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Abstract. We study the interplay between the discrete geometry of Bruhat poset in-
tervals and subword complexes of finite Coxeter systems. We establish connections
between the cones generated by cover labels for Bruhat intervals and of root configura-
tions for subword complexes, culminating in the notion of brick polyhedra for general
subword complexes.
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1 Introduction

We introduce brick polyhedra associated to subword complexes for finite Coxeter sys-
tems. These generalize brick polytopes for root-independent spherical subword com-
plexes as defined and studied by Pilaud and the second author [6]. We study brick
polyhedra by closely tying them to the theory of Bruhat interval cones of Dyer [2]. We
start with naturally extending this theory and then showing how brick polyhedra natu-
rally arise from the recursive structure of subword complexes.

Let (W,S) be a finite type Coxeter system of rank n = |S| acting on a Euclidean vec-
tor space V ∼= Rn with inner form ⟨·, ·⟩. Let ∆ ⊆ Φ+ ⊆ Φ ⊆ V be a root system for (W,S)
with simple roots ∆ = {αs | s ∈ S}, positive roots Φ+, and negative roots Φ− = −Φ+.
The reflections in W are R =

{
sβ | β ∈ Φ+

}
where sβ denotes the reflection sending β to

its negative while fixing pointwise its orthogonal complement β⊥ = {v ∈ V | ⟨β, v⟩ = 0}.
The corresponding Cartan matrix (ast)s,t∈S is given by s(αt) = αt− astαs. The fundamen-
tal weights ∇ = {ωs | s ∈ S} ⊆ V are then given by the relations αs = ∑t∈S atsωt and W
acts on the fundamental weights by s(ωt) = ωt − δs=tαs for s, t ∈ S .

Furthermore denote by ≤ the (strong) Bruhat order on W and write ≺ for cover
relations. For a Bruhat interval [x, y], the (upper) Bruhat cone C+(x, y) is defined by
C+(x, y) = cone E+(x, y) for E+(x, y) =

{
β ∈ Φ+

∣∣ x ≺ sβx ≤ y
}

. These cones were
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introduced and studied by Dyer in the study of positivity properties of Kazhdan–Lusztig
and Stanley polynomials [2].

For a (not necessarily reduced) word Q = s1 · · · sm in S the Demazure product
Dem(Q) ∈ W can be defined as the unique maximal element in Bruhat order among
all expressions obtained from Q by removing letters. For w ∈ W and Q as above, the
subword complex SC(Q, w) is the simplicial complex of sets of (positions of) letters in Q
whose complements contain reduced words for w. Subword complexes have been intro-
duced by Knutson and Miller in the context of Gröbner geometry of Schubert varieties [4,
5] and it is known that SC(Q, w) is non-empty if and only if w ≤ Dem(Q). Furthermore
as shown in [4, Theorem 3.7, Corollary 3.8] the non-empty complex SC(Q, w) is a topo-
logical sphere if and only if w = Dem(Q) and a topological ball otherwise.

Strongly connected to the internal structure of subword complexes is the construction
of root configurations introduced in [1]. For Q = s1 · · · sm, a facet I of SC(Q, w), and a
position k ∈ [m] = {1, . . . , m} the root function r(I, ·) : [m] → Φ = W(∆) ⊆ V is defined
by

r(I, k) = ΠQ{1,...,k−1}\I(αsk),

where ΠQX denotes the product of the simple reflections si, for i ∈ X in the given order.
The ordered multiset R(I) = {{r(I, i) | i ∈ I}} is then called root configuration of the
facet I. The first main theorem of this work now describes how closely tightened Dyer’s
Bruhat cones are to root configurations of facets of subword complexes.

Theorem 1.1. Let Q be a word in S and let w ∈W with w ≤ Dem(Q). Then

C+(w, Dem(Q)) =
⋂

I
coneR(I)

where the intersection is taken over all facets I of the subword complex SC(Q, w).

The purpose of Section 2 below and its subsections is to gather the statements that are
involved in the proof of this theorem as well as their corollaries. These include various
new statements about Bruhat cones in Section 2.1 and moreover Corollary 2.17. The
latter is based on a conjecture in [6, Conjeture 7.1] and it is the key ingredient for the
statements in Section 3

Therein we introduce brick polyhedra for subword complexes and study their prop-
erties. Brick polyhedra can be seen as a generalization of the previously known brick
polytopes in the sense that they provide generalizations of the properties that brick poly-
topes could only provide for certain types of spherical subword complexes.

This includes Theorem 3.4 where the root configuration of a facet is connected to
its associated point in the brick polyhedron, Theorem 3.11 and Corollary 3.12 where we
describe how to obtain the normal fan of the brick polyhedron from the Coxeter fan, and
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Theorem 3.14 where we explain how brick polyhedra associated to a common word Q
but different elements interfere with each other.

Most details and all proofs are omitted in this extended abstract because of the limited
space, but they and also more examples can be found in the full version of this work [3].

To illustrate our results we will present examples in the Coxeter system of type A2.
We generally write S = {s1, s2} for concrete generators si and also ∆ = {α1, α2} for
simple roots with αi = αsi . To keep examples compact, we write shorthand Q = 12212 =
s1s2s2s1s2 for words in S and also for elements w = 121 = s1s2s1 ∈W as reduced words,
and we abbreviate 21∆ = 2α1 + α2 and 21∆ = −21∆ for vectors written in the basis of
simple roots.

Example 1.2 (Type A2). We have S = {s1, s2}, the simple and positive roots ∆ ⊂ Φ+ given
by {10∆, 01∆} ⊂ {10∆, 01∆, 11∆} and

s1(10∆) = 10∆, s1(01∆) = 11∆, s2(10∆) = 11∆, s2(01∆) = 01∆.

The fundamental weights are ∇ = {ω1 = 1
3(21∆), ω2 = 1

3(12∆)}.

2 The interplay between Bruhat intervals and subword
complexes

2.1 Properties of Bruhat cones

In this section we develop properties of Bruhat cones. Those properties are independent
from the theory of subword complexes and generalize the previously known statements
of Dyer. Denote by w◦ the unique longest element in W. The set E−(x, y) and with it
C−(x, y) are defined similarly to E+(x, y) and C+(x, y). For details we again refer to [3].

Lemma 2.1 ([2, Proposition 1.4, Proposition 3.6]). Let [x, y] be a Bruhat interval and let
w ∈W. Then

(a) C−(e, w) ∩ C+(w, w◦) = {0} and Φ+ ⊆ C−(e, w) ∪ C+(w, w◦).

(b) E+(x, y) are the rays of C+(x, y) and E−(x, y) are the rays of C−(x, y).

(c) For β ∈ E+(x, y) we have C+(x, y) ⊆ C+(sβx, y) + R(β), and similar for C−(x, y).

(d) For β ∈ Φ+ with x ≤ sβx ≤ y we have β ∈ C+(x, y), and similar for C−(x, y).

Corollary 2.2. Let w ∈ W be an element. Then E−(e, w) are the extremal rays of cone Inv(w)
and E+(w, w◦) = E−(e, w · w◦) are the extremal rays of cone Inv(w · w◦). In particular,

C−(e, w) ∩Φ = Inv(w), C+(w, w◦) ∩Φ = Inv(w · w◦).
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In particular, the following statements look similar to Lemma 2.1(c). However, they
are far from being corollaries of it and every one of it has its own crucial proof.

Proposition 2.3. Let x, y ∈ W, s ∈ S and r = sβ ∈ R such that s ̸= r and x ≺ sx, rx ≤ y.
Then

s(β) ∈ C+(sx, y) + R+(αs).

Theorem 2.4. Let x, y ∈W and s ∈ S such that x ≤ y ≺ sy. Then

C+(x, sy) ⊆ C+(x, y) + R+(αs).

Corollary 2.5. Let x, y ∈ W and s ∈ S such that sx ≺ x ≤ y. Let furthermore τ ∈ {sy, y} be
the Bruhat smaller element. Then

s
(
C+(x, y)

)
⊆ C+(sx, τ).

Corollary 2.6. Let x, y ∈ W and s ∈ S such that xs ≺ x ≤ y. Let furthermore τ ∈ {ys, y} be
the Bruhat smaller element. Then

C+(x, y) ⊆ C+(xs, τ).

2.2 Bruhat cones and non-flippable vertices in subword complexes

For two facets I ̸= J of SC(Q, w) we call those facets adjacent if there are positions i ∈ I
and j ∈ J such that I \ {i} = J \ {j}. The transition from I to J is called the flip of i in I
and if for any k ∈ I there is no adjacent facet that flips k, we call the position k non-
flippable in I. Furthermore for a given β ∈ E+(w, Dem(Q)), i.e., w ≺ sβw ≤ Dem(Q),
consider the map

ι : SC(Q, sβw)→ SC(Q, w) (2.1)

from facets of SC(Q, sβw) to facets of SC(Q, w) given by J 7→ J ∪ {k} where k is the
unique index in the complement of J such that Q{1,...,m}\(J∪{k}) is a reduced word for w.
This unique index is well-defined by the deletion property of Bruhat order, saying that
for any reduced word s1 · · · sℓ for sβw there is a unique index k such that s1 · · · ŝk · · · sℓ is
a word of w and this word is reduced because w ≺ sβw implies ℓ(w) = ℓ(sβw)− 1.

This discussion shows that every facet of SC(Q, sβw) is also a face of SC(Q, w), and
this face is of codimension 2. It is in particular not surprising that the map ι is not
injective in general as seen in [3, Example 3.10]. The following two lemmas now describe
how facets of the subword complex for w can lead to facets of the complex for sβw.

Lemma 2.7. Let SC(Q, w) be a non-empty subword complex, let I ∈ SC(Q, w) be a facet and
let i ∈ I non-flippable. Then I \ {i} is a facet of SC(Q, sβw) for β = r(I, i). In particular, the
complement of I \ {i} is a reduced word and β ∈ E+(w, Dem(Q)).
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Lemma 2.8. Let w ≺ sβw ≤ Dem(Q). Then:

(a) There is a facet I ∈ SC(Q, w) and an index i ∈ I with r(I, i) = β.

(b) A facet I ∈ SC(Q, w) is in the image of ι if and only if β ∈ R(I).

Proposition 2.9. Let SC(Q, w) be a non-empty subword complex. Then

E+(w, Dem(Q)) =
{
r(I, i)

∣∣ I facet of SC(Q, w) and i ∈ I not flippable
}

.

Moreover, if i ∈ I is a flippable index in a facet I of SC(Q, w) then r(I, i) /∈ E+(w, Dem(Q)).

Proposition 2.10. Let SC(Q, w) be a non-empty subword complex. Then

E+(w, Dem(Q)) ⊆ cone(R(F))

for every facet F ∈ SC(Q, w). This leads to the first containment needed for Theorem 1.1:

C+(w, Dem(Q)) ⊆
⋂
F

coneR(F).

2.3 Constructing antigreedy facets inside certain half-spaces

The Demazure product of a given word Q = s1 . . . sm can be computed by scanning
through Q from left to right, starting with the identity element and multiplying by the
current si from the right whenever we go upwards in (right) weak order. For spherical
subword complexes this greedy algorithm also computes the antigreedy facet, i.e., the
lexicographically last facet of the complex, given by the complement of the positions
used for the Demazure product.

Example 2.11 (Type A2). For Q = 22121 the Demazure product is given by Dem(Q) = 121.
By scanning from left to right we obtain the reduced word and facet:

w = 212 and I = {2, 5}.

The following Algorithm 2.12 describes a generalization of this method in two ways.
First it computes a facet of SC(Q, w) for any w ≤ Dem(Q). Second the computation
respects a given linear functional f : V → R such that the root configuration of the com-
puted facet is contained in the positive halfspace defined by f . By Proposition 2.10 the
latter is only possible if f (β) ≥ 0 for all β ∈ E+(w, Dem(Q)), leading to the restric-
tion in the algorithm. We call those functionals non-negative for the Bruhat interval
[w, Dem(Q)].
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Algorithm 2.12. Computing the f -antigreedy facet I f of the subword complex SC(Q, w)

Input : Q = s1 · · · sm
w ≤ Dem(Q)
f : V → R with f (β) ≥ 0 for β ∈ E+(w, Dem(Q))

Conditions: Conditions (1)–(6) are given by the following decision tree:

sgn( f (βk))

(4) βk ∈ Φ+ βk ∈ Φ+

wk−1sk ≤R w (2) wk−1sk ≤R w

(5) w−1
k−1w ≤ Dem(sk+1 · · · sm)

(1) (3) (6)

− 0 +

T F F T

T

F F

T

T F

The sign can be positive (+), negative (−), or zero (0).
The statements can be true (T) or false (F).

Output : I f ⊂ {1, . . . , m}

w0 ← e ∈W
I0 ← {}

for k = 1, . . . , m do
βk ← wk−1(αsk)
if Condition (1) or (2) or (3) then

Ik ← Ik−1 ∪ {k}
wk ← wk−1

else if Condition (4) or (5) or (6) then
Ik ← Ik−1
wk ← wk−1 · sk

I f ← Im
return I f
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Proposition 2.13. At the end of the k-th iteration of the for loop, the word Q{1,...,k}\Ik
is a

reduced word for wk and can be extended to a reduced word for w by a subword of Q{k+1 ...,m}.

Theorem 2.14. Let SC(Q, w) be a non-empty subword complex and let f : V → R be non-
negative on [w, Dem(Q)]. The output set I f ⊆ {1, . . . , m} of Algorithm 2.12 has the following
properties:

(a) I f is a facet of the subword complex SC(Q, w), i.e., the word Q{1,...,m}\I f
is a reduced word

for w.

(b) For i ∈ I f , we have f (r(I f , i)) ≥ 0.

(c) For i ∈ I f with f (r(I f , i)) = 0 and r(I f , i) ̸∈ E+(w, Dem(Q)), we have r(I f , i) ∈ Φ−.

Remark 2.15. Applying this algorithm for w ≤ Dem(Q) and a linear functional f : V → R

which is positive on

• the basis ∆ of V, i.e., f (αs) > 0 for all s ∈ S , yields the greedy facet Ig,

• the basis w(∆) of V, i.e., f (w(αs)) > 0 for all s ∈ S , yields the antigreedy facet Iag,

of SC(Q, w).

We can now take any vector v /∈ C+(w, Dem(Q)), and choose a linear functional that
is non-negative for [w, Dem(Q)] while f (v) < 0. We then obtain v /∈ cone(R(I)). This
implies the remaining inclusion

C+(w, Dem(Q)) ⊇
⋂

I
coneR(I),

and thus concludes the proof of Theorem 1.1.

2.4 Uniqueness of f -antigreedy facets

In Theorem 2.14 we describe the properties the facet I f computed by Algorithm 2.12
has. In this section we show that these properties uniquely determine this facet among
all facets of SC(Q, w). Furthermore I f is in the set of all facets with root configuration
contained in the positive halfspace defined by f :

I f ∈ SC f (Q, w) =
{

I facet of SC(Q, w)
∣∣ for all i ∈ I : f (r(I, i)) ≥ 0

}
,

and by Corollary 2.17 this set forms a connected component of the graph of f -preserving
flips, where a flip of i ∈ I is called f -preserving, if f (r(I, i) = 0.

Proposition 2.16. Let SC(Q, w) be a non-empty subword complex and let f : V → R be a
linear functional. Then

SC f (Q, w) is non-empty if and only if f is non-negative on [w, Dem(Q)].
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Corollary 2.17. Let SC(Q, w) be a non-empty subword complex and let f : V → R be a linear
functional which is non-negative on [w, Dem(Q)]. Then SC f (Q, w) forms a connected compo-
nent of the graph of f -preserving flips in SC(Q, w) and moreover,

SC f (Q, w) ∼= SC(Q{1,...,m}\Pos f (I), w)

for any facet I ∈ SC f (Q, w).

Theorem 2.18. Let I be a facet of the non-empty subword complex SC(Q, w) and let f : V → R

be a linear functional that is non-negative for the Bruhat interval [w, Dem(Q)]. If the facet I
satisfies the conclusions in Theorem 2.14(b) and (c), then I = I f is the facet produced by Algo-
rithm 2.12.

3 Brick polyhedra for subword complexes

In this section we associate to a subword complex a convex polyhedron, the brick poly-
hedron. Similar to the root function, for each facet I ∈ SC(Q, w) we define the weight
function by:

w(I, k) = ΠQ{1,...,k−1}\I(ωsk).

This function is then used to define the brick vector b(I) of the facet I:

b(I) = −
m

∑
k=1

w(I, k).

Definition 3.1. The brick polyhedron of a non-empty subword complex SC(Q, w) is the
Minskowski sum of the convex hull of all brick vectors and the Bruhat cone, which is
denoted by C+(w, Dem(Q)):

B(Q, w) = conv
{
b(I)

∣∣ I facet of SC(Q, w)
}
+ C+(w, Dem(Q)).

For spherical subword complexes this construction coincides (up to a sign) with the
previously known brick polytope.

Proposition 3.2. The brick polyhedron B(Q, w) of a non-empty subword complex SC(Q, w) is
polytopal if and only if SC(Q, w) is spherical. In this case, the brick polyhedron is the convex
hull of all brick vectors.
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Example 3.3 (Type A2). Let Q = 11212 and w = 12. We then have the facets of SC(Q, w)
and the brick polyhedron B(Q, w) given by

b({1, 2, 3}) = 1
3(87∆)

b({1, 3, 4}) = 1
3(77∆)

b({1, 4, 5}) = 1
3(66∆)

b({2, 3, 4}) = 1
3(67∆)

b({2, 4, 5}) = 1
3(56∆)

•

•

•

•

•

with arrows pointing towards the respective root configurations

R({1, 2, 3}) = {10∆, 10∆, 01∆}, R({1, 3, 4}) = {10∆, 11∆, 10∆},
R({1, 4, 5}) = {10∆, 01∆, 11∆}, R({2, 3, 4}) = {10∆, 11∆, 10∆},

R({2, 4, 5}) = {10∆, 01∆, 11∆}.

3.1 Local cones of brick polyhedra at brick vectors

To precisely state the connections between subword complexes and brick polyhedra we
need the following definition. The local cone of a polyhedron P at a point q ∈ P is the
cone over P seen from the point q,

cone(q)(P) = cone {p− q | p ∈ P} .

Theorem 3.4. The local cone of the brick polyhedron B(Q, w) at the brick vector b(I) coincides
with the cone generated by the root configuration of the facet I of SC(Q, w). In symbols,

cone(b(I))(B(Q, w)) = coneR(I).

In particular, the brick vector b(I) is a vertex of B(Q, w) if and only if R(I) is pointed.
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Corollary 3.5. We have

B(Q, w) =
⋂

I facet of SC(Q,w)

(
b(I) + coneR(I)

)
.

A linear functional f : V → R is a defining functional for the non-empty brick
polyhedron B(Q, w) if and only if it is non-negative on the interval [w, Dem(Q)]. For
such a defining functional f with corresponding defining hyperplane ( f , b), denote by
B f = {v ∈ P | f (v) + b = 0} the corresponding face of B(Q, w).

Proposition 3.6. Let f : V → R be a linear functional which is non-negative on [w, Dem(Q)].
For a facet I ∈ SC(Q, w), we have

b(I) ∈ B f ⇐⇒ I ∈ SC f (Q, w).

Corollary 3.7. Any two facets I and J of SC(Q, w) whose brick vectors b(I), b(J) are contained
in an edge E ⊆ B(Q, w) are connected by a flip.

Remark 3.8. We have seen in Proposition 3.6 that brick vectors contained in a face B f of
the brick polyhedron B(Q, w) are in one-to-one correspondence with facets in SC f (Q, w).
We furthermore have by Corollary 2.17 the identification

SC f (Q, w) ∼= SC(Q{1,...,m}\Pos f (I f )
, w),

and Theorem 3.4 ensures that B f and B(Q{1,...,m}\Pos f (I f )
, w) have the same local structure:

• The direction of flips between brick vectors is preserved,

• Local cones in B(Q{1,...,m}\Pos f (I f )
, w) agree with those inside the face B f of B(Q, w),

• The normal fans of B f and of B(Q{1,...,m}\Pos f (I f )
, w) coincide, and

• B f is polytopal if and only if SC(Q{1,...,m}\Pos f (I f )
, w) is spherical.

Nevertheless, we refer to [3, Example 4.10, Remark 4.11] to see an example where B f and
B(Q{1,...,m}\Pos f (I f )

, w) do not coincide.

3.2 Normal fans of brick polyhedra from Coxeter fans

Define the Coxeter fan of W as

CFW =
{

w(cone∇′)
∣∣ w ∈W, ∇′ ⊆ ∇

}
with fundamental chamber C = cone(∇) being the cone generated by the fundamental
weights. The aim of this section is to describe how to glue together and delete chambers
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in the Coxeter fan to obtain the normal fan of the brick polyhedron. For detailed defini-
tions of (inner) normal cones and the (inner) normal fan of a polyhedron we refer to [3,
Section 4]. To this end, associate to a Bruhat interval [x, y] a (lower) order ideal in the
weak order by

IdR(x, y) =
{

w ∈W
∣∣ E+(x, y) ⊆ w(Φ+)

}
.

Proposition 3.9. Let SC(Q, w) be a non-empty subword complex and let z ∈ W. Then there
exists a facet I such that R(I) ⊆ z(Φ+) if and only if z ∈ IdR(w, Dem(Q)). In this case, the
facet I is uniquely given by the facet I f produced by Algorithm 2.12 for the linear functional f
which is positive on z(Φ+) and negative on z(Φ−).

For a non-empty subword complex SC(Q, w), this proposition allows to define a map

κ : IdR(w, Dem(Q))→ SC(Q, w),

by sending z ∈ IdR(w, Dem(Q)) to the unique facet I f with R(I) ⊆ z(Φ+) where f and I f
are given as in the proposition.

Proposition 3.10. The map κ maps surjectively onto the facets of SC(Q, w) with pointed root
configurations.

Theorem 3.11. Let b(I) be a vertex of B(Q, w), i.e., I ∈ SC(Q, w) is a facet with pointed root
configuration. The (closure of the) normal cone C⋄(b(I)) is the union of the chambers z(C) of
CFW given by the elements z ∈W with κ(z) = I.

Corollary 3.12. The normal fanN (B(Q, w)) is obtained from the Coxeter fan by gluing together
the chambers corresponding to fibers of the map κ, and deleting the chambers corresponding to
elements in W not in IdR(w, Dem(Q)).

3.3 Containment properties of brick polyhedra for a fixed word

In this section we show how brick polyhedra associated to the same word Q but different
elements interact with each other.

Proposition 3.13. Let w ≺ sβw ≤ Dem(Q) and I ∈ SC(Q, sβw) be a facet. Then b(I) ∈
B(Q, w).

Theorem 3.14. Let w ∈ W and s ∈ S such that w ≺ ws ≤ Dem(Q). Then B(Q, ws) ⊆
B(Q, w).

The following example shows the nested situation of brick polyhedra for the permu-
tahedron in type A2.



12 D. Jahn and C. Stump

Example 3.15 (Type A2). Let Q = 112211. We show all brick polyhedra where brick
vectors of different polyhedra that have the same coordinates are drawn close to each
other. The brick polyhedra of SC(Q, w) are in black for w = 121, in red for w = 12, in
blue for w = 21, in orange for w = 1, in lightblue for w = 2 and in grey for w = e.

•
•

•
•

•

•
•

•

•

•
•

•
•

•
•

•
•

•
•

•

•

•
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