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Abstract. The problem of determining when two skew Schur Q-functions are equal is
still largely open. It has been studied in the case of ribbon shapes in 2008 by Barekat
and van Willigenburg, and this paper approaches the problem for near-ribbon shapes,
formed by adding one box to a ribbon skew shape. We particularly consider frayed
ribbons, that is, the near-ribbons whose shifted skew shape is not an ordinary skew
shape. We conjecture, with evidence, that all Schur Q-functions of frayed ribbon shape
are distinct up to antipodal reflection. We prove this conjecture for several infinite
families of frayed ribbons, using a new approach via the “lattice walks” version of
the shifted Littlewood–Richardson rule discovered in 2018 by Gillespie, Levinson, and
Purbhoo.
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1 Introduction

In this extended abstract, following the results of [7], we provide new results on the
open problem of determining when two skew Schur Q-functions are equal. The (non-
skew) Schur Q-functions Qλ(x1, x2, . . .), originally defined by Schur [22], are analogues
of the classical Schur functions for shifted partitions λ, and are themselves symmetric
functions. The Schur Q-functions naturally arise in the projective representation theory
of the symmetric group [23], the crystal base theory of the quantum queer Lie superal-
gebra [4, 8, 9, 10], and the intersection theory of Schubert varieties in the odd orthogonal
Grassmannian [5, 18].

The Schur Q-functions have several equivalent combinatorial definitions, including as
the t = −1 evaluation of the Hall–Littlewood Q-polynomials [14]. Another is in terms of
semistandard shifted tableaux, leading to many combinatorial developments analogous
to those for ordinary Schur functions [12, 20, 26]. We recall the definition here via shifted
tableaux as follows.
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Figure 1: The ordinary skew shape (5, 5, 4, 2)/(4, 3, 1) at left, and the shifted skew
shape (8, 7, 5, 2)/(7, 5, 2) at right. Both sets of shaded squares have the same underly-
ing shape, but their indexing is different since the latter is shifted. In the latter, one
box is on the staircase.

Recall that a partition of n is a tuple λ = (λ1, . . . , λk) of positive integers such that
λ1 ≥ λ2 ≥ · · · ≥ λk and ∑i λi = n. We say λ is strict if in fact λ1 > λ2 > · · · > λk. The
size of λ is |λ| = ∑i λi = n. Its Young diagram, or simply diagram, is the left-justified
array of boxes in which the i-th row from the top contains λi boxes (we use the ‘English’
convention for Young diagrams). If the Young diagram of µ is contained in that of λ, we
write λ/µ for the (ordinary) skew shape formed by deleting the boxes of µ from λ. The
diagram of a single partition λ is called a straight shape.

The shifted Young diagram, or simply shifted diagram, of a strict partition λ is
formed by shifting the i-th row of the ordinary Young diagram of λ exactly i− 1 steps
to the right for all i. A shifted skew shape is the difference λ/µ of two nested shifted
diagrams. We can think of shifted diagrams as fitting inside a triangular “staircase
shape”. A square in a skew shifted diagram is said to be on the staircase if it is in the
leftmost possible position in its row (see Figure 1). We define shifted tableaux using the
“doubled alphabet” of symbols:

1′ < 1 < 2′ < 2 < 3′ < 3 < · · · . (1.1)

Definition 1.1. A shifted semistandard Young tableau (ShSSYT) is a filling of a shifted
skew shape with primed and unprimed letters from (1.1) such that rows and columns
are weakly increasing from left to right and top to bottom, primed letters can only be
repeated in columns, and unprimed letters can only be repeated in rows.

We write ShSSYT(λ/µ) for the set of all shifted semistandard Young tableaux of
shape λ/µ. The reading word of a shifted tableau is the word formed by concatenating
the rows from bottom to top, and the reading order of the entries in a tableau is the total
order given by the reading word. An example of a shifted semistandard Young tableau
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is shown below.
1′ 1 1 1

1′ 2

1′ 1

1

The monomial associated to a shifted semistandard Young tableau T is

xT := xm1
1 xm2

2 · · · ,

where mi is the total number of i or i′ entries in T for each i. For instance, the monomial
for the tableau shown above is x8

1x2. The tuple (m1, m2, m3, . . .) of exponents is called the
content of T. We often write X for the set of variables x1, x2, . . ..

Definition 1.2. The skew Schur Q-function for the skew shape λ/µ is the symmetric
function

Qλ/µ(X) = ∑
T∈ShSSYT(λ/µ)

xT.

In the study of skew Schur Q-functions, the following natural problem remains
largely open.

Question 1.3. When are two skew Schur Q-functions equal to each other?

The natural analog of Question 1.3 has been studied more thoroughly for the un-
shifted case of ordinary Schur functions, which similarly arise in representation theory
and geometry. In [25], van Willigenburg characterized the case when a skew Schur func-
tion is equal to a straight shape Schur function, finding that sλ/µ and sν are equal only
when λ/µ and ν are the same shape, or 180◦ rotations of each other. Billera, Thomas,
and van Willigenburg [2] determined an exact condition for the equality of ribbon Schur
functions. Reiner, Shaw, and van Willigenburg [19] expanded on this result, giving
further conditions for equality for general shapes, and soon after McNamara and van
Willigenburg [15] gave a single composition operation that maintains Schur equality.
Similar results for the problem of determining when the difference of two skew Schur
functions is Schur positive were given in, for instance, [11, 13, 16, 27].

In the case of Schur Q-functions, Salmasian [21] found exact criteria for when the
Schur Q-function Qλ/µ of a shifted skew shape was equal to that of a shifted straight
shape Schur Q-function Qν. Barekat and van Willigenburg [1] investigated the problem
of Schur Q-function equality in the case of ribbons, finding a compositional construction
that gives families of shapes with equal Schur Q-function, and conjecturing that it is a
necessary and sufficient condition for equality. However, the remaining results from the
ordinary Schur function case have not yet been replicated for Schur Q-functions.

Building off of the results of Barekat and van Willigenburg [1], we examine shifted
skew shapes that are near-ribbons, defined as follows.
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Figure 2: A frayed ribbon D and its antipodal reflection Da.

Definition 1.4. A near-ribbon is a connected non-ribbon shape for which it is possible
to remove one square to form a ribbon.

This class of skew Schur Q-functions is self contained, in the following sense.

Proposition 1.5. If D and E are shifted skew shapes such that QD = QE, and D is a near-ribbon,
then E is also a near-ribbon.

In this direction, we have found ample computational and theoretical evidence that,
remarkably, the subclass of shifted near-ribbons that are not themselves ordinary skew
shapes have distinct Schur Q-functions up to antipodal reflection. We call these shapes
frayed ribbons, and they can also be defined as follows.

Definition 1.6. A frayed ribbon is a shifted near-ribbon containing two squares on the
staircase. (See Figure 2.)

We state our main conjecture precisely as follows. Define Da to be the antipodal
reflection of a shifted skew shape across the northeast-southwest diagonal (Figure 2).
In [3], it was shown that the antipodal map preserves the Schur Q-functions.

Conjecture 1.7. If D and E are frayed ribbons such that QD = QE, then either D = E or
D = Ea.

This conjecture is in sharp contrast to the results for ribbons in [1], in which infinitely
many pairs of non-antipodal ribbons, formed by “composing” previously equal pairs in
different ways, were found to have equal Schur Q-functions. It is therefore surprising
that adding the extra square on the staircase appears to distinguish all of the correspond-
ing Schur Q-functions (up to antipodal reflection).

We have verified Conjecture 1.7 by computer for all frayed ribbons up to size 11, and
prove it for several infinite families of frayed ribbons below. In the statement below, a
turn of a frayed ribbon is a square in both a nontrivial row and nontrivial column of the
ribbon structure (not including the square adjacent to the two squares on the staircase).

Theorem 1.8. If D and E are frayed ribbons with QD = QE, then:
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• D and E have the same number of turns;

• If D and E have no turn or one turn, then D = E or D = Ea;

• If D has two turns and at most one square between the turns, then D = E or D = Ea.

It is worth noting that while Theorem 1.8 and computational evidence indicates that
all non-antipodal pairs of distinct frayed ribbons have distinct Schur Q-functions, there
are examples showing that several natural generalizations of Conjecture 1.7 do not hold.
For instance, not all non-antipodal pairs of distinct connected shifted skew shapes hav-
ing at least two boxes on the staircase have distinct Schur Q-functions. We provide
counterexamples to this effect, and to other potential generalizations, in Section 4.

2 Walks and shifted Littlewood–Richardson coefficients

To prove Theorem 1.8, we expand the skew Schur Q-functions in terms of the straight
shape Schur Q-functions, which form a basis of a the subring of symmetric functions
generated by the odd-degree power sum symmetric functions [14]. In particular, the
skew Schur Q-functions Qλ/µ, which also lie in this subring, expand positively as a sum
of straight shape Schur Q-functions Qν:

Qλ/µ = ∑
ν

f λ
µνQν.

Here the coefficients f λ
µν are nonnegative integers, and are called the shifted Littlewood–

Richardson coefficients. They have several known combinatorial interpretations [6, 17,
23], and here we use the interpretation defined in [6] in terms of lattice walks.

Definition 2.1. Let w be a word in the alphabet {1′, 1, 2′, 2}. The 1/2-walk of the word
w is a lattice walk in the first quadrant using one of the four unit steps

−−→ = (1, 0) ←−− = (−1, 0)
x = (0, 1)

y = (0,−1)

for each letter of the word as we read from left to right. The walk starts at the origin
(0, 0), and at the i-th step we read wi and draw the next step of the walk according to
Figure 3, with two cases based on whether or not the step starts on one of the x or y
axes. In particular, any 2 is an up arrow, any 1′ is a right arrow, a 1 is either right if on
an axis or down if not, and a 2′ is either up if on an axis or left if not. We will generally
write the label each step of the walk by the letter wi, so as to represent both the word
and its walk on the same diagram.

Definition 2.2 (Starred entries). We write 1∗ to denote a letter that is either 1′ or 1, 2∗ to
denote a letter that is either 2′ or 2, etc.



6 M. Gillespie and K. Salois

INEQUALITY OF A CLASS OF NEAR-RIBBON SKEW SCHUR Q FUNCTIONS 7

2,2′

1,1′

2,2’

1,1’

2

1′

1

2′

2

1 1′

1 2′

2
2′
1′ 1′

Figure 6. At left, the directions assigned to the letters 1′, 1, 2′, 2 in the lattice walk
of a word, depending on whether or not the step starts on an axis. At right, the
walk for w = 211′12′22′1′1′.

Definition 2.10. Let w be a word in the alphabet {1′, 1, 2′, 2}. The 1/2-walk of the word w is a
lattice walk in the first quadrant using one of the four unit steps

−→ = (1, 0) ←− = (−1, 0)
x = (0, 1)

y = (0,−1) .

for each letter of the word as we read from left to right. The walk starts at the origin (0, 0), and at
the i-th step we read wi and draw the next step of the walk according to Figure 6, with two cases
based on whether or not the step starts on one of the x or y axes. In particular, any 2 is an up
arrow, any 1′ is a right arrow, a 1 is either right if on an axis or down if not, and a 2′ is either up
if on an axis or left if not. We will generally write the label each step of the walk by the letter wi,
so as to represent both the word and its walk on the same diagram.

If w is a word in the alphabet {i′, i, (i+1)′, i+1} for any i, we similarly define the i/(i+1)-walk
of w by replacing 1∗ with i∗ and 2∗ with (i + 1)∗ in the above definition. We can then define the
i/(i+ 1)-walk of any word in the doubled alphabet as follows.

Definition 2.11. If w is a word in the alphabet {1′, 1, 2′, 2, 3′, 3, . . .}, the i/(i + 1)-walk of w is
the i/(i+ 1)-walk of the subword of w formed by its i∗ and (i+ 1)∗ elements (which we often refer
to as the i/(i+ 1)-subword).

Definition 2.12. A word w is ballot if, for every i, the i/(i+ 1)-walk of w ends at a point on the
x axis.

This notion of ballotness is a analog of the “Yamanouchi” condition for ordinary Littlewood-
Richardson coefficients.

Example 2.13. Suppose w = 212′231′3′1′121′11. Then its 1/2-subword is 212′21′1′121′11, whose
walk is shown below at left. Its 2/3-subword is 22′233′2, whose walk is shown below at right. Both
walks end on the x-axis, so the word w is ballot.
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1′ 1′
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1′

1

1

2 2′ 2
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2

We now need to recall the definition of a tableau in canonical form.

Definition 2.14. A skew shifted semistandard Young tableau is in canonical form if the first i∗

in reading order is unprimed for every i.

Figure 3: At left, the directions assigned to the letters 1′, 1, 2′, 2 in the lattice walk of a
word, depending on whether or not the step starts on an axis. At right, the walk for
w = 211′12′22′1′1′.

If w is a word in the alphabet {i′, i, (i + 1)′, i + 1} for any i, we similarly define the
i/(i + 1)-walk of w by replacing 1∗ with i∗ and 2∗ with (i + 1)∗ in the above definition.
We can then define the i/(i + 1)-walk of any word in the doubled alphabet as follows.

Definition 2.3. If w is a word in the alphabet {1′, 1, 2′, 2, 3′, 3, . . .}, the i/(i + 1)-walk of
w is the i/(i + 1)-walk of the subword of w formed by its i∗ and (i + 1)∗ elements (which
we often refer to as the i/(i + 1)-subword).

Definition 2.4. A word w is ballot if, for every i, the i/(i + 1)-walk of w ends at a point
on the x axis.

Example 2.5. Suppose w = 212′231′3′1′121′11. Then its 1/2-subword is 212′21′1′121′11,
whose walk is shown below at left. Its 2/3-subword is 22′233′2, whose walk is shown
below at right. Both walks end on the x-axis, so the word w is ballot.
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Figure 6. At left, the directions assigned to the letters 1′, 1, 2′, 2 in the lattice walk
of a word, depending on whether or not the step starts on an axis. At right, the
walk for w = 211′12′22′1′1′.

Definition 2.10. Let w be a word in the alphabet {1′, 1, 2′, 2}. The 1/2-walk of the word w is a
lattice walk in the first quadrant using one of the four unit steps

−→ = (1, 0) ←− = (−1, 0)
x = (0, 1)

y = (0,−1) .

for each letter of the word as we read from left to right. The walk starts at the origin (0, 0), and at
the i-th step we read wi and draw the next step of the walk according to Figure 6, with two cases
based on whether or not the step starts on one of the x or y axes. In particular, any 2 is an up
arrow, any 1′ is a right arrow, a 1 is either right if on an axis or down if not, and a 2′ is either up
if on an axis or left if not. We will generally write the label each step of the walk by the letter wi,
so as to represent both the word and its walk on the same diagram.

If w is a word in the alphabet {i′, i, (i+1)′, i+1} for any i, we similarly define the i/(i+1)-walk
of w by replacing 1∗ with i∗ and 2∗ with (i + 1)∗ in the above definition. We can then define the
i/(i+ 1)-walk of any word in the doubled alphabet as follows.

Definition 2.11. If w is a word in the alphabet {1′, 1, 2′, 2, 3′, 3, . . .}, the i/(i + 1)-walk of w is
the i/(i+ 1)-walk of the subword of w formed by its i∗ and (i+ 1)∗ elements (which we often refer
to as the i/(i+ 1)-subword).

Definition 2.12. A word w is ballot if, for every i, the i/(i+ 1)-walk of w ends at a point on the
x axis.

This notion of ballotness is a analog of the “Yamanouchi” condition for ordinary Littlewood-
Richardson coefficients.

Example 2.13. Suppose w = 212′231′3′1′121′11. Then its 1/2-subword is 212′21′1′121′11, whose
walk is shown below at left. Its 2/3-subword is 22′233′2, whose walk is shown below at right. Both
walks end on the x-axis, so the word w is ballot.
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We now need to recall the definition of a tableau in canonical form.

Definition 2.14. A skew shifted semistandard Young tableau is in canonical form if the first i∗

in reading order is unprimed for every i.

We now need to recall the definition of a tableau in canonical form.

Definition 2.6. A skew shifted semistandard Young tableau is in canonical form if the
first i∗ in reading order is unprimed for every i.
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Note that if T is semistandard, its first i∗ in reading order may be changed to being
primed or unprimed and always still yield another semistandard tableau. Thus, the
canonical form is simply enforcing this choice to be unprimed. The shifted jeu de taquin
process [20, 26] is only well-defined for skew tableaux in canonical form, which is why
it appears in the shifted Littlewood–Richardson rule.

Definition 2.7. A skew shifted Young tableau T is a shifted ballot tableau if it is semis-
tandard, in canonical form, and its reading word is ballot.

Shifted ballot tableaux are also referred to as shifted Littlewood–Richardson tableaux,
because they enumerate the shifted Littlewood–Richardson coefficients. We may now
state the shifted Littlewood–Richardson rule.

Theorem 2.8 ([6, Theorem 1.5]). The shifted Littlewood–Richardson coefficient f λ
µν is equal to

the number of shifted ballot tableaux of shape λ/µ and content ν.

3 Distinctness for frayed ribbon shapes

We now turn our attention to Theorem 1.8. We begin by proving the first statement of
Theorem 1.8, below in Proposition 3.2.

Lemma 3.1. The top row of any shifted ballot tableau has only 1∗ entries, and in fact has at most
one 1′.

Proof. By the ballot condition on the 1/2-walk, the last 1∗ or 2∗ in the word must be a 1∗,
since no 2∗ arrow can ever end on the x axis. Similarly the last 2∗ in any ballot reading
word comes after the last 3∗, and so on, meaning that the last letter in reading order is
1∗. Thus, by the semistandard condition, the entire top row consists of 1∗ entries, with
at most one 1′ at the start of the row.

We define an outer turn to be a square with adjacent squares to the left and above,
and an inner turn to be a square with adjacent squares the right and below, with neither
adjacent square on the staircase.

Proposition 3.2. Suppose D is a frayed ribbon shape of size n with k turns. Then the coefficient
of Q(n−2,2) in the expansion of QD is 2k.

Proof. We assume without loss of generality, using the antipodal map, that the second-
to-bottom row of D has more than two squares. First, note that in a shifted ballot
tableau of shape D with content (n− 2, 2), the entry in the bottom row must be a 2 by
semistandardness and the canonical form condition. Moreover, the other 2∗ must be in
the corner of one of the outer turns by semistandardness and by Lemma 3.1.
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1′ 1

1′

1′ 1 2′

1 1 1

2

1′ 1 1

1′ 1

1

1′ 1 2

1 1 1

2

Figure 4: At left, a shifted ballot tableau of a frayed ribbon with three outer turns and
two inner turns, that is, t0 = 3 and t1 = 2 in the notation of the proof of Proposition
3.2. At right, a shifted ballot tableau of a frayed ribbon with t0 = t1 = 3.

Now, if t0 is the number of outer turns and t1 is the number of inner turns, we have
t0 + t1 = k and either t0 = t1 (if the topmost turn is an inner turn) or t0 = t1 + 1 (if the
topmost turn is an outer turn). See Figure 4 for each such case.

For each outer turn of D, there are exactly four semistandard fillings containing a 2∗

in the corner of that turn; in particular, the 2∗ may be either 2 or 2′, and the square above
it may be either 1 or 1′. We now check which of these have ballot reading words. The
reading word is

211(1∗ · · · 1∗)2∗1∗(1∗ · · · 1∗)
where the strings (1∗ · · · 1∗) in parentheses have a mix of primed and unprimed 1 entries
that are uniquely determined by the shape of D. Just before the second 2∗, the walk is
on the x axis, and the 2∗ is an up-step. So the walk returns to the x-axis if and only if an
unprimed 1 appears after the 2∗, as shown in the walk below (which corresponds to the
tableau at left in Figure 4).
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2

1

1

1 1′ 1

2′
1′ 1′

1

1′

This is guaranteed to happen by semistandardness if there is an inner turn after the outer turn
containing 2∗, but if not, then the only way it is guaranteed is if the 1∗ just following the 2∗ is
unprimed (since all other 1∗s in the final column must be primed by semistandardness).

Thus, if t0 = t1 then we have an inner turn after all outer turns, and so each of the t0 outer
corners contributes four ballot tableaux. So the coefficient is

4t0 = 2(t0 + t1) = 2k.

If instead t0 = t1 + 1, then the t0 − 1 lowest outer corners contribute four ballot tableaux, but the
topmost outer corner contributes only two since the 1∗ above it must be unprimed. Thus we have
a coefficient of

4(t0 − 1) + 2 = 2t0 + 2t0 − 2 = 2t0 + 2(t1 + 1)− 2 = 2(t0 + t1) = 2k.

Therefore, in all cases, the coefficient is 2k as desired. �

As a corollary we obtain the first statement of Theorem 1.6.

Corollary 4.4. Let D and E be frayed ribbon shapes for which QD = QE. Then D and E have
the same number of turns.

4.2. Frayed ribbons with one turn. We now focus on the second statement of Theorem 1.6.
Note that there are only two frayed ribbon shapes with no turns – the straight shifted shape
(n− 1, 1) and its antipodal reflection – so the statement holds when there are no turns.

We therefore consider the case of one turn. We begin by proving several lemmas about the
structure of all ballot tableaux of one-turn shapes. Throughout this entire section we let T be a
ballot tableau of a frayed ribbon shape with one turn. Since we are considering antipodal pairs, we
also assume without loss of generality that the shape of T ’s frayed ribbon goes “to the right and
then up” from the frayed part, that is, its second-to-bottom row has more than two squares.

Lemma 4.5. In T , let k∗ be the largest entry of the rightmost column. Then for all 1 ≤ i < k, at
least one i∗ appears in the column, including exactly one unprimed i.

Proof. First, since T is semistandard, the entries of the column are weakly increasing from top to
bottom. In particular, the k∗ entries in this column form a consecutive string of the reading word,
then the (k − 1)∗ entries are consecutive after them, and so on.

Since T is ballot, the (k−1)/k-walk returns to the x-axis. Just after reading the string of k∗’s in
the column, the lattice walk cannot be on the x-axis (since it never can be after a k∗ step), and the
only arrow that can move the walk downwards is an unprimed k − 1. Thus there is an unprimed
k − 1 in the column. This holds for all pairs i− 1 and i for 1 < i ≤ k, so the column must contain
nonempty strings of each i for 1 ≤ i ≤ k, with an unprimed entry guaranteed for 1 ≤ i < k. Since
T is semistandard, there is at most one unprimed i in the column for each i as well (with all the i′

entries occurring above it). �

Lemma 4.6. In T , the long row has entries 1, . . . , 1, k∗ for some k.

This is guaranteed to happen by semistandardness if there is an inner turn after the outer
turn which contains the 2∗, but if not, then the only way it is guaranteed is if the 1∗ just
following the 2∗ is unprimed.

If t0 = t1, we have an inner turn after all outer turns, so each of the t0 outer corners
contributes four shifted ballot tableaux, and the coefficient is 4t0 = 2(t0 + t1) = 2k.
If instead t0 = t1 + 1, then the t0 − 1 lowest outer corners contribute four shifted ballot
tableaux, but the topmost outer corner contributes only two since the 1∗ above it must be
unprimed. Thus we have a coefficient of 4(t0− 1)+ 2 = 2t0 + 2(t1 + 1)− 2 = 2(t0 + t1) =
2k. Therefore, in all cases, the coefficient is 2k as desired.
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Figure 5: The forms that any shifted ballot tableau of a frayed ribbon with one turn
must take, where if k is the number of 2∗ entries in the long column and j is the number
of 1 entries in the long row, we have k < j.

As a corollary we obtain the first statement of Theorem 1.8.

Corollary 3.3. Let D and E be frayed ribbon shapes for which QD = QE. Then D and E have
the same number of turns.

3.1 Frayed ribbons with one turn

We now focus on the second statement of Theorem 1.8. Note that there are only two
frayed ribbon shapes with no turns — the straight shifted shape (n − 1, 1) and its an-
tipodal reflection — so the statement holds when there are no turns.

We therefore consider the case of one turn. Since we are considering antipodal pairs,
we also assume without loss of generality that the shape of T’s frayed ribbon goes “to the
right and then up” from the frayed part, that is, its second-to-bottom row has more than
two squares. For full proofs, see [7]; as a short summary, one can show the following by
analyzing lattice walks.

Proposition 3.4. A shifted Young tableau T that is a frayed ribbon shape with one (outer) turn
is a shifted ballot tableau if and only if it is of one of the two forms shown in Figure 5.

Proposition 3.4 leads to the following explicit Schur Q-function expansion for one
turn frayed ribbons.

Corollary 3.5. Let D be a frayed ribbon with one turn of size n and final column height h + 1.
Then

QD = Q(n−1,1) + 2
m1(h)

∑
i=2

Q(n−i,i) +
m2(h)

∑
i=2

Q(n−i,i,1)
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where m1(h) = min(h + 1, n− h− 2) and m2(h) = min(h, n− h− 2).

Theorem 3.6. Suppose D and E are frayed ribbons with one turn of size n, where D has column
height h and E has column height ℓ for h ̸= ℓ. Then QD ̸= QE.

Proof. Suppose QD = QE. Then by Corollary 3.5, we must have m1(h) = m1(ℓ) and
m2(h) = m2(ℓ). The former equation states that min(h + 1, n− h− 2) = min(ℓ+ 1, n−
ℓ − 2). Since h ̸= ℓ, it follows that either h + 1 = n − ℓ − 2 or n − h − 2 = ℓ + 1,
which are in fact equivalent statements, and so they both hold. From m2(h) = m2(ℓ),
we have min(h, n− h− 2) = min(ℓ, n− ℓ− 2), and so by the same reasoning we have
h = n− ℓ− 2, which contradicts our equality above. Hence QD ̸= QE.

3.2 Frayed ribbons with two turns

For the third statement of Theorem 1.8, we use similar methods to the cases above to
analyze the coefficients. In particular, when D = λ/µ is a frayed ribbon with two turns
and no squares between the turns, we show that the pair of coefficients f λ

µ,(n−k,k) and

f λ
µ,(n−k−1,k,1) distinguish the Schur Q-functions QD.

Similarly, when D = λ/µ is a frayed ribbon with two turns and one square between
the turns, we show that the pair of coefficients f λ

µ,(n−k,k) and f λ
µ,(n−k−2,k,2) distinguish the

Schur Q-functions QD. See [7] for details.

4 Further Observations

We conclude here with three examples pertaining to natural generalizations of Conjec-
ture 1.7 and Theorem 1.8. The examples in this section were found using SageMath [24].

Example 4.1. It is natural to ask whether the “frayed” aspect of frayed ribbons is in fact
enough to distinguish any Schur Q-functions that are not antipodal. More specifically,
perhaps any two distinct non-antipodal connected skew shifted shapes having at least
two boxes on the staircase diagonal (but are not necessarily frayed ribbons) have distinct
Schur Q-functions. In fact, this is not the case - the shifted shapes (6, 5, 4, 2, 1)/(5, 4, 1)
and (6, 5, 2, 1)/(5, 1) are a non-antipodal pair of shapes with at least two boxes on the
staircase whose Schur Q-functions are equal:

Q(6,5,4,2,1)/(5,4,1) = Q(6,5,2,1)/(5,1) = Q(6,2) + 2Q(5,3) + 2Q(5,2,1) + 2Q(4,3,1).

Example 4.2. The Schur Q-functions of frayed ribbons are not necessarily distinct from
those of other near-ribbons that are not frayed. Indeed, we have

Q(4,3,1)/(3) = Q(4,3)/(2) = Q(4,1) + Q(3,2),

and (4, 3, 1)/(3) and (4, 3)/(2) are a frayed ribbon and near-ribbon respectively.
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Example 4.3. There exist pairs of near-ribbons that are both not frayed in which equality
holds, and their Schur Q-functions are not trivially equal by being antipodal, transposed,
or antipodal transposed shapes. As an example, we have

Q(7,6,5,3)/(6,5,2) = Q(7,6,5,1)/(6,4,1) = 3Q(4,3,1) + 3Q(5,2,1) + 5Q(5,3) + 4Q(6,2) + Q(7,1),

and the shapes (7, 6, 5, 3)/(6, 5, 2) and (7, 6, 5, 1)/(6, 4, 1) are non-frayed near-ribbons
that are not trivially equivalent.
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