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Abstract. The hypersimplex ∆k+1,n is the image of the positive Grassmannian Gr≥0
k+1,n

under the moment map. It is a polytope of dimension n− 1 in Rn. Meanwhile, the am-
plituhedron AZ

n,k,2 is the image of Gr≥0
k,n under an amplituhedron map Z̃ induced by a

positive matrix Z. Introduced in the context of scattering amplitudes, it is not a polytope,
and is a full dimensional subset of Grk,k+2. Nevertheless, there seem to be remarkable
connections between these two objects, as conjectured by Lukowski–Parisi–Williams
(LPW). We use ideas from oriented matroid theory, total positivity, and the geometry
of the hypersimplex and positroid polytopes to obtain a deeper understanding of the
amplituhedron. We show that the inequalities cutting out positroid polytopes — moment
map images of positroid cells — translate into sign conditions cutting out Grasstopes
— amplituhedron map images of positroid cells. Moreover, we subdivide the ampli-
tuhedron into chambers, just as the hypersimplex can be subdivided into simplices —
with both chambers and simplices enumerated by the Eulerian numbers. We use these
properties to prove the main conjecture of (LPW): a collection of positroid polytopes is
a tiling of the hypersimplex if and only if the collection of T-dual Grasstopes is a tiling
of the amplituhedron AZ

n,k,2 for all Z. We also prove Arkani-Hamed–Thomas–Trnka’s
conjectural sign-flip characterization of AZ

n,k,2.

Keywords: oriented matroid, Eulerian number, amplituhedron, matroid polytope,
positroid, hypersimplex

1 Introduction

The positive Grassmannian1 Gr≥0
k,n is the subset of the real Grassmannian Grk,n where all

Plücker coordinates are nonnegative [17, 19, 21]. This is a remarkable space with connec-
tions to cluster algebras, integrable systems, and high energy physics [1, 6, 11, 22], and
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it has a beautiful CW decomposition into positroid cells Sπ, which are indexed by various
combinatorial objects including decorated permutations π [19].

There are several interesting maps which one can apply to the positive Grassmannian
Gr≥0

k,n and its cells. The first map is the moment map µ, initially studied by Gelfand–
Goresky–MacPherson–Serganova [7] in the context of the Grassmannian and its torus
orbits, who showed that the image of the Grassmannian is the hypersimplex ∆k,n ⊂ Rn,
a polytope of dimension n − 1. When one restricts µ to Gr≥0

k,n, the image is still the
hypersimplex [29].

The second map is the amplituhedron map, introduced by Arkani-Hamed and Trnka [3]
in the context of scattering amplitudes in N = 4 SYM. In particular, any n × (k + m)
matrix Z with maximal minors positive induces a map Z̃ from Gr≥0

k,n to the Grassmannian
Grk,k+m, whose image has full dimension mk and is called the amplituhedron AZ

n,k,m.
Given a surjective map ϕ : Gr≥0

k,n → X, it is natural to try to decompose X using
images of positroid cells under ϕ. This leads to the following definition.2

Definition 1.1. Let ϕ : Gr≥0
k,n → X be a continuous surjective map onto a cell complex

or subset thereof, where dim X = d. A positroid tile ϕ(Sπ) is (the closure of) the image
of a d-dimensional positroid cell Sπ on which ϕ is injective. A positroid tiling of X (with
respect to ϕ) is a collection {ϕ(Sπ)} of positroid tiles such that pairs of distinct images
ϕ(Sπ) and ϕ(Sπ′) are disjoint and ∪ϕ(Sπ) = X.

When ϕ is the moment map, the (closures of) the images of the positroid cells Sπ are
the positroid polytopes Γπ [29], so a positroid tiling of the hypersimplex is a decomposition
into positroid polytopes. When ϕ is the amplituhedron map Z̃, the (closures of) the
images of the positroid cells Sπ are Grasstopes Zπ, which were first studied in [3] as the
building blocks of conjectural positroid tilings of the amplituhedron. Note that neither
the amplituhedron nor the Grasstopes are polytopes.

At first glance, the (n − 1)-dimensional hypersimplex ∆k+1,n ⊂ Rn does not seem
to have any relation to the 2k-dimensional amplituhedron AZ

n,k,2 ⊂ Grk,k+2. Neverthe-
less, [16] showed that there are surprising parallels between them. In particular, [16]
showed that T-duality gives a bijection between loopless cells Sπ of Gr≥0

k+1,n and coloop-
less cells Sπ̂ of Gr≥0

k,n, and conjectured that T-duality gives a bijection between positroid
tilings of the hypersimplex ∆k+1,n and positroid tilings of the amplituhedron AZ

n,k,2. They
verified this conjecture for the recursively-defined tilings of the amplituhedron found
by [5].

Here, we use twistor coordinates and the geometry of the hypersimplex and positroid
polytopes to obtain a deeper understanding of the amplituhedron. We prove the conjec-
ture of Lukowski–Parisi–Spradlin–Volovich [15] classifying the positroid tiles of AZ

n,k,2.

2There are many reasonable variations of this definition. One might want to relax the injectivity as-
sumption, or to impose further restrictions on how boundaries of the images of cells should overlap.
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We then give a new characterization of positroid tiles as regions where certain twistor co-
ordinates have specified sign. We use this result to prove a conjecture of Arkani-Hamed–
Thomas–Trnka [2]: AZ

n,k,2 can be characterized using sign flips of twistor coordinates.
Additionally, we draw striking parallels between ∆k+1,n and AZ

n,k,2. We show that
positroid tiles for ∆k+1,n and AZ

n,k,2 are in bijection and establish a close connection
between the inequalities cutting out corresponding positroid tiles. Further, we subdi-
vide the amplituhedron into sign chambers according to the signs of twistor coordinates.
We prove that the realizable chambers are exactly enumerated by the Eulerian numbers
Ek,n−1, so the chamber decomposition of the amplituhedron is analogous to the subdivi-
sion of the hypersimplex into simplices enumerated by Ek,n−1. We then prove the main
conjecture of [16]: a collection of positroid polytopes is a positroid tiling of ∆k+1,n if and
only if the collection of T-dual Grasstopes is a positroid tiling of AZ

n,k,2 for all Z.

2 Background

2.1 The Grassmannian and positive Grassmannian

Fix integers 0 < k ≤ n, let [n] denote {1, . . . , n}, and ([n]k ) the set of all k-element subsets
of [n]. The (real) Grassmannian Grk,n is the space of all k-dimensional subspaces of Rn.
An element of Grk,n can be viewed as a full rank k × n matrix, modulo left multiplication
by invertible k× k matrices. We often abuse notation and identify a full-rank matrix with
its rowspan. We embed Grk,n into P(∧kRn) via the Plücker embedding: the subspace
V represented by matrix C with rows C1, . . . , Ck is mapped to the line spanned by C1 ∧
· · · ∧ Ck. We also frequently abuse notation and identify a vector with its span. The
Plücker coordinates of V, denoted pI(V) for I ∈ ([n]k ), are the homogeneous coordinates of
C1 ∧ · · · ∧ Ck in P(∧kRn), using the standard basis on Rn and ∧kRn. Alternately, pI(V)
is the maximal minor of C using column set I.

We will also use the notation ⟨C1, . . . , Ck⟩ for C1 ∧ · · · ∧ Ck.

Definition 2.1 ([19, Section 3]). We say that V ∈ Grk,n is totally nonnegative (resp. totally
positive) if it has a representative C so that pI(C) ≥ 0 (resp. pI(C) > 0) for all I ∈ ([n]k ). In
an abuse of notation, we identify V ∈ Gr≥0

k,n with its totally nonnegative representative C.
The set of all totally nonnegative V ∈ Grk,n is the totally nonnegative Grassmannian Gr≥0

k,n.

For M ⊆ ([n]k ), the positroid cell SM is the set of C ∈ Gr≥0
k,n such that pI(C) > 0 if and only

if I ∈ M. We call M a positroid if SM is nonempty.

Remark 2.2. Lusztig [17] earlier defined the positive and totally nonnegative part of a flag
variety G/P, which Rietsch showed had a cell decomposition [21]. The two definitions,
and the two cell complexes, agree [20, 28].
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There are many ways to index the positroid cells of Gr≥0
k,n [19], including decorated

permutations π and plabic graphs G. Accordingly, we also use the notation Sπ and SG.

Definition 2.3. Let M be a positroid and choose C ∈ SM. The decorated permutation π of
M is defined by πi := j, where j is the label of the first column cj of C such that ci lies
in the span of ci+1, ci+2, . . . , cj (where indices are modulo n). If πi = i, then i is a loop if
ci is the zero vector and is a coloop otherwise.

Definition 2.4. Let G be a plabic graph, i.e. a planar bipartite graph embedded in a disk,
with black vertices 1, 2, . . . , n on the boundary of the disk. An almost perfect matching M of
G is a collection of edges which covers each internal vertex of G exactly once. The bound-
ary of M, denoted ∂M, is the set of boundary vertices covered by M. The positroid asso-
ciated to G is the collection M = M(G) := {∂M : M an almost perfect matching of G}.

See Figure 1 for examples of plabic graphs. We will always assume that plabic graphs
are reduced [19, Definition 12.5], a technical condition meaning roughly that among all
plabic graphs with the same positroid, we consider only those with the fewest possible
faces.

2.2 The amplituhedron

In this section we discuss the (tree) amplituhedron, which was introduced by Arkani-
Hamed and Trnka [3]. In what follows, we fix positive integers k, m, n with k + m ≤ n.
We let Mat>0

n,p denote the set of n × p matrices whose maximal minors are positive.

Definition 2.5. Let Z ∈ Mat>0
n,k+m. Then Z induces a map Z̃ : Gr≥0

k,n → Grk,k+m which
maps C 7→ CZ. The (tree) amplituhedron AZ

n,k,m is the image Z̃(Gr≥0
k,n) inside Grk,k+m.

The fact that Z has positive maximal minors ensures that Z̃ is well defined [3]. The
amplituhedron AZ

n,k,m has full dimension km inside Grk,k+m. In special cases the ampli-
tuhedron recovers familiar objects: AZ

k+m,k,m is isomorphic to Gr≥0
k,n, as in this case Z is

a square matrix; AZ
n,1,m is a cyclic polytope in projective space Pm [26]; and AZ

n,k,1 can be
identified with the complex of bounded faces of a cyclic hyperplane arrangement [9].

We will consider the restriction of the Z̃-map to positroid cells in Gr≥0
k,n. Recall the

definition of positroid tile3 from Definition 1.1, with ϕ taken to be the Z̃ map.

Definition 2.6. Let Z ∈ Mat>0
n,k+m. Given a positroid cell Sπ of Gr≥0

k,n, we define the open
Grasstope Z◦

π := Z̃(Sπ) and the Grasstope4 Zπ := Z̃(Sπ).

3In the literature, e.g. [15], these are sometimes called “generalized triangles”.
4This is short for “Grassmann polytope”, language introduced in [12].
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By [12, Proposition 15.2], Z̃(Sπ) = Z̃(Sπ), so the Grasstope Zπ is the closure of the
open Grasstope Z◦

π. If k = 1 and m = 2, the amplituhedron AZ
n,1,2 is a convex n-gon in

P2. Its positroid tiles are exactly the triangles using 3 vertices of the polygon.
Images of positroid cells under the map Z̃ have been studied since [3], which conjec-

tured that the images of certain BCFW collections of 4k-dimensional cells in Gr≥0
k,n give a

positroid tiling of the amplituhedron AZ
n,k,4.

Remark 2.7. It is believed that many combinatorial properties of AZ
n,k,m are independent

of Z, for example, whether or not Zπ is a positroid tile. We will see that this is true in
Theorem 3.1 for m = 2. It is also believed that the collections of positroids {M} indexing
a positroid tiling of AZ

n,k,m should be independent of Z.

2.2.1 Twistor coordinates and the sign stratification of AZ
n,k,m

Our results on AZ
n,k,2 will use functions on Grk,k+2 called twistor coordinates [2, 3].

Definition 2.8. Choose Z ∈ Mat>0
n,k+m and denote its rows by Z1, . . . , Zn ∈ Rk+m. Given

a matrix Y with rows Y1, . . . , Yk representing an element of Grk,k+m, and i1, . . . , im a
sequence of elements of [n], the twistor coordinate is defined to be

⟨Yi1i2 · · · im⟩ := ⟨Y1, . . . , Yk, Zi1 , . . . , Zim⟩,

the determinant of the (k + m)× (k + m) matrix with rows Y1, . . . , Yk, Zi1 , . . . , Zim .

Note that the twistor coordinates of Y ∈ Grk,k+m are defined only up to a common
scalar multiple. It follows from [9, Lemma 3.10, Proposition 3.12] that an element of
Grk,k+m is uniquely determined by its twistor coordinates. In fact, [9] shows that Grk,k+m
can be embedded into Grm,n so that the twistor coordinate ⟨Yi1 · · · im⟩ is the pullback of
the Plücker coordinate pi1,...,im in Gr m, n.

Since Y ∈ Grk,k+m is uniquely determined by its twistor coordinates, we can stratify
AZ

n,k,m ⊂ Grk,k+m by the signs of the twistor coordinates. This was done in [9] when m =
1. Moreover, this sign stratification is closely related to the oriented matroid stratification
of the Grassmannian Grm,n using the embedding Grk,k+m ↪→ Grm,n mentioned above.

Definition 2.9 (Amplituhedron chambers). Fix positive k < n and m such that k+m ≤ n.
Let σ = (σi1,...,im) ∈ {0,+,−}(n

m) be a nonzero sign vector, considered5 modulo multipli-
cation by ±1. Set

AZ,σ
n,k,m := {Y ∈ AZ

n,k,m | sign⟨Yi1 · · · im⟩ = σi1,...,im}.

5Plücker and twistor coordinates are defined only up to multiplication by a common scalar.
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We call AZ,σ
n,k,m an (amplituhedron) sign stratum. Clearly

AZ
n,k,m =

⊔
σ

AZ,σ
n,k,m.

If σ ∈ {+,−}(n
m), we call AZ,σ

n,k,m an open (amplituhedron) chamber.6

For m = 1, all strata are nonempty [9, Definition 5.2], but this is not true for m > 1.
Moreover, whether or not Aσ

n,k,m(Z) is empty depends on Z.

Definition 2.10. We say that a sign vector σ (or sign stratum Aσ
n,k,m) is realizable for Aσ

n,k,m

if AZ,σ
n,k,m is nonempty for some Z ∈ Mat>0

n,k+m.

Previous work on the m = 2 amplituhedron. The original amplituhedron paper [3] gave
a conjectural positroid tiling of AZ

n,k,2. A BCFW-style recursion for producing tilings of
AZ

n,k,2 was conjectured in [10] and proved in [5]. A conjectural classification of m = 2
positroid tiles was given in [15]. A conjectural description of the boundaries of the m = 2
amplituhedron was given in [14]. In another direction, [2] gave a conjectural description
of AZ

n,k,2 in terms of sign flips; [2] and independently [10] proved one direction.

2.3 The hypersimplex and positroid polytopes

In this section, we review the necessary background material on positroid polytopes.
Throughout, for x ∈ Rn and I ⊂ [n], we use the notation xI := ∑i∈I xi.

Definition 2.11. Let eI := ∑i∈I ei ∈ Rn, where {e1, . . . , en} is the standard basis of Rn.
The (k + 1, n)-hypersimplex is ∆k+1,n := convex(eI : I ∈ ([n]k )).

The torus T = Rn \ {0} acts on k × n matrices by rescaling columns. This descends to
an (n − 1)-dimensional torus action on Gr(k, n). We let TA denote the orbit of A under
the action of T, and TA its closure.

The moment map from the Grassmannian Grk+1,n to Rn is defined as follows.

Definition 2.12 (The moment map). Let A be a (k + 1)× n matrix representing a point
of Grk+1,n. The moment map µ : Grk+1,n → Rn is defined by

µ(A) =
∑I∈( [n]

k+1)
|pI(A)|2eI

∑I∈( [n]
k+1)

|pI(A)|2 .

6We borrow the word “chamber” from the theory of hyperplane arrangements.
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It is well-known that the image of the Grassmannian Grk+1,n under the moment map
is the hypersimplex ∆k+1,n. If one restricts the moment map to Gr≥0

k+1,n then the image is
again the hypersimplex ∆k+1,n [29, Proposition 7.10].

In general, it follows from classical work of Atiyah [4] and Guillemin–Sternberg [8]
that the image µ(TA) is a convex polytope, whose vertices are the images of the torus-
fixed points, i.e. the vertices are the points eI such that pI(A) ̸= 0. This motivates the
notion of matroid polytope. Recall that any full rank (k + 1)× n matrix A gives rise to a
matroid M(A) = ([n],B), where B = {I ∈ ( [n]

k+1) | pI(A) ̸= 0}.

Definition 2.13. Given a matroid M = ([n],B), the (basis) matroid polytope of M is
ΓM := convex{eB : B ∈ B} ⊂ Rn.

Here, we are interested in positroid polytopes, that is, matroid polytopes ΓM where M
is a positroid. They arise as µ(TA) where A is a totally nonnegative matrix. Of more
interest to us, they are also moment map images of positroid cells.

Proposition 2.14 ([29]). Let M be a positroid. Then ΓM = µ(SM) = µ(SM).

The interior Γ◦
M of a positroid polytope is the moment map image of SM; we call

Γ◦
M the open positroid polytope. As in the amplituhedron case, we will focus on those

positroid polytopes which are positroid tiles (i.e. (n− 1)-dimensional positroid polytopes
ΓM where µ is injective on SM).

Theorem 2.15 ([16]). A positroid polytope ΓG is a tile for ∆k+1,n if and only if G is a tree.

2.4 T-duality

In [16], a curious parallel was conjectured between positroid tilings of AZ
n,k,2 and ∆k+1,n

involving T-duality [10].

Definition 2.16 (T-duality). Let π = a1a2 · · · an be a loopless decorated permutation
(written in one-line notation). The T-dual decorated permutation is π̂ = ana1a2 · · · an−1,
where any fixed points in π̂ are declared to be loops.

T-duality induces a bijection from loopless positroid cells Sπ ∈ Gr≥0
k+1,n to coloopless

positroid cells Sπ̂ ∈ Gr≥0
k,n [16, Lemma 5.2]. It thus also induces a bijection between loop-

less positroid polytopes Γπ ∈ ∆k+1,n and coloopless Grasstopes Zπ̂ ∈ AZ
n,k,m; we say Γπ

and Zπ̂ are T-dual.

Conjecture 2.17. A positroid polytope Γπ is a positroid tile for ∆k+1,n if and only if the T-dual
Grasstope Zπ̂ is a tile for AZ

n,k,2. Further, a collection {Γπ} of positroid polytopes is a positroid
tiling of ∆k+1,n if and only if the collection {Zπ̂} of T-dual Grasstopes is a positroid tiling of
AZ

n,k,2 for all Z ∈ Mat>0
n,k+2.

We prove this conjecture in Theorem 3.1 and Theorem 3.10.
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3 Results

Our first main result is a characterization of the positroid tiles for AZ
n,k,2.7 A bicolored

subdivision of the n-gon Pn is a choice of noncrossing diagonals decomposing Pn into
subpolygons. Each subpolygon is colored grey or white so that no two subpolygons of
the same color share an edge; we view the middle diagram of Figure 1 as a decomposi-
tion of P9 into a grey quadrilateral, a grey pentagon, and two white triangles. The area
of a subdivision is the total number of grey triangles in any triangulation of the grey
subpolygons.

Theorem 3.1. Positroid tiles of ∆k+1,n and AZ
n,k,2 are in bijection with bicolored subdivisions of

Pn with area k. We read ΓG and ZĜ off of the same bicolored subdivision σ of the n-gon by first
choosing any triangulation τ of the grey polygons in σ. Then G := G(τ) is the dual plabic tree8

of σ and Ĝ := Ĝ(τ) is obtained by placing a “tripod” in each grey triangle (see Figure 1).
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Figure 1: A triangulation of a bicolored subdivision σ with area 5, with the dual graph
G(τ) to its left, and the T-dual graph Ĝ(τ) to its right.

Using Theorem 3.1, we can enumerate the positroid tiles.

Proposition 3.2. Positroid tiles of ∆k+1 and AZ
n,k,2 are in bijection with separable permutations

on [n − 1] with k descents. They are enumerated by Rk,n−2 from [23, A175124].

From a bicolored subdivision σ, we also obtain inequality descriptions of the corre-
sponding T-dual positroid tiles. Interestingly, the inequality descriptions use exactly
the same combinatorial information, the area statistic. Given two positive numbers
a, b ∈ [n], the cyclic interval [a, b] is defined to be {a, a + 1, . . . , b − 1, b} if a ≤ b and
{a, a + 1, . . . , n, 1, . . . , b} otherwise.

Theorem 3.3 (T-dual inequalities). Let σ, τ, G(τ), Ĝ(τ) be as in Theorem 3.1. Let h → j be
an arc in a grey triangle of τ, with h < j. Then

7The positroid tiles for ∆k+1,n were characterized in [16] using plabic trees.
8technically, one should insert degree 2 white vertices to get a bipartite tree
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1. area(h → j) + 1 > x[h,j−1] > area(h → j) for x ∈ Γ◦
G(τ),

2. (−1)area(h→j)⟨Yhj⟩ > 0 for Y ∈ Z◦
Ĝ(τ)

,

where area(h → j) is the number of grey triangles to the left of h → j. Letting h → j vary over
all arcs of grey triangles of τ, these inequalities cut out the positroid tiles Γ◦

G(τ) and Z◦
Ĝ(τ)

.

For example, for the triangulation in Figure 1, area(3 → 7) = 2, so the inequality
3 > x3 + x4 + x5 + x6 > 2 holds for x ∈ Γ◦

G(τ) and the inequality ⟨Y37⟩ > 0 holds for
Y ∈ ZĜ(τ). Theorem 3.3 can be extended to give a correspondence between facets of

T-dual positroid tiles lying in the interior of ∆k+1,n or AZ
n,k,2, which correspond to arcs of

σ separating grey and white subpolygons [18, Theorem 9.10].
Using Theorem 3.3, we also prove a description of AZ

n,k,2 conjectured by [2].

Theorem 3.4 (Sign-flip characterization of An,k,2). Fix k < n and Z ∈ Mat>0
n,k+2. Let

F ◦
n,k,2(Z) :={Y ∈ Grk,k+2 | ⟨Yi i + 1⟩ > 0 for 1 ≤ i ≤ n − 1, and (−1)k⟨Y1 n⟩ > 0,

and the sequence ⟨Y1 2⟩, ⟨Y1 3⟩, . . . , ⟨Y1 n⟩ has exactly k sign flips}.

Then AZ
n,k,2 = F ◦

n,k,2(Z).

We now turn to our results on tilings. In order to show the bijection between positroid
tilings of ∆k+1,n and AZ

n,k,2, we consider a refinement of all positroid tilings on both sides.
This decomposes ∆k+1,n and AZ

n,k,2 into pieces that are smaller than positroid tiles; we
will give a correspondence between these smaller pieces.

On the hypersimplex side, we consider a triangulation of ∆k+1,n [13, 24, 27], i.e. a
decomposition into simplices, which refines all positroid tilings. The maximal simplices
∆w of this triangulation are indexed by permutations w of [n] with k descents and wn = n.
Such permutations are enumerated by the Eulerian number Ek,n−1 [25]. We will describe
the simplices ∆w using the following permutation statistic.

Definition 3.5. Let w ∈ Sn. We call a letter i in w a cyclic descent9 if either i ≥ 2 and
w−1(i) < w−1(i − 1) or if i = 1 and w−1(1) < w−1(n). We let cDesL(w) denote the set
of cyclic descents of w and let Dk+1,n denote the set of permutations w ∈ Sn with k + 1
cyclic descents and wn = n. Note that |Dk+1,n| = Ek,n−1.

For w ∈ Dk+1,n, let w(a) denote the cyclic rotation of w ending at a. We define
Ir := cDesL(w(r−1)). The w-simplex ∆w ⊆ ∆k+1,n is the simplex with vertices eI1 , . . . , eIn .

Example 3.6. Let w = 324156 in one-line notation. Then w has cyclic descents {1, 2, 3} =
I1. The rotation of w ending at 1 is 563241, which has cyclic descents I2 = {2, 3, 5}. The
rotation of w ending at 2 is 415632, which has cyclic descents I3 = {1, 3, 4}.

9These are closely related to left descents of w, also called recoils in the literature.
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Now, we turn to the amplituhedron side. We will consider the decomposition of
AZ

n,k,2 into (closures of) amplituhedron chambers. This is a refinement of all positroid
tilings because the tiles for AZ

n,k,2 are cut out by hypersurfaces ⟨Yij⟩ = 0. We define one
amplituhedron chamber for each w ∈ Dk+1,n.

Definition 3.7 (w-chambers). Let w ∈ Dk+1,n and let the vertices of ∆w be eI1 , . . . , eIn , as
in Definition 3.5. Then the open w-chamber AZ,w

n,k,2 consists of Y ∈ Grk,k+2 such that

sgn⟨Yaj⟩ = (−1)|Ia∩[a,j−1]|−1 for j > a

sgn⟨Yaj⟩ = (−1)|Ia∩[a,j−1]|−k−1 for j < a.

The (closed) w-chamber is the closure ∆̂Z
w := AZ,w

n,k,2.

Continuing Example 3.6, ⟨Y13⟩ < 0 on ∆̂Z
w, since |{1, 2, 3} ∩ [1, 2]| − 1 is odd.

The w-chambers are a distinguished subset of the amplituhedron chambers. We show
that they are precisely the realizable chambers, in the sense of Definition 2.10.

Theorem 3.8. An amplituhedron chamber is realizable if and only if it is an open w-chamber.
In particular, the amplituhedron AZ

n,k,2 is the union of the w-chambers ∆̂Z
w, just as ∆k+1,n is the

union of the w-simplices ∆w.

Further, a w-simplex ∆w and the corresponding w-chamber ∆̂Z
w behave the same way

with respect to containment in positroid tiles.

Theorem 3.9. Let ∆̂Z
w ̸= ∅ and let Zπ̂ be a positroid tile for AZ

n,k,2. Then ∆̂Z
w is contained in Zπ̂

if and only if the w-simplex ∆w is contained in the T-dual positroid tile Γπ.

Together, Theorem 3.8 and Theorem 3.9 give our main result on tilings.

Theorem 3.10 (Tilings of ∆k+1,n and An,k,2 are T-dual). The collection C = {Γπ} is a
positroid tiling of ∆k+1,n if and only if for all Z ∈ Mat>0

n,k+2, the collection of T-dual Grasstopes
Ĉ = {Zπ̂} is a positroid tiling of AZ

n,k,2.

(k, n) (1, n) (2, 4) (2, 5) (2, 6) (2, 7) (2, 8) (3, 5) (3, 6) (3, 7)
# pos. tilings Cn−2 1 5 120 3073 6 443 460 1 14 3073

Table 1: Number of tilings of ∆k+1,n and AZ
n,k,2 in bijection by Theorem 3.10 in the

known cases. The Catalan number Cn−2 is the number of triangulations of an n-gon.
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