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Figure 6. At left, the directions assigned to the letters 1′, 1, 2′, 2 in the lattice walk
of a word, depending on whether or not the step starts on an axis. At right, the
walk for w = 211′12′22′1′1′.

Definition 2.10. Let w be a word in the alphabet {1′, 1, 2′, 2}. The 1/2-walk of the word w is a
lattice walk in the first quadrant using one of the four unit steps

−→ = (1, 0) ←− = (−1, 0)
x = (0, 1)

y = (0,−1) .

for each letter of the word as we read from left to right. The walk starts at the origin (0, 0), and at
the i-th step we read wi and draw the next step of the walk according to Figure 6, with two cases
based on whether or not the step starts on one of the x or y axes. In particular, any 2 is an up
arrow, any 1′ is a right arrow, a 1 is either right if on an axis or down if not, and a 2′ is either up
if on an axis or left if not. We will generally write the label each step of the walk by the letter wi,
so as to represent both the word and its walk on the same diagram.

If w is a word in the alphabet {i′, i, (i+1)′, i+1} for any i, we similarly define the i/(i+1)-walk
of w by replacing 1∗ with i∗ and 2∗ with (i + 1)∗ in the above definition. We can then define the
i/(i+ 1)-walk of any word in the doubled alphabet as follows.

Definition 2.11. If w is a word in the alphabet {1′, 1, 2′, 2, 3′, 3, . . .}, the i/(i + 1)-walk of w is
the i/(i+ 1)-walk of the subword of w formed by its i∗ and (i+ 1)∗ elements (which we often refer
to as the i/(i+ 1)-subword).

Definition 2.12. A word w is ballot if, for every i, the i/(i+ 1)-walk of w ends at a point on the
x axis.

This notion of ballotness is a analog of the “Yamanouchi” condition for ordinary Littlewood-
Richardson coefficients.

Example 2.13. Suppose w = 212′231′3′1′121′11. Then its 1/2-subword is 212′21′1′121′11, whose
walk is shown below at left. Its 2/3-subword is 22′233′2, whose walk is shown below at right. Both
walks end on the x-axis, so the word w is ballot.
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We now need to recall the definition of a tableau in canonical form.

Definition 2.14. A skew shifted semistandard Young tableau is in canonical form if the first i∗

in reading order is unprimed for every i.
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This is guaranteed to happen by semistandardness if there is an inner turn after the outer turn
containing 2∗, but if not, then the only way it is guaranteed is if the 1∗ just following the 2∗ is
unprimed (since all other 1∗s in the final column must be primed by semistandardness).

Thus, if t0 = t1 then we have an inner turn after all outer turns, and so each of the t0 outer
corners contributes four ballot tableaux. So the coefficient is

4t0 = 2(t0 + t1) = 2k.

If instead t0 = t1 + 1, then the t0 − 1 lowest outer corners contribute four ballot tableaux, but the
topmost outer corner contributes only two since the 1∗ above it must be unprimed. Thus we have
a coefficient of

4(t0 − 1) + 2 = 2t0 + 2t0 − 2 = 2t0 + 2(t1 + 1)− 2 = 2(t0 + t1) = 2k.

Therefore, in all cases, the coefficient is 2k as desired. �

As a corollary we obtain the first statement of Theorem 1.6.

Corollary 4.4. Let D and E be frayed ribbon shapes for which QD = QE. Then D and E have
the same number of turns.

4.2. Frayed ribbons with one turn. We now focus on the second statement of Theorem 1.6.
Note that there are only two frayed ribbon shapes with no turns – the straight shifted shape
(n− 1, 1) and its antipodal reflection – so the statement holds when there are no turns.

We therefore consider the case of one turn. We begin by proving several lemmas about the
structure of all ballot tableaux of one-turn shapes. Throughout this entire section we let T be a
ballot tableau of a frayed ribbon shape with one turn. Since we are considering antipodal pairs, we
also assume without loss of generality that the shape of T ’s frayed ribbon goes “to the right and
then up” from the frayed part, that is, its second-to-bottom row has more than two squares.

Lemma 4.5. In T , let k∗ be the largest entry of the rightmost column. Then for all 1 ≤ i < k, at
least one i∗ appears in the column, including exactly one unprimed i.

Proof. First, since T is semistandard, the entries of the column are weakly increasing from top to
bottom. In particular, the k∗ entries in this column form a consecutive string of the reading word,
then the (k − 1)∗ entries are consecutive after them, and so on.

Since T is ballot, the (k−1)/k-walk returns to the x-axis. Just after reading the string of k∗’s in
the column, the lattice walk cannot be on the x-axis (since it never can be after a k∗ step), and the
only arrow that can move the walk downwards is an unprimed k − 1. Thus there is an unprimed
k − 1 in the column. This holds for all pairs i− 1 and i for 1 < i ≤ k, so the column must contain
nonempty strings of each i for 1 ≤ i ≤ k, with an unprimed entry guaranteed for 1 ≤ i < k. Since
T is semistandard, there is at most one unprimed i in the column for each i as well (with all the i′

entries occurring above it). �

Lemma 4.6. In T , the long row has entries 1, . . . , 1, k∗ for some k.


