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Abstract. We introduce a new class of permutations, called web permutations. Us-
ing these permutations, we provide a combinatorial interpretation for entries of the
transition between the Specht and web bases, which answers Rhoades’s question. Fur-
thermore, we study enumerative properties of these permutations.
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1 Introduction and the main result

In this article, we study the transition matrix between two famous bases, the Specht
basis and the web basis, for the irreducible representation of the symmetric group S2n
indexed by the partition (n, n). Motivated by Rhoades’s work [9], we give a combinato-
rial interpretation for entries of the transition matrix as a certain class of permutations,
and present their interesting properties.

For an integer n ≥ 1, let S2n be the symmetric group on the set [2n] = {1, . . . , 2n}. It
is well known that each irreducible representation of S2n can be indexed by a partition of
2n. For a partition λ of 2n, we then denote by Sλ the irreducible representation indexed
by λ, called the Specht module. In this article, we narrow our focus down to the Specht
module indexed by the partition (n, n), and two well-studied bases for S (n,n).

A standard Young tableau of shape (n, n) is an array of integers of shape (n, n) whose
entries are [2n], and each row and each column are increasing.

The set of standard Young tableaux of shape (n, n), denoted by SYT(n, n), is an in-
dexing set for the Specht basis

{vT ∈ S (n,n) | T is a standard Young tableau of shape (n, n)}
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for S (n,n). For more details on the Specht basis and related combinatorics, see [4, 11].
A (perfect) matching on [2n] is a set partition of [2n] such that each block has size 2. We

also depict a matching on [2n] as a diagram consisting of 2n vertices and n arcs where
any pair of arcs has no common vertex. A crossing is a pair of arcs {a, c} and {b, d} with
a < b < c < d. A matching is called noncrossing if the matching has no crossing, and
nonnesting if there is no pair of arcs {a, d} and {b, c} with a < b < c < d.

For a matching M and {i, j} ∈ M with i < j, i is called an opener and j is called a
closer. Let Mat2n (NC2n and NN2n, respectively) stand for the set of (noncrossing and
nonnesting, respectively) matchings on [2n].

Note that there is an obvious bijection between SYT(n, n) and NN2n. For T ∈
SYT(n, n), connect two vertices lying on the same column of T via an arc, then we
obtain a nonnesting matching. Using this correspondence, we index the Specht basis for
S (n,n) by nonnesting matchings of [2n]:

{vM ∈ S (n,n) | M ∈ NN2n}.

We now consider the 2× 2n matrix

z =

[
z1,1 z1,2 . . . z1,2n
z2,1 z2,2 . . . z2,2n

]
,

where zi,j’s are indeterminates. For 1 ≤ i < j ≤ 2n, let ∆ij := ∆ij(z) be the maximal
minor of z with respect to the ith and jth columns, i.e., ∆ij = z1,iz2,j − z1,jz2,i. For a
matching M ∈ Mat2n, let

∆M := ∆M(z) = ∏
{i,j}∈M

∆ij ∈ C[z1,1, . . . , z2,2n].

It is important to note that the polynomials ∆ij satisfy the following relation: For 1 ≤
a < b < c < d ≤ 2n,

∆ac∆bd = ∆ab∆cd + ∆ad∆bc. (1.1)

We define a vector space Wn to be the C-span of ∆M for all M ∈ Mat2n. In [6], it turns
out that the set

{∆M ∈Wn | M ∈ NC2n} (1.2)

forms a basis for Wn. We call this basis the web basis.
We are now in a position to give the main purpose of this article. Let M0 be

the unique matching which is simultaneous noncrossing and nonnesting, i.e., M0 =
{{1, 2}, . . . , {2n− 1, 2n}}. Due to [10], the isomorphism maps ∆M0 to vM0 up to scalar.
Let ϕ : Wn → S (n,n) be the unique isomorphism with ϕ(∆M0) = vM0 . We also let
wM := ϕ(∆M) for each M ∈ NC2n. Then the Specht basis can expand into (the im-
age of) the web basis: for M ∈ NN2n,

vM = ∑
M′∈NC2n

aMM′wM′ .
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In [10], Russell and Tymoczko initiated the combinatorial study of the transition matrix

A = (aMM′)M∈NN2n,M′∈NC2n .

They showed the unitriangularity of the matrix. They also gave some open problems
related to their results. One of them is for positivity of entries of A, and soon after,
Rhoades proved the positivity.

Theorem 1.1 ([9]). The entries aMM′ of the transition matrix A are nonnegative integers.

Although Rhoades established the positivity phenomenon for entries of A, he did
not find an explicit combinatorial interpretation of the nonnegative integer aMM′ , c.f. [9,
Problem 1.3]. Inspired by his work, we introduce a new family of permutations which
are enumerated by the integers aMM′ , and study their enumerative properties.

Our strategy is based on Rhoades’s observation [9]. He figured out that the en-
tries aMM′ are related to resolving crossings of matchings in the following sense: For a
matching M ∈ Mat2n, let {a, c} and {b, d} be a crossing pair in M (if it exists) where
a < b < c < d. Let M′ and M′′ be the matchings identical to M except that {a, b} and
{c, d} in M′, and {a, d} and {b, c} in M′′. Then, by the relation (1.1), we have

∆M = ∆M′ + ∆M′′ . (1.3)

In addition, the number of crossing pairs in M′ (respectively, M′′) is strictly less than the
number of crossing pairs in M. Therefore, iterating the resolving procedure gives the
expansion of ∆M in terms of the basis (1.2). In other words, when we write

∆M = ∑
M′∈NC2n

cMM′∆M′ , (1.4)

the coefficient cMM′ is equal to the number of occurrences of the noncrossing matching
M′ obtained from iterating resolving crossings in M. Note that the order of the choice of
crossing pairs does not affect the expansion of ∆M. Rhoades showed that for M ∈ NN2n
and M′ ∈ NC2n, the entry aMM′ of the transition matrix equals cMM′ . Hence, to give a
combinatorial interpretation of aMM′ , we track the resolving process from a nonnesting
matching to noncrossing matchings.

To state our main result, we need some preliminaries. A Dyck path of length 2n is a
lattice path from (0, 0) to (n, n) consisting of n north steps (1, 0) and n east steps (0, 1)
that does not pass below the line y = x. We write N and E for the north step and the east
step, respectively. We therefore regard a Dyck path as a sequence of {N,E} consisting
of n N’s and n E’s. Let Dyck2n be the set of Dyck paths of length 2n. Identifying a
Dyck path with the area below the path, we give a natural partial order on Dyck2n by
inclusion, denoted by ⊆. In Section 2, we define a map D : Mat2n → Dyck2n, and by
abuse of notation, a map D : Sn → Dyck2n. No confusion might be caused by this
abuse. We also define a map M : Sn → NC2n. Finally, we introduce a new family of
permutations, called web permutations. With these data, we now present our main result.
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→

Figure 1: A crossing to an elbow.

Theorem 1.2. For matchings M ∈ NN2n and M′ ∈ NC2n, the entry aMM′ is equal to the
number of web permutations σ such that D(σ) ⊆ D(M) and M(σ) = M′.

The article is organized as follows. In Section 2, we give a new model, called a grid
configuration, for representing matchings. We then define web permutations from the
noncrossing grid configurations, and prove the main theorem. In the next two sections,
we study some properties of web permutations. In Section 3, we give a characterization
of web permutations. We show that web permutations are closely related to André per-
mutations. Section 4 provides some interesting enumerative properties of web permuta-
tions. We also give a conjecture for a relation between certain web permutations and the
Seidel triangle.

2 Grid configurations and web permutations

In this section, we define grid configurations which represent matchings in a ‘rigid’
setting. We describe the procedure of resolving crossings within this model. We then
introduce a new class of permutations, called web permutations. This provides a com-
binatorial interpretation for the entries aMM′ of the transition matrix.

Consider an n by n (lattice) grid in the xy-plane with corners (0, 0), (0, n), (n, 0) and
(n, n). We denote each cell by (i, j) where i and j are the x- and y-coordinates of its
upper-right corner. Let σ ∈ Sn be a permutation. For each 1 ≤ i ≤ n, mark the cell
(i, σ(i)), and draw a horizontal line to the left and a vertical line to the top from the
marked cell. We call this the empty grid configuration of σ. A cell (i, j) is a crossing if
there are both a vertical line and a horizontal line through the cell, that is, σ(i) < j and
i < σ−1(j). We denote by Cr(σ) the set of all crossings of σ. For a subset E ⊆ Cr(σ), the
grid configuration G(σ, E) of a pair (σ, E) is defined to be the empty grid configuration of
σ where each crossing in E is replaced by an elbow as shown in Figure 1. In particular,
the empty grid configuration of σ is G(σ, ∅).

For the n by n grid configuration, we label leftmost vertical intervals from bottom to
top with 1 through n and uppermost horizontal intervals from left to right with n + 1
through 2n. With this label of boundary intervals, a grid configuration can be considered
as a matching on [2n] as follows: Each strand joining ith and jth boundary intervals
represents an arc connecting i and j; see Figure 2. We denote by M(σ, E) the matching
associated to the grid configuration G(σ, E). For short, we write M(σ) = M(σ, Cr(σ)).
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Figure 2: The grid configuration G(1324, {(1, 3), (1, 4)}) and the corresponding match-
ing.

We define a partial order on cells of the n by n grid by (x, y) � (x′, y′) if either x < x′

and y ≥ y′, or x = x′ and y > y′.
The relation (1.3) can be interpreted as a relation between grid configurations as

follows. For a permutation σ and E ⊆ Cr(σ), let G(σ, E) be the grid configuration
and c = (i, j) be a maximal crossing in G(σ, E). One way of resolving c results a grid
configuration G(σ, E ∪ {c}). This procedure of resolving a crossing is called smoothing.
The other way of resolving c results a grid configuration G(σ′, E), where σ′ is defined by

σ′(i) = j,

σ′(σ−1(j)) = σ(i), and

σ′(k) = σ(k) for k 6= i, σ−1(j).

This procedure of resolving a crossing is called switching. Note that the crossing sets
Cr(σ) and Cr(σ′) are not the same. Nevertheless, by choosing c to be maximal, crossings
not smaller than c (with respect to the partial order) are left unchanged under switching.
In particular, we have E ⊆ Cr(σ′), so switching is well-defined. We often consider a grid
configuration G as the vector ∆M(G). Therefore, we can write the relation (1.3) in terms
of grid configurations as

G(σ, E) = G(σ, E ∪ {c}) + G(σ′, E).

From the grid configuration G(id, ∅), we obtain two grid configurations by resolving
a crossing by smoothing and switching, respectively. By resolving crossings until there is
no crossing left, we get grid configurations of the form G(σ, Cr(σ)). For each remaining
grid configuration G(σ, Cr(σ)), the permutation σ is called a web permutation of [n] and
we denote the set of web permutations of [n] by Webn. In other words, we have

G(id, ∅) = ∑ G(σ, Cr(σ)), (2.1)

where the right hand side is the sum of all grid configurations obtained by resolving
crossings from the grid configuration G(id, ∅) until there is no crossing left. This is
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Figure 3: The Dyck path D(σ) associated to σ = 21354 is NNEENENNEE.

reminiscent of (1.4). For example, starting from the grid configuration G(id, ∅) for n = 3,
we have

= +

= + +

= + + + +

.

Therefore we conclude that Web3 = {123, 213, 132, 231, 321}. The following proposition
justifies that web permutations are well-defined.

Proposition 2.1. The expansion in (2.1) is unique. In other words, the grid configurations ap-
pearing in (2.1) does not depend on the order of resolving procedure (choice of maximal crossings).
In addition, the permutations σ in (2.1) are all distinct.

For a matching M, record N for openers and E for closers reading M from left to right.
This gives the Dyck path D(M) in the n by n grid. It is known that the two restrictions
of the map D : Mat2n → Dyck2n to NC2n and NN2n are bijections. To a permutation σ,
we associate the minimum Dyck path D(σ) where every cell (i, σ(i)) lies below the path;
see Figure 3.

Given a nonnesting matching M ∈ NN2n, let E(M) be the set of cells in the n by
n grid which are above the path D(M). It is easy to see that the matchings M and
M(id, E(M)) coincide.

Similarly to the definition of Webn, we consider the equation

G(id, E(M)) = ∑ G(σ, Cr(σ)),
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where the right hand side is the summation of grid configurations obtained by resolving
crossings in G(id, E(M)) until there is no crossing. We then define WebM to be the set
of permutations σ appearing in the right hand side of the above equation. In particular,
Webn = WebM where M = {{1, n + 1}, {2, n + 2}, . . . , {n, 2n}}.

Using the above notations, we prove one of our main results that tells us which web
permutations contribute to the entry aMM′ .

Proof of Thereom 1.2. By the definition of web permutations, we have

aMM′ = |{σ ∈WebM : M(σ) = M′}|.

Hence it is enough to show that

WebM = {σ ∈Webn : D(σ) ⊆ D(M)}. (2.2)

We can obtain the grid configuration G(id, E(M)) from G(id, ∅) by smoothing crossings
in E(M). Since Proposition 2.1 says that Webn does not depend on the order of resolving
processes, we obtain WebM ⊆Webn. From this, it is clear that

WebM = {σ ∈Webn : E(M) ⊆ Cr(σ)}
= {σ ∈Webn : (i, σ(i)) 6∈ E(M) for all i},

which proves the claim (2.2).

3 Characterization of web permutations

In this section, we provide a characterization of web permutations. This characterization
depends only on their permutation structure. Using this characterization, we also prove
the results in [5, 10].

We begin with recalling two ways to represent permutations. One way is the one-line
notation which we have already used, that is regarding a permutation as a word. More
precisely, for a permutation σ : [n] → [n], we write σ = σ1σ2 . . . σn where σi = σ(i).
Another way to write permutations is the cycle notation. We give an example; for the
definition, see [14]. Let σ = 564132 ∈ S6, then the cycle notation of σ is (1, 5, 3, 4)(2, 6).
We always use parentheses and commas for writing cycles.

To describe our characterization of web permutations, we review the notion of André
permutations and define an analogue of them. We now think of permutations as words
consisting of distinct positive integers. André permutations are defined recursively as
follows. First, the empty word and each one-letter word are André permutations. For a
permutation w = w1w2 · · ·wn with n ≥ 2, let wk be the smallest letter in w. Then w is
an André permutation if both w1 · · ·wk−1 and wk+1 · · ·wn are André permutations and
max{w1, . . . , wk−1} < max{wk+1, . . . , wn}. Using this notion, we define a cycle analogue
of André permutations.
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Definition 3.1. Let C = (a1, . . . , ak) be a cycle with a1 = min{a1, . . . , ak}. We say that C
is an André cycle if the permutation a2 · · · ak is an André permutation.

For a cycle C = (a1, . . . , ak), we write min C = min{a1, . . . , ak} and write max C =
max{a1, . . . , ak} for short. The following lemma gives how to obtain a new André cycle
from old André cycles.

Lemma 3.2. Let C1 = (a1, . . . , ak) and C2 = (b1, . . . , b`) be André cycles with a1 = min C1
and b1 = min C2. If a1 < b1 and ak < b`, then the cycle (a1, . . . , ak, b1, . . . , b`) is also an André
cycle.

We now show another main result of the article, which gives a characterization of
web permutations.

Theorem 3.3. A permutation σ ∈ Sn is a web permutation if and only if each cycle of σ is an
André cycle.

As an application of the characterization, we show that the transition matrix (aMM′)
is unitriangular with respect to a certain order on NN2n and NC2n, and determine which
entries aMM′ vanish. These are already known due to Russell–Tymoczko [10] and Im–
Zhu [5].

Before we give the vanishing condition, we first show that the set Webn includes
a well-studied class of permutations. For a permutation σ = σ1 · · · σn, we say that σ

contains a 312-pattern if there exist three indices 1 ≤ i < j < k ≤ n such that σj < σk < σi.
A permutation is 312-avoiding if it does not contain a 312-pattern. Note that 312-avoiding
permutations are a Catalan object. Furthermore, the restriction of D : Sn → Dyck2n to
the set of 312-avoiding permutations of [n] is a bijection.

Corollary 3.4. A 312-avoiding permutation is a web permutation.

Recall that the set Dyck2n has a partial order ⊆, and there are bijections D from NN2n
and from NC2n to Dyck2n. Then the maps D induce a partial order on NN2n and NC2n.
Furthermore, when we choose a total order on Dyck2n that completes the partial order
⊆, the maps D give a total order on NN2n and NC2n.

We now take a total order on Dyck2n which completes the partial order ⊆, and thus
we have the induced total order on NN2n and NC2n. We assume that orderings of rows
and columns of the transition matrix (aMM′) are the decreasing orders with respect to
the total order on NN2n and NC2n. Then the entry aMM′ is on the diagonal if and only if
D(M) = D(M′).

We are now ready to prove the unitriangularity of the transition matrix (aMM′) and
the conjecture of Russell and Tymoczko [10, Conjecture 5.8] concerning the condition of
the vanishing entries, which is later proved by Im and Zhu [5, Theorem 1.1].
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Corollary 3.5 ([5, 10]). Let M ∈ NN2n and M′ ∈ NC2n. Then aMM′ > 0 if and only if
D(M′) ⊆ D(M). In particular, the transition matrix (aMM′) is upper-triangular. Moreover,
there are ones along the diagonal of the transition matrix, and 312-avoiding permutations con-
tribute to the ones.

4 Enumeration of web permutations

In this section, we focus on the number of web permutations. We also conjecture that the
Seidel triangle can be recovered completely from the certain classes of web permutations.

We now present another relationship between web permutations and André cycles.
Let us first review the Foata transformation ̂ : Sn → Sn. For a permutation σ ∈ Sn, the
canonical cycle notation of σ is a cycle notation of σ such that its cycles are sorted based
on the smallest element of the cycles and the smallest element of each cycle is written in
the last place of the cycle. We define σ̂ to be the permutation obtained by dropping the
parentheses in the canonical cycle notation of σ. A right-to-left minimum is an element σi
such that σi < σj for all j > i. Using right-to-left minima of σ, one can easily construct
the inverse of the Foata transformation. Note that the number of cycles of σ equals the
number of right-to-left minima of σ̂.

We now introduce a map φ : Sn → Sn+2 as a slightly modification of the Foata
transformation. For a permutation σ ∈ Sn, define the one-cycle permutation φ(σ) ∈
Sn+2 by

φ(σ) := (1, σ̂1 + 1, . . . , σ̂n + 1, n + 2).

It follows immediately from the bijectivity of the Foata transformation that the map φ

is injective, and its image φ(Sn) is the set of one-cycle permutations σ ∈ Sn+2 with
σ(n + 2) = 1.

The following theorem gives a relation between web permutations and André cycles,
and show that the numbers of web permutations equal Euler numbers.

Theorem 4.1. For n ≥ 1, let ACn+2 ⊂ Sn+2 be the set of André cycles consisting of [n + 2].
Then we have φ(Webn) = ACn+2. In particular, the number of web permutations of [n] is equal
to the number of André cycles consisting of [n + 2].

4.1 Euler and Entringer numbers

In this subsections, we give various enumerative properties of web permutations using
Theorem 4.1. We start with recalling Euler numbers. The Euler numbers En are defined
via the exponential generating function E(z) := ∑n≥0 En

xn

n! = sec z + tan z. There are
numerous combinatorial objects enumerated by Euler numbers En. Especially, the Euler
number En counts André permutations of [n]. For details, see [13]. We provide another
occurrence of Euler numbers.
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Corollary 4.2. The Euler number En+1 enumerates the number of web permutations of [n].

Proof. By definition, the number of André permutations of [n] is equal to the number of
André cycles of [n + 1]. Then Theorem 4.1 implies the desired result.

For a permutation σ, let c(σ) be the number of cycles of σ, and rlmin(σ) the number
of right-to-left minima of σ. By convention, we set c(∅) = 0 where ∅ is the empty per-
mutation, and Web0 = {∅}. We have the following corollary concerning the distribution
of c(σ) on Webn.

Corollary 4.3. We have (
1

1− sin z

)t
= ∑

n≥0
∑

σ∈Webn

tc(σ) zn

n!
.

Proof. In [1, Proposition 1], the author showed that(
1

1− sin z

)t
= ∑

n≥1
∑
σ

trlmin(σ)−1 zn−1

(n− 1)!

where the inner sum is over all André permutations of [n]. Therefore the proof follows
immediately from Theorem 4.1.

We also recall Entringer numbers. The Entringer numbers are given by the generating
function

cos x + sin x
cos(x + y)

= ∑
m,n≥0

Em+n,[m,n]
xm

m!
yn

n!
,

where [m, n] is m if m + n is odd, and n otherwise. We have a counterpart of this
refinement.

Corollary 4.4. The Entringer number En,k is equal to the number of web permutations σ of [n]
with σ1 = n + 1− k.

Proof. In [3, Theorem 1.1], the authors showed that En,k equals the number of André per-
mutations σ of [n + 1] with σ1 = n + 1− k. Combining this fact and Theorem 4.1 gives
the proof.

4.2 Genocchi numbers and the Seidel triangle

The Genocchi numbers are well-studied numbers with various combinatorial properties;
see [2, 7]. The Genocchi numbers can be defined by the Seidel triangle as follows [12].
Recall that the Seidel triangle is an array of integers (si,j)i,j≥1 such that s1,1 = s2,1 = 1,

s2i+1,j = s2i+1,j−1 + s2i,j for j = 1, . . . , i+ 1, and s2i,j = s2i,j+1 + s2i−1,j for j = i, i− 1, . . . , 1,
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where si,j = 0 for j < 0 or j > di/2e. This Pascal type procedure is called the boustrophe-
don algorithm. The Genocchi numbers gn are defined by

g2n−1 = s2n−1,n and g2n = s2n,1.

Recall that we denote by M0 for the unique matching which is simultaneous non-
crossing and nonnesting, i.e., M0 = {{1, 2}, . . . , {2n− 1, 2n}}. To emphasize the size of
the matchings, we denote this unique matching of [2n] by M(n)

0 . Let f (n) be the num-

ber of web permutations σ of [n] with M(σ) = M(n)
0 . In [8], Nakamigawa showed the

following theorem.

Theorem 4.5 ([8, Theorem 3.1]). For n ≥ 1, we have f (n) = gn.

Let f (n, k) be the number of web permutations σ of [n] such that M(σ) = M(n)
0

and σ1 = k. Obviously, f (n) = ∑1≤k≤n f (n, k). Some of these numbers vanish in the
following cases.

Proposition 4.6. For n ≥ 1 and 1 ≤ k ≤ bn/2c, we have f (n, 2k) = 0.

Proof. Let σ be a web permutation of [n] with σ1 = 2k. Then considering the grid
configuration G(σ, Cr(σ)), the associated matching M(σ) has an arc connecting 2k and
some j with 2k < j. Since there is the arc connecting 2k− 1 and 2k in M(n)

0 , we deduce

M(σ) 6= M(n)
0 .

Proposition 4.7. For an odd n > 1, we have f (n, n) = 0.

Proof. Let σ be a web permutation of [n] with σ1 = n. To obtain σ from the grid con-
figuration G(id, ∅), the first crossing (at the cell (1, n)) should be resolved by switching.
Then we have two markings at (1, n) and (n, 1). Observe that the vertical line and hori-
zontal starting from the cell (n, 1) cannot contain a crossing. Therefore, in the procedure
of resolving crossings, the markings (1, n) and (n, 1) remains the same. Thus we have
σn = 1 and {1, 2n} ∈ M(σ), which implies that M(σ) 6= M(n)

0 .

By Propositions 4.6 and 4.7, we have f (n) = ∑1≤k≤bn/2c f (n, 2k− 1). We now propose
a conjecture that the values appearing in the Seidel triangle are f (n, k).

Conjecture 4.8 (Verified up to n = 6). For n ≥ 1, we have{
f (2n− 1, 2k− 1) = s2n−2,k,
f (2n, 2k− 1) = s2n−1,n−k+1.

This conjecture includes Nakamigawa’s result. To elaborate, let σ be a web per-
mutation of [n] such that M(σ) = M(n)

0 and σ1 = 1. Deleting the cycle (1) from
σ and decreasing each letter by 1, the resulting permutation is a web permutation of
[n− 1] with M(σ) = M(n−1)

0 . In addition, this correspondence is bijective, so we deduce
f (n, 1) = f (n− 1). Thus the conjecture implies Nakamigawa’s result f (n− 1) = gn−1.
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