-dimensional simplex ∆n−1
over a field F; cf. [10, Theorem 9.1].

A real hyperplane arrangement A is a Coxeter arrangement if the set of reflections
across its hyperplanes fixes A and forms a finite Coxeter group under composition.
We call A irreducible if it is not a direct product of two nontrivial arrangements. Finite
Coxeter arrangements may be decomposed as direct products of irreducible Coxeter
arrangements. The latter come in two classes: classical Coxeter arrangements of types A,
B, or D and exceptional Coxeter arrangements of types E6, E7, E8, F4, G2, H2, H3, H4, or
I2(m) for m > 7.

The following result shows that the coarse flag Hilbert–Poincaré series of (most) Cox-
eter arrangements may be viewed as “Y-analogs” of the Hilbert series (4.1).
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Theorem D. Let A be a Coxeter arrangement with no irreducible factor equivalent to E8 and F

be a field. Then

cfHPA(1, T)
πA(1)

=
Erk(A)(T)

(1− T)rk(A) = Hilb(F[sd(∂∆rk(A)−1)], T). (4.2)

In other words,
NA(1, T) = πA(1)Erk(A)(T)

and, equivalently, for 1 6 k 6 rk(A),

∑
F∈∆(L(A))
|F|=k−1

πF(1)
πA(1)

= k! S(rk(A), k).

The Stirling numbers of the second kind enter our proof of Theorem D via a simple
formula, essentially due to Cayley, for the numbers of plane trees of a given length and
number of leaves.

Simple examples show that the conclusion of Theorem D does not hold for general,
non-Coxeter hyperplane arrangements, even when they are central: the coefficients of
NA(1, T) are typically not multiples of πA(1). However, equation (4.2) of Theorem D
holds for small-rank non-Coxeter restrictions of type-D arrangements. For a recent
strengthening of Theorem D see [4], where they show that a real central hyperplane
arrangement satisfies (4.2) if and only if all of its chambers (i.e. the open regions in Rd

not contained in any hyperplane) are simplicial cones.
To prove Theorem D, we first reduce to the irreducible case by showing that coarse

flag Hilbert–Poincaré series are, essentially, Hadamard multiplicative; see [6, Proposi-
tion 6.3]. For X ∈ {A,B,D}, the result is proven, type-by-type, by constructing a bijection
between flags of L(Xn) and certain labeled rooted trees. We computed the coarse flag
Hilbert–Poincaré series of the other irreducible Coxeter arrangement with the help of
HypIgu [5], a SageMath [16] package developed by the first author to compute (coarse)
flag Hilbert–Poincaré series and other rational functions associated with hyperplane ar-
rangements. The results of these computations, along with many other examples, are
recorded in the appendix of [6]; in each case, the validity of Theorem D follows by in-
spection. The type E8 is excluded from Theorem D only because we do not supply a
proof nor an explicit computation.

All our computations support the following general nonnegativity conjecture.

Conjecture E. For all hyperplane arrangements A, the polynomial NA(Y, T) ∈ Z[Y, T] has
nonnegative coefficients.

Indeed, the polynomial NA(Y, T) has nonnegative coefficients for all of the arrange-
ments in the appendix of [6]; see Section 5.4 for the arrangement E6. It is shown in [4]
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that Conjecture E holds for all rank 3 central hyperplane arrangements. We furthermore
view Conjecture E as an extension of the following observation, which uses deep re-
sults from algebraic combinatorics. We note that πA(Y) is the Poincaré polynomial of a
quotient of an exterior algebra, known as the Orlik–Solomon algebra [8, Theorem 3.68].

Proposition 4.2. For all hyperplane arrangements A we have

NA(Y, 0) = πA(Y)

and, for all fields F,

cfHPA(0, T)
1− T

= Hilb(F[∆(L(A))], T).

In particular, the coefficients of both NA(Y, 0) and NA(0, T) are nonnegative.

5 Examples

We discuss various examples of flag Hilbert–Poincaré series.

5.1 Boolean arrangements

Consider the arrangement A comprising all the coordinate hyperplanes in Kn, also
known as the Boolean arrangement and equivalent to An

1 . Since Ay
x is Boolean for all

x, y ∈ L(A) with y < x, it follows that πF(Y) = (1 + Y)n for all F ∈ ∆(L̃(A)). Thus,

fHPAn
1
(Y, T) = (1 + Y)n ∑

F∈∆(L̃(A))
∏
x∈F

Tx

1− Tx
.

We identify ∆(L̃(A)) with W̃O([n]), the poset of chains of nonempty subsets of [n] and
rewrite fHPA(Y, (TI)I∈P(n)\{∅}) in terms of the weak order zeta function (cf. [12, Defini-
tion 2.9])

IWO
n

(
(TI)I∈P(n)\{∅}

)
:= ∑

F∈W̃O([n])
∏
I∈F

TI

1− TI
;

Proposition 5.1. For n > 1,

fHPAn
1
(Y, T) = (1 + Y)nIWO

n (T).

The neat factorization of fHPAn
1
(Y, T) as a product of a polynomial in Y and a ratio-

nal function in T seems to be atypical for these series. We have not observed such a
factorization anywhere outside the family of Boolean arrangements.
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5.2 Generic central arrangements

Let m, n ∈ N with n 6 m. We consider the arrangement Un,m of m hyperplanes through
the origin in Kn in general position. That is, for each k 6 n, every k-set of hyperplanes
intersects in a codimension-k subspace. This is also known as the m-element uniform
matroid of rank n. Observe that Un,n is Boolean, seen in Section 5.1.

For a set I, denote by P(I) the power set of I and by P(I; k) the set of subsets of I of
cardinality k. For I, J ⊂ N0, we define P(I; J) =

⋃
j∈J P(I; j) ⊆ P(I). Observe that for

n 6 m we have L(Un,m) ∼= P([m]; [n− 1]) and L̃(Un,n) ∼= P([n]; [n]).
The next proposition generalizes Proposition 5.1, as An

1
∼= Un,n.

Proposition 5.2. Let m, n ∈N with n 6 m. For T = (T1̂, (TI)I∈P([m];[n−1])),

fHPUn,m (Y, T) =
1 + Y
1− T1̂

n−1

∑
k=0

(
m− 1

k

)
Yk +

n−1

∑
`=1

n−`−1

∑
k=0

(1 + Y)`+1

1− T1̂

(
m− `− 1

k

)
Yk

× ∑
I∈P([m];`)

TIIWO
`

(
(TJ)J∈P(I;[`])

)
.

5.3 Braid arrangement A3

Our work allows us to obtain explicit formulae for the Igusa zeta functions associated
with the braid arrangements of type A in terms of rooted trees. Consider, for example,
the braid arrangement A3, with fA3(X) = ∏16i<j64(Xi − Xj).

Figure 5.1: Five rooted trees with four leaves.

By [6, Corollary 5.7], for all cDVR o with residue field cardinality q, Igusa’s zeta
function associated with f := fA3 is

Z f ,o(s) =
1− q−1

1− q−3−6s

(
(1− 2q−1)(1− 3q−1)

+
6q−1−s(1− q−1)(1− 2q−1)

1− q−1−s +
3q−2−2s(1− q−1)2

(1− q−1−s)2

+
4q−2−3s(1− q−1)(1− 2q−1)

1− q−2−3s +
12q−3−4s(1− q−1)2

(1− q−1−s)(1− q−2−3s)

)
.

The five summands correspond to the five rooted trees in Figure 5.1. Each summand is
determined from combinatorial data readily read off from the corresponding tree.
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5.4 Coarse flag Hilbert–Poincaré series

In the appendix of [6] we record the coarse flag Hilbert–Poincaré series of various hyper-
plane arrangements, including the irreducible Coxeter arrangements of rank oat most
seven. Using our package HypIgu we computed, for instance, the numerator of the
coarse flag Hilbert–Poincaré series of the arrangement E6:

NE6(Y, T) = 1 + 36Y + 510Y2 + 3600Y3 + 13089Y4 + 22284Y5 + 12320Y6

+ (4591 + 57420Y + 289824Y2 + 748080Y3 + 1020819Y4

+ 671940Y5 + 162206Y6)T + (103681 + 888840Y + 3011919Y2

+ 5080320Y3 + 4411839Y4 + 1858680Y5 + 300401Y6)T2

+ (300401 + 1858680Y + 4411839Y2 + 5080320Y3 + 3011919Y4

+ 888840Y5 + 103681Y6)T3 + (162206 + 671940Y + 1020819Y2

+ 748080Y3 + 289824Y4 + 57420Y5 + 4591Y6)T4 + (12320

+ 22284Y + 13089Y2 + 3600Y3 + 510Y4 + 36Y5 + Y6)T5.
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