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Abstract. We introduce a family of univariate polynomials indexed by integer parti-
tions. At prime powers, they count the number of subspaces in a finite vector space
that transform under a regular diagonal matrix in a specified manner. At 1, they count
set partitions with specified block sizes. At 0, they count standard tableaux of spec-
ified shape. At −1, they count standard shifted tableaux of a specified shape. These
polynomials are generated by a new statistic on set partitions (called the interlacing
number) as well as a polynomial statistic on standard tableaux. They allow us to
express q-Stirling numbers of the second kind as sums over standard tableaux and
as sums over set partitions. In a special case these polynomials coincide with those
defined by Touchard in his study of crossings of chord diagrams.
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1 Introduction

Let Fq denote a finite field with q elements. Let ∆ be a linear operator on Fn
q .

Definition 1.1. A subspace W ⊆ Fn
q is said to have partial ∆-profile µ = (µ1, . . . , µk) if

dim(W + ∆W + · · ·+ ∆j−1W) = µ1 + · · ·+ µj for 1 ≤ j ≤ k.

Furthermore, if

dim(W + ∆W + · · ·+ ∆k−1W) = dim(W + ∆W + · · ·+ ∆kW),

then we say that W has ∆-profile µ.

For example, an m-dimensional ∆-invariant subspace is one with profile (m) while a
subspace spanned by a ∆-cyclic vector has profile (1n). It is easy to show that µj ≥ µj+1
for all j, and so µ is a partition of some integer less than or equal to n.
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Let σn(µ) denote the number of subspaces with ∆-profile µ. Using techniques of
Chen and Tseng [8] it can be shown that σn(µ) is a polynomial in q that depends only on
the similarity class type of ∆. We focus on the case where ∆ has n distinct eigenvalues
in Fq. Thus ∆ is represented by a diagonal matrix with distinct entries on its diagonal.

In Section 3.2 we introduce a family of polynomials bλ(q) indexed by integer parti-
tions such that (see Theorem 4.1)

σn(µ) =

(
n
|µ|

)
(q− 1)∑j≥2 µj q∑j≥2 (

µj
2
)bµ′(q), (1.1)

where µ′ denotes the partition conjugate to µ. The polynomial bλ(q) is a sum over
Tab[n](λ), the set of standard tableaux of shape λ:

bλ(q) = ∑
T∈Tab[n](λ)

cq(T),

where cq(T) is a polynomial associated to each standard tableau T of size n. The poly-
nomial cq arises out of a surprising new connection between two classical combinatorial
classes, namely set partitions and standard tableaux. In Section 2.2 we associate a stan-
dard tableau to each partition of the set [n] = {1, . . . , n}. Set partitions that map to a
given tableau are counted by a statistic c on standard tableaux. A naive substitution of
certain integers that occur in the definition of c (see Equation (2.1)) by the corresponding
q-integers leads to cq.

In Section 3.3, we introduce a statistic on set partitions called the interlacing number.
Although defined in the spirit of the well-known crossing number of a set partition (see,
for example, [9]) these numbers coincide only in certain very special cases, an interesting
case being that of chord diagrams (see Section 4.2). We show that the polynomial cq(T)
is the generating polynomial of the interlacing statistic on the class of set partitions
associated to the tableau T (Theorem 3.4). Moreover, noninterlacing set partitions of
shape λ are in bijection with standard tableaux of shape λ (see Corollary 3.5).

In Section 3.4 we show that bλ(−1) counts the number of standard shifted tableaux
of shape λ for a certain class of partitions.

To summarize, the polynomials bλ(q) have the following specializations:

1. When q is a prime power, they count subspaces of Fn
q with profile λ′, up to a factor

of the form qa(q− 1)b (Equation (1.1)).

2. When q = 1, they count partitions of [n] with block sizes given by the parts of λ

(Equation (3.3)).

3. When q = 0, they count standard tableaux of shape λ and also the number of
noninterlacing set partitions of shape λ (Equations (3.4) and (3.6)).
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4. When q = −1 and the parts of λ are distinct, with the possible exception of the
largest part, they count standard shifted tableaux of shape λ (Theorem 3.8).

We express the q-Stirling numbers of the second kind in terms of the polynomials
bλ(q), as sums over standard tableaux, and as sums over set partitions:

Sq(n, m) = ∑
λ`n, l(λ)=m

q∑i(i−1)(λi−1)bλ(q), (1.2)

Sq(n, m) = ∑
λ`n, l(λ)=m

q∑i(i−1)(λi−1) ∑
T∈Tab[n](λ)

cq(T), (1.3)

Sq(n, m) = ∑
A∈Πn,m

qv(A)+∑i(i−1)(λAi −1). (1.4)

Here Πn,m denotes the collection of partitions of [n] having m blocks, (λA1 , λA2 , . . .) is
the list of block sizes of A sorted in weakly decreasing order, and v(A) is the interlacing
number of A. Many statistics on set partitions are known to produce the q-Stirling
numbers of the second kind [5, 10, 24]. Our statistic appears to be different from all of
these. Cai and Readdy [5, Theorem 3.2] express Sq(n, m) as a sum of expressions of the
form qa(q + 1)b over a small class of set partitions. In this vein, we also express Sq(n, m)
as a sum over noninterlacing set partitions but in our case the summands are powers of
q times a product of q-integers:

Sq(n, m) = ∑
A∈Πn,m
v(A)=0

q∑i(i−1)(λi−1)cq(T (A)).

Combining equations (1.1) and (1.2) allows for a bijective interpretation of an iden-
tity of Carlitz [6, Equation (8)] (see also [7, Equation (3.4)]) that expresses q-binomial
coefficients in terms of q-Stirling numbers of the second kind:[

n
m

]
q
=

n

∑
r=m

(q− 1)r−m
(

n
r

)
Sq(r, m).

The left hand side counts all m-dimensional subspaces of Fn
q while the right hand is

obtained by counting subspaces by their ∆-profile. At q = 1, the identity (1.3) gives an
expression for the Stirling numbers of the second kind as the sum of a statistic on stan-
dard tableaux which appears to be new. A similar identity holds for the Bell numbers.

If m divides n, say n = md, then a ∆-splitting subspace of Fn
q is a subspace W of

dimension m such that
W ⊕ ∆W ⊕ · · · ⊕ ∆d−1W = Fn

q .

Thus an m-dimensional splitting subspace is a subspace of Fn
q with ∆-profile (md). The

definition of a splitting subspace can be traced back to the work of Niederreiter [15]
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on pseudorandom number generation. Determining the number of m-dimensional ∆-
splitting subspaces for an arbitrary operator ∆ is an open problem [12, page 54]. The
answer is known in the cases where ∆ has an irreducible characteristic polynomial [4,
8, 11], ∆ is nilpotent [2], or when the invariant factors of ∆ satisfy certain degree con-
straints [1].

In the case where ∆ has n distinct eigenvalues in Fq, Equation (1.1) gives the number
of splitting subspaces of dimension m when µ = (md). The case d = 2 is of particular
interest; we find that it is associated with the study of crossings of chord diagrams that
were extensively investigated by Touchard (see Section 4.2).

Detailed proofs can be found in [17]. We extensively used SageMath [20] for com-
putations. Code for demonstrating the results in this paper is available online at
https://www.imsc.res.in/∼amri/set_partitions.

2 Set Partitions

2.1 Set partitions and standard notation

Let S be a finite subset of the set P of positive integers. A partition A = {A1, . . . , Am} of
S is a decomposition

S = A1 ∪ · · · ∪ Am,

where A1, . . . , Am are pairwise disjoint non-empty subsets of S. The subsets A1, . . . , Am
are called the blocks of A. The order of the blocks does not matter. Following standard
conventions [14, § 2.7.1.5], the elements of each block are listed in increasing order, and
the blocks are listed in increasing order of their least elements. When this is the case,
we write A = A1| · · · |Am, which we call the standard notation for A. The shape of a set
partition is the list of cardinalities of A1, . . . , Am, sorted in weakly decreasing order. Thus
the shape of a partition of S is an integer partition of |S|. Denote the set of all partitions
of S by ΠS, and the set of all partitions of S with shape λ by ΠS(λ).

2.2 The tableau associated to a set partition

Definition 2.1. Given A = A1| · · · |Am ∈ ΠS, form an array whose entry in the ith row
and jth column is the jth smallest element of Ai. Then sort and top-justify the columns
of this array. Denote the resulting tableau by T (A).
Example 2.2. When A = 12|389|56, the associated array and the corresponding tableau
T (A) are

1 2

3 8 9

5 6

and 1 2 9

3 6

5 8

.

https://www.imsc.res.in/~amri/set_partitions
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Definition 2.3. A tableau T is called a multilinear tableau if each element of P occurs at
most once in T, the rows of T increase from left to right, and the columns of T increase
from top to bottom.

The set of integers that occur in T is called the support of T, and is denoted supp(T).
For each S ⊆ P, let TabS denote the set of multilinear tableaux with support S. For each
integer partition λ, denote the set of multilinear tableaux of shape λ and support S by
TabS(λ). Let Tab⊆S(λ) denote the set of multilinear tableaux of shape λ whose support
is a subset of S. The usual notion of a standard Young tableau coincides with that of a
multilinear tableau with support [n] for some n ≥ 0.

Example 2.4. The tableau in Example 2.2 is a multilinear tableau of shape (3, 2, 2) and
support {1, 2, 3, 5, 6, 8, 9}.

It can be shown that Definition 2.1 gives rise to a surjective function

T : ΠS(λ)→ TabS(λ).

To see surjectivity, given T ∈ TabS(λ) simply take A to be the partition of S whose blocks
are the rows of T. Then T (A) = T. For each T ∈ TabS(λ), let

Π(T) = {A ∈ ΠS(λ) | T (A) = T},

the fibre of T over T. Our next goal is to understand the set Π(T) for each multilinear
tableau T.

Example 2.5. When T = 1 2 9

3 6

5 8

, the set partitions in Π(T) are

129|38|56, 129|36|58, 12|369|58, 12|38|569, 12|36|589, 12|389|56.

2.3 Set partitions associated to a given tableau

Suppose that S ⊆ P is finite, and λ is an integer partition of |S|.

Definition 2.6. Let T be a multilinear tableau of shape λ = (λ1, . . . , λm). For 1 ≤ i ≤ m
and 2 ≤ j ≤ λi define

cij(T) = #{i′ | i′ ≥ i and Ti′,j−1 < Tij}.

Define

c(T) =
m

∏
i=1

λi

∏
j=2

cij(T). (2.1)
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Example 2.7. For the tableau T of Example 2.5, the values of cij(T) for each relevant cell
are shown below:

1 3

2

1

,

and c(T) = 6.

Theorem 2.8. For every multilinear tableau T, the cardinality of Π(T) is c(T).

3 q-analogs

3.1 A q-analog of c(T)

For each multilinear tableau T of shape λ = (λ1, . . . , λm), define cq(T) ∈ Z[q] by

cq(T) =
m

∏
i=1

λi

∏
j=2

[cij(T)]q, (3.1)

where, for each positive integer n, [n]q = 1 + q + · · ·+ qn−1, the q-analog of n. Clearly
cq(T) is a polynomial with nonnegative integer coefficients, and substituting q = 1 gives

cq(T)|q=1 = c(T),

the cardinality of Π(T).

3.2 The polynomials bλ(q)

For each integer partition λ and each positive integer n, define

bn
λ(q) = ∑

T∈Tab⊆[n](λ)
cq(T). (3.2)

Write bλ(q) for bn
λ(q) when λ is a partition of n. Any order-preserving relabeling of the

entries of T leaves cq(T) invariant. Therefore, for any λ and any n,

bn
λ(q) =

(
n
|λ|

)
bλ(q).

It follows from Theorem 2.8 that

bλ(1) = |Π[n](λ)|, (3.3)

the number of set partitions of [n] of shape λ. Since, for every standard tableau T, bλ(q)
is a product of q-integers, we have

bλ(0) = |Tab[n](λ)|. (3.4)
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3.3 The interlacing statistic

Let P∗ denote the ordered set P ∪ {∞}, where ∞ is deemed to be greater than every
element of P.

Definition 3.1 (Crossing arcs). For a, b, c, d ∈ P∗, we say that the arcs (a, b) and (c, d)
cross if the intervals [a, b] and [c, d] are neither nested, nor disjoint. In other words:

either a < c < b < d or c < a < d < b.

Definition 3.2 (The arcs of a set). Given a set A ⊆ P whose elements are a1, . . . , al in
increasing order, its jth arc is the pair arcj(A) = (aj, aj+1) for j = 1, . . . , l − 1, and its lth
arc is arcl(A) = (al, ∞).

Definition 3.3 (Interlacing). Let S be any finite subset of P. Let A = A1| · · · |Am ∈ ΠS
with |Ai| = li. An interlacing of A is a pair (arcj(Ai), arcj(Ai′)) of crossing arcs for some
1 ≤ i < i′ ≤ m and some 1 ≤ j ≤ min(li, li′). Let v(A) denote the total number of
interlacings of the set partition A, called the interlacing number of A.

Table 1 shows the arcs and the number of interlacings for the set partitions in Exam-
ple 2.5. The first, second, and third arcs are shown in different colours. Only crossing
arcs of the same colour contribute to the interlacing number.

Theorem 3.4. For any multilinear tableau T,

cq(T) = ∑
T (A)=T

qv(A). (3.5)

Corollary 3.5. For each partition λ of n, the number of noninterlacing partitions of shape λ is
equal to the number of standard tableaux of shape λ.

Theorem 3.4 allows us to express bλ(q) in Equation (3.2) as a sum over set partitions
of shape λ:

bλ(q) = ∑
A∈Πn(λ)

qv(A). (3.6)

3.4 Value at q = −1

It turns out that bλ(−1) is always positive.

Theorem 3.6. For every integer partition λ, bλ(−1) is the number of standard tableaux T of
shape λ for which c(T) is odd. For every non-empty1 integer partition λ, bλ(−1) > 0.

1The empty partition is the unique partition of 0 with no parts.
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A Arcs of A v(A)

129|38|56

1 2 3 5 6 8 9 ∞

2

129|36|58

1 2 3 5 6 8 9 ∞

3

12|369|58

1 2 3 5 6 8 9 ∞

2

12|38|569

1 2 3 5 6 8 9 ∞

1

12|36|589

1 2 3 5 6 8 9 ∞

1

12|389|56

1 2 3 5 6 8 9 ∞

0

Table 1: Statistics for set partitions corresponding to 1 2 9
3 6
5 8

.
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For a large class of partitions λ, bλ(−1) has an interpretation in terms of shifted
tableaux. Let λ = (λ1, . . . , λm) be an integer partition of n. A standard shifted tableau
of shape λ is an array

T = (Tij | Tij ∈ P, 1 ≤ i ≤ m; i ≤ j ≤ λi + i− 1),

where each integer in [n] occurs exactly once. The rows of T increase from left to right,
the columns of T increase from top to bottom, and the diagonals of T increase from
top-left to bottom-right. We denote the set of multilinear shifted tableaux of shape λ by
sTabS(λ). When λ is a partition of [n], write sTab(λ) for sTab[n](λ).

Example 3.7. The following is a standard shifted tableau of shape (3, 3, 2, 1):

1 2 3
4 5 6

7 8
9

.

Theorem 3.8. For every partition λ whose parts are distinct, with the possible exception of the
largest part,

bλ(−1) = |sTab(λ)|.

Example 3.9. Take λ = (3, 3, 1). Then

bλ(q) = q4 + 5q3 + 15q2 + 28q + 21,

and bλ(−1) = 4. There are four standard shifted tableaux of shape (3, 3, 1), namely

1 2 3
4 5 6

7

, 1 2 4
3 5 6

7

, 1 2 3
4 5 7

6

, and 1 2 4
3 5 7

6

.

4 Profiles of Subspaces

4.1 Counting subspaces by profile

Let ∆ be a diagonal n× n matrix over Fq with distinct entries on its diagonal. Recall the
definition of bλ from Section 3.2.

Theorem 4.1. For every integer partition µ, the number of subspaces of Fn
q with ∆-profile µ is

given by

σn(µ) =

(
n
|µ|

)
(q− 1)∑j≥2 µj q∑j≥2 (

µj
2
)bµ′(q).

Theorem 4.1 is a consequence of a more refined counting theorem (Theorem 4.5).
For any n ∈ P, let C(n, m) denote the set of all subsets of [n] with cardinality m.

Given C ∈ C(n, m) we always write C as a tuple C = (c1, . . . , cm), where c1 < · · · < cm.
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Definition 4.2 (Pivots). Every m-dimensional subspace W ⊆ Fn
q has a unique basis in

reduced row echelon form, namely a basis whose elements are the rows of a matrix
A = (Aij) satisfying the following conditions:

1. There exists C = (c1, . . . , cm) ∈ C(n, m) (called the pivots of W) such that the first
non-zero entry in the ith row of A lies in the cith column and is equal to 1.

2. Ai′ci
= 0 for all i′ 6= i (the only non-zero entry in the cith column lies in the ith

row).

When this happens we say that W has pivots C.

Example 4.3. The basis in reduced row echelon form for a subspace of Fn
q (with n ≥ 4)

with pivots (1, 3, 4) is given by the rows of a 3× n matrix of the form1 ∗ 0 0 ∗ · · · ∗
0 0 1 0 ∗ · · · ∗
0 0 0 1 ∗ · · · ∗

 ,

where each ∗ denotes an arbitrary element of Fq.

Recall the following well-known result [13].

Theorem 4.4. The number of m-dimensional subspaces of Fn
q with pivots C = (c1, . . . , cm) is

qβ(C,[n]−C), where

β(C, [n]− C) = |{(c, c′) | c < c′, c ∈ C, c′ ∈ [n]− C}|

=
m

∑
i=1

(n−m− ci + i).

A simultaneous refinement of Theorems 4.1 and 4.4 is the following:

Theorem 4.5. For every C ∈ C(n, m) and every partition µ with µ1 = m, the number of
m-dimensional subspaces of Fn

q with pivots C and profile µ is given by

σC
n (µ) = (q− 1)∑j≥2 µj q∑j≥2 (

µj
2
) ∑

T∈Tab⊆[n](µ′) has first column C
cq(T).

Taking the sum over all C ∈ C(n, m), where m = µ1 gives Theorem 4.1.

Corollary 4.6. For any C ∈ C(n, m),

qβ(C,[n]−C) = ∑
{µ|µj=m}

(q− 1)∑j≥2 µj q∑j≥2 (
µj
2
) ∑

T∈Tab⊆[n](µ′) has first column C
cq(T).



Set Partitions, Tableaux, and Profiles 11

4.2 Splitting subspaces and chord diagrams

Recall the definition of a splitting subspace from Ghorpade and Ram [12].

Definition 4.7. Let n = md. An m-dimensional subspace W ⊆ Fn
q is ∆-splitting if

Fn
q = W ⊕ ∆W ⊕ · · · ⊕ ∆d−1W.

It follows that ∆-splitting subspaces are those with ∆-profile (md). Theorem 4.1 gives
the number of m-dimensional ∆-splitting subspaces as

σn(md) = (q− 1)m(d−1)q(
m
2 )(d−1)b(dm)(q).

By Equation (3.6) we have
b(dm)(q) = ∑

A∈Πn(dm)

qv(A).

When d = 2, Πn(2m) coincides with the set of chord diagrams on 2m points and the
interlacing number coincides with the number of crossing chords. Thus b(2m)(q) coin-
cides with the polynomial Tm(q) studied by Touchard [21, 22, 23] in the context of the
stamp folding problem. For proofs of Touchard’s compact expression for Tm(q) see Rior-
dan [19], Read [18] and Penaud [16]. For a beautiful exposition, see Aigner [3, page 337].
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