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Abstract. We prove a conjecture of Morier-Genoud and Ovsienko that says that rank
polynomials of the distributive lattices of lower ideals of fence posets are unimodal.
We do this by introducing a related class of circular fence posets and proving a stronger
version of the conjecture due to McConville, Sagan and Smyth. We show that the rank
polynomials of circular fence posets are symmetric and conjecture that unimodality
holds except in some particular cases. We also apply the recent work of Elizalde,
Plante, Roby and Sagan on rowmotion on fences and show many of their homomesy
results hold for the circular case as well.
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1 Introduction

Fence posets are a natural class of posets that appear in the study of cluster algebras,
quiver representations and other areas of enumerative combinatorics, see [5] for an
overview. Let α = (α1, α2, . . . , αs) be a composition of n. The fence poset of α, denoted
F(α) is the poset on x1, x2, . . . , xn+1 with the order relations:

x1 ◁ x2 ◁ · · ·◁ xα1+1 ▷ xα1+2 ▷ · · ·▷ xα1+α2+1 ◁ xα1+α2+2 ◁ · · ·◁ xα1+α2+α3+1 ▷ · · ·

We call maximal chains of this poset segments. The poset F(α) has n + 1 nodes and s
segments, where n = α1 + . . . + αs is the size of α. See Figure 1 for the fence poset
corresponding to (2, 1, 1, 3). Lower order ideals of F(α) ordered by inclusion give a
distributive lattice which we denote by J(α). The lattice J(α) is ranked by the size of the
ideals, with generating polynomial R(α; q) = ∑I∈J(α) qI , called the rank polynomial. We
will use r(α) to denote the corresponding rank sequence given by the coefficients of the
powers of q in R(α; q).

Example 1.1. The fence poset for α = (2, 1, 1, 3) is illustrated in Figure 1, left. Note that
the ideals of maximal and minimal rank are unique. Ideals of rank 1 and rank 7 are
given by minima and complements of maxima respectively and the five ideals of rank 2
are depicted. The full rank sequence is (1, 3, 5, 6, 6, 5, 3, 2, 1).
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Figure 1: The fence poset F(2, 1, 1, 3) (top left) has five ideals of rank 2 (bottom left).
The circular analogue F(2, 1, 1, 3) (top right) has only 3 (bottom right).

The rank sequences of fence posets were used by Morier-Genoud and Ovsienko in [6]
in their recent work defining q-analogues of the rational numbers. They use the contin-
ued fraction expansion of a rational number to first construct two fence posets. Their
q-rationals are then defined as the ratio of the rank polynomials of these posets. These
q-rationals enjoy several interesting properties including a type of convergence which
allows them to extend the definition to obtain q-real numbers. They also proposed the
following conjecture in their paper, the proof of which is the main result in this paper.

Theorem 1.2 ([6, Conjecture from Section 7]). The rank polynomials of fence posets are uni-
modal.

Here and elsewhere, when we say that a polynomial is unimodal or symmetric, we
mean that its sequence of coefficients is respectively unimodal or symmetric. Recall that
a sequence is called unimodal if there exists an index m such that a0 ≤ a1 ≤ · · · ≤ am ≥
am+1 ≥ · · · ≥ an.

While there was no a priori reason for the authors to expect that this conjecture
holds, there was ample numerical evidence. Results predating the conjecture itself were
given by Salvi and Munarini [8], who considered the case when all parts are equal to 1.
Claussen [1] showed that the conjecture holds when the composition has at most 4 parts.
Further partial progress was made by McConville, Sagan and Smyth [5], who proved
the conjecture in the case where the first segment is larger than the sum of the others
and proposed the following strengthening of this conjecture. The various interlacing
properties referred to in the next theorem are defined Section 3, where we also give a
sketch of its proof.

Theorem 1.3 ([5, Conjecture 1.4]). Suppose α = (α1, α2, . . . , αs).

(a) If s = 1 then r(α) = (1, 1, . . . , 1) is symmetric.

(b) If s is even, then r(α) is bottom interlacing.

(c) If s ≥ 3 is odd we have:
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(i) If α1 > αs then r(α) is bottom interlacing.

(ii) If α1 < αs then r(α) is top interlacing.

(iii) If α1 = αs then r(α) is symmetric, bottom interlacing, or top interlacing depending
on whether r(α2, α3, . . . , αs−1) is symmetric, top interlacing, or bottom interlacing,
respectively.

We will describe the main ideas in our proof later but it is noteworthy that our proof is
purely combinatorial. Unimodality of combinatorial sequences is often deduced by first
proving stronger properties of the sequence such as log concavity, ultra log concavity
or even real rootedness, but for this problem, none of these stronger properties need
hold. Indeed to see that even log concavity need not hold, we see that for the fence poset
F(α) = F(2, 1, 1, 3) described in Example 1.1, we have

9 = r(α)[6]2 < r(α)[5] r(α)[7] = 5 · 2 = 10,

where r(α)[k] denotes the number of k element ideals of the fence poset F(α).
They key idea in our proof is to navigate between the properties of fence posets and

those of a closely related class of objects we introduce called the circular fence posets. For
a composition α = (α1, α2, . . . , α2s) of n we define the circular fence poset of α, denoted
F(α) as the fence poset of α where xn+1 and x1 are taken to be equal. Note that this is a
poset with n nodes.

Example 1.4. The circular fence poset F(2, 1, 1, 3) given in Figure 1 right is obtained from
the regular fence poset F(2, 1, 1, 3) by identifying the vertices x1 and x8, yielding a poset
on 7 elements. Given that we have identified x1 and x8 two pairs of the five ideals of size
two become identical and the ideal (x1, x8) does not appear. Thus, the number of rank 2
ideals in F(2, 1, 1, 3) is 3. The full rank sequence for F(2, 1, 1, 3) is (1, 2, 3, 4, 4, 3, 2, 1).

We will use J(α) to refer to the lattice of lower ideals of F(α) and denote the cor-
responding rank polynomial and rank sequence by R(α; q) and r(α) respectively. Rank
polynomials for circular fence posets behave slightly differently from those for regular
fence posets; there are examples where they fail to be unimodal, see Section 4 for a dis-
cussion and a characterization. However, they do satisfy a highly convenient property.

Theorem 1.5. Rank polynomials of circular fence posets are symmetric.

Given a fence poset, there are several naturally related circular fence posets. Our
proof consists of relating the rank polynomials of these various posets and inductively
proving a number of ancillary results. One of the byproducts of our proof is the follow-
ing result that might be of independent interest.

Theorem 1.6. Let α = (α1, . . . , α2s) be a composition with an even number of parts and consider
any cyclic shift of α, β = (αk, αk+1, . . . , α2s, α1, α2, . . . , αk−1). Then

R(α; q) = R(β; q).
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That is, the rank polynomial of a circular fence poset is well-defined over circular compositions.

As mentioned above, when it comes to circular fence posets, unimodality may fail.

Example 1.7. Let α = (1, a, 1, a) or (a, 1, a, 1) be a composition. A direct calculation shows
that the rank sequence is r(α) = (1, 2, . . . , a, a + 1, a, a + 1, a, a − 1, . . . , 1). This sequence
has a dip in the middle term and is not unimodal.

We conjecture that these are the only cases when unimodality fails for circular fences
and provide support for this in Section 3:

Conjecture 1.8. For any α ̸= (1, k, 1, k) or (k, 1, k, 1) for some k, the rank polynomial R(α; q)
is unimodal.

Section 4 is devoted to the behaviour of the rowmotion operation on cyclic fences,
and related homomesy results. We also note that cases of orbomesy observed in the
regular case break down for cyclic fences. Section 5 discusses possible future directions.
The interested reader is referred to [10] for more details.

2 Circular Fences

Let P be a finite poset. A subset I of P is said to be a lower order ideal (resp. upper
order ideal) if when x ∈ I, any y ≤ x (resp. any y ≥ x) lies in I as well. We will use
the word “ideal” to denote a lower order ideal, unless stated otherwise. Ideals (or upper
order ideals) of a poset P ordered by inclusion give the structure of a distributive lattice
J(P), ranked by the number of elements. See [11, Chapter 3.4] for a detailed discussion.
For the purposes of this work, we will use the word “rank” exclusively to refer to the
rank structure of the order ideal lattice. Note that taking the setwise complement of an
ideal gives an upper order ideal of complementary rank.

We will be interested in the case where P is a fence, or a circular fence. Recall that for
a composition α = (α1, α2, . . . , α2s) of n, the circular fence poset of α, denoted F(α) is the
fence poset of α where xn+1 and x1 are taken to be equal, so we get a circular poset with
n nodes. Circular fences have substantial intrinsic symmetry; shifting the parts cyclically
by two steps or reversing the order of the parts both preserve the rank sequence. In the
special case when all the segments are of size 1, the object we obtain is called a crown.
Crowns were previously studied in [8] where it was shown that their rank polynomials
are symmetric, and that they are unimodal when the number of segments is different
than 4. Examining the one step shift allows us to directly say that the symmetry holds
when one of the segments is larger as well. This will serve as the basis to prove that in
fact, for any circular fence poset we get a rank symmetric lattice.

Lemma 2.1. Shifting the parts of α cyclically by one step reverses the rank sequence r(α). In
particular R((k, 1, . . . , 1); q) where the number of segments is even is symmetric for any k ∈ N.
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In general, rank polynomials for circular fences are no easier to calculate than their
non circular counterparts and we only have formulas for a limited number of cases. The
case when α = (1, a, 1, a, . . . , 1, a) was considered in [7]. They were able to formulate the
rank polynomial in terms of Chebyshev polynomials of the first kind. Some other small
cases that can be easily calculated by hand are listed in Table 1 below.

α Ideal Count Rank Polynomial

(a, b) ab + 2 1 + q[a]q[b]q + qa+b

(a, 1, b, 1) ab + a + b + 1 [a + 1]q[b + 1]q − qa+1 − qb+1

(a, b, c, d) abcd + ab + cd + ad + bc + 2
1 + q[a]q[d]q + q[b]q[c]q + qa+b+1[c]q[d]q

+qc+d+1[a]q[b]q + qa+b+c+d

(a, a, a, a) a4 + 4a2 + 2 1 + ([a]q)4 + (2q2a+1 + 2q)([a]q)2 + q4a

Table 1: Ideal count and rank polynomial for small cases

The cases of (a, b) and (1, a, 1, b) are straightforward. The lattice formed by the ideals
of F(a, b) is formed by the direct product of two chains of lengths a − 1 and b − 1, with
an added minimum element (the empty ideal) and maximum element (the full ideal):
0̂⊕ (Ca−1 × Cb−1)⊕ 1̂. Here, the position on Ca−1 describes unshared elements in the left
segment, whereas the position on Cb−1 describes the number of unshared elements in the
right segment. The natural symmetric chain decomposition on Ca−1 × Cb−1 can easily
be extended to accommodate the two added nodes, as seen in Figure 2 for the example
of (5, 8). The case of (1, a, 1, b) is similar, and the lattice we obtain can be visualised as
Ca ×Cb with two opposite corners deleted. When a ̸= b this also has a natural symmetric
chain decomposition. When a = b however, we have no such decomposition and indeed
the resulting rank polynomial is not unimodal, see Figure 2.

Figure 2: The lattices J((5, 7)) (left) and J((1, 3, 1, 6)) (middle) have (natural) symmetric
chain decompositions whereas J((1, 4, 1, 4)) (right) does not.

Theorem 1.5 shows that the rank polynomials of circular fences are always symmetric.
Our proof starts with the observation that symmetry holds in the case (k, 1, 1, . . . , 1)
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for any k. We then show that if α = (. . . , ai−1, ai, ai+1, ai+2, . . .) is a composition with
a symmetric rank polynomial, then the composition (. . . , ai−1, ai − 1, ai+1 + 1, ai+2, . . .)
also has a symmetric rank polynomial. Our proof of this latter fact uses the interplay
between circular and non-circular fences. We also make use of the following auxiliary
statement about the structure of non-circular fences that follows as a byproduct of our
proof.

Corollary 2.2. For a composition β = (β1, β2, . . . , β2t) of n − 1, let IL denote the set of ideals
of F(β) that include the leftmost node x1, but not the rightmost node xn. Similarly, let IR denote
the set of ideals of F(β) that include the rightmost node but not the leftmost. The following two
polynomials are symmetric with center of symmetry n/2:

∑
I∈IL

q|I| − ∑
J∈IR

q|J|, R((β1 + 1, β2, . . . , β2t); q)− R((β1, β2, . . . , β2t + 1); q).

Another consequence of 1.5 is the following.

Corollary 2.3. Let sh denote the operation that shifts a composition one step cyclically. We then
have that R(α, q)=R(sh(α), q).

3 Rank Unimodality

A sequence is called unimodal if there exists an index m such that a0 ≤ a1 ≤ · · · ≤ am ≥
am+1 ≥ . . . ≥ an. Theorem 1.3 involves a refined version of unimodality described in [5].
A sequence is called top interlacing if a0 ≤ an ≤ a1 ≤ an−1 ≤ . . . ≤ a⌈n/2⌉ where ⌈·⌉ is the
ceiling function. Similarly, the sequence is bottom interlacing if an ≤ a0 ≤ an−1 ≤ a1 ≤
. . . ≤ a⌊n/2⌋ with ⌊·⌋ being the floor function. Note that top interlacing as well as bottom
interlacing sequences are unimodal.

Given a rank sequence (r0, r1, . . . , rn), the properties of it being top interlacing, bot-
tom interlacing or symmetric and unimodal are determined by the relationship between
elements whose indices are equidistant from n/2, which we will call mid(α). In all three
cases, if |j − mid(α)| > |i − mid(α)| we have aj ≤ ai. To this end, we will partition the
inequalities that correspond to interlacing into two parts: the part that separates bottom
and top interlacing sequences and the part that holds for both, namely

(ineqB) r0 ≥ rn, r1 ≥ rn−1, . . . , r⌊n/2⌋ ≥ r⌈n/2⌉

(ineqT) r0 ≤ rn, r1 ≤ rn−1, . . . , r⌊n/2⌋ ≤ r⌈n/2⌉

(ineqA) r0 ≤ rn−1, r1 ≤ rn−2, . . . , rn ≤ r1, rn−1 ≤ r2, . . .

Bottom interlacing sequences are ones that satisfy (ineqB) and (ineqA), top interlacing
sequences are ones that satisfy (ineqT) and (ineqA), and sequences satisfying all three
sets of inequalities are symmetric and unimodal.
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To prove Theorem 1.3 we use induction on the size of α. For a composition α of n we
write down two different decompositions of R(α; q), in each case as a sum of a symmetric
rank polynomial coming from a circular fence of size n + 1 and a unimodal polynomial
from a circular fence of strictly smaller size. The first method involves adding a new
node a0 to the fence of α lying above (or below) both a1 and an+1. The ideals of F(α)
are in bijection with a subset of the ideals of the resulting circular fence, and the rest
are in bijection with ideals of a fence poset with fewer elements. Examining how the
symmetric entries of the circular fence are affected shows that the rank sequence of α

satisfies (ineqA).
The second method is similar, but involves adding the relation x1 ≥ xn+1 to α. The

resulting circular fence contains all ideals of F(α) such that xn ∈ I whenever x1 ∈ I.
The ones that are left over are in bijection with ideals of a fence poset with fewer ele-
ments. Combined with the induction assumption, we recover the inequality set (ineqA)
or (ineqB), depending on the properties of α.

Unlike the regular case, the rank polynomial of circular fences is not always uni-
modal. In the case of α = (1, k, 1, k), we get the rank sequence [1, 2, . . . , k, k + 1, k, k +
1, k, . . . , 2, 1] which makes a slight dip in the middle (Refer to Figure 2 for the rank lattice
of (1, 5, 1, 5)). We will next see that this issue can only happen when we have an even
number of nodes, and a dip can only happen in the middle term of the rank sequence.

Proposition 3.1. If α has an odd number of nodes, then R(α; q) is unimodal. If α is of size 2t for
some k ∈ N, then we have ri ≥ ri−1 for all i < t.

Though we were unable to prove our conjecture that F(α) is unimodal except for the
cases of (1, k, 1, k) and (k, 1, k, 1) in all generality, the next result shows that if there are
exceptions to unimodality they are indeed very rare.

Lemma 3.2. Let T be a maximal node in the cyclic fence F(α), and let FT− be the (possibly upside
down) fence obtained by deleting T. If the rank polynomial RT−(q) corresponding to FT− is top
interlacing, then R(α; q) is rank unimodal.

Corollary 3.3. If α = (α1, α2, . . . , α2s) has two consecutive segments larger than one, or 3
consecutive segments k, 1, l with |k − l| > 1, then R(α; q) is unimodal.

These three results, Proposition 3.1, Lemma 3.2 and Corollary 3.3 sharply constrict
the possible cases of circular fences that are not rank unimodal. We ran computer exper-
iments and checked all circular fences coming from compositions with up to 8 parts and
with the sizes of these parts being at most 20. The results support our Conjecture 1.8.

4 Rowmotion on Circular Fences

We can identify the ideals of a fence with antichains on that fence, as any ideal is
uniquely described by its maximal elements. Rowmotion acts on ideals by taking an
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ideal I to the ideal ∂(I) corresponding to the antichain given by the minimal elements of
the complement of I. In their recent paper [2], Elizalde, Plante, Roby and Sagan explored
rowmotion on fences, and gave homomesy and orbomesy results, many of which hold
for the circular case as well. In particular they gave a bijection between rowmotion orbits
on F(α) and an object called an α-tiling. Here, we introduce a natural analogue, the class
of circular α-tilings:

Definition 4.1. For a composition α = (α1, α2, . . . , α2s) of n, a circular α-tiling is a tiling
of a rectangle R2s with 2s rows labeled 1, 2, . . . , 2s from top to bottom and an infinite
number of columns with yellow 1 × 1 tiles, red 2 × 1 tiles which are allowed to wrap
around and black 1 × (αi − 1) tiles in row i satisfying the following properties:

(a) If αi ≥ 2 then when the red tiles are ignored, the black and yellow tiles alternate in
row i.

(b) If i is odd, there is a red tile in a column covering rows i and i + 1 if and only if the
next column contains two yellow tiles in those two rows.

(c) If i is even, there is a red tile covering rows i and i + 1 if i < 2s and wrapping
around to cover 2s and 1 if and only if the previous column contains two yellow
tiles in those rows.

We say that a red tile starts at row i if it covers i, i + 1 or i = 2s and it covers 2s and
1, and denote by ri the number of red tiles starting on row i. Though it is by no means
clear from the definition, the connection with rowmotion orbits which we will describe
in Lemma 4.2 implies that all such tilings are periodic. We will represent tilings by
drawing one period and identify tilings that are cyclic shifts of each other horizontally
and denote the period of an orbit O by |O|.

Let the map ϕ take an ideal I of F(α = (α1, . . . , α2s)) to a 2s × 1 rectangle where box i
is colored yellow if the ith segment contains no maximal element of I, red if it shares its
maximal element with segment i − 1 or i + 1 (considered cyclically) and black otherwise.
We can then see ϕ as a map taking orbits of rowmotion to infinite rectangles of 2s rows
by seeing each iteration of the rowmotion operation as a new column (See Figure 3).

Lemma 4.2. The map ϕ is a bijection between orbits of rowmotion on F(α) and circular α-tilings.

→ → → → → → →

Figure 3: A circular (2, 1, 1, 3)-tiling and the corresponding orbit on F(2, 1, 1, 3)

In what follows, we will identify each tiling with its corresponding orbit and use
the two interchangeably. A statistic st is said to be d-mesic (with respect to a group
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operation) if its average is d on every orbit, and it is said to be homomesic if it is d-mesic
for some d. We will be interested in two particular statistics in connection to fences. Let
Mx(O) stand for the number of times x occurs as a maximal element in an orbit O, with
M(O) = ∑x Mx(O) denoting the sum over all nodes x and let χx(O) denote the total
number of times x occurs in O with χ(O) denoting similarly the sum over all x.

As each ideal occurs exactly once as a column, the symmetry of the rank polynomial
for circular fences implies that if the statistic χ is homomesic (for example when there is
a unique orbit), it is necessarily n/2-mesic, where n = |α|. In particular, if αi + αi+1 is
the same for all i, as in the example of (3, 1, 3, 1) below, then χ is n/2-mesic if and only
if ∑i≤s(r2i − r2i−1) = 0 for all orbits.

Example 4.3 (F(3, 1, 3, 1).). In the case (3, 1, 3, 1), rowmotion has the 3 orbits depicted
below. We have M(O1) = 8, M(O2) = M(O3) = 14, χ(O1) = 20 and χ(O2) =
χ(O3) = 36. As the second 9-orbit can be obtained from the first by shifting rows
cyclically by 2, it makes sense that they have the same statistics. Note that χ is 4-mesic.

O1 O2 O3

Calculating the M and χ statistics, we see that many homomesy results from the
non-circular fences also apply for the circular ones:

Proposition 4.4. For a composition α = (α1, α2, . . . , α2s) of n, the rowmotion operation on the
circular fence F(α) has the following properties:

1. If x and y are unshared elements on the same segment, Mx −My is 0-mesic.

2. For an unshared element x of segment i that lies between a maximal element T and a
minimal element B, Mxαi +MT +MB is 1-mesic.

3. For a maximal element T lying between segments 2i + 1 and 2i + 2, and a minimal element
B lying between segments 2j and 2j + 1 (cyclically), if r2i+1 = r2j for all orbits O, then
χT + χB is 1-mesic.

4. If αi = 2 for all i, then M is s-mesic.

Let κ denote the setwise complement map, taking the ideals of F(α) to the ideals
of sh(α), the fence corresponding to the cyclic shift of α by one step. We can also see
κ as the map taking a circular α-tiling, doing a vertical cyclic shift of one step and a
horizontal flip to get a circular sh(α)-tiling. Figure 4 shows the action of κ on the orbit
seen in Figure 3. As the rowmotion is defined via the complement operation, it is quite
well behaved under this map.
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Composition |O| Orbit Count M(O) χ(O)

(a, b):

gcd(a, b) = m

m + 2 1 2m(a + b)(m + 2)/ab |O|n/2

m (ab/m)− 1 2m − (a + b)m/ab |O|n/2

(a ̸= 3t + 1, 1, 1, 1) 3a + 4 1 5a + 6 |O|n/2

(a = 3t + 1, 1, 1, 1)

a + 2 1 5t + 4 |O|n/2

a + 1 1 5t + 2 (|O|+ 1)n/2

a + 1 1 5t + 2 (|O| − 1)n/2

(a, 1, a, 1)
a + 2 a − 2 2a + 2 |O|n/2

2a + 3 2 4a + 2 |O|n/2

Table 2: The behaviour of rowmotion on some small cases. Rows list the different
types of orbits we get in each case. For example, for (a, 1, a, 1) we get a orbits in total.

Lemma 4.5. For any ideal I we have κ(∂(I)) = ∂−1(κ(I)), meaning κ maps orbits to orbits. In
particular, if |α| = n, for any orbit O of rowmotion on F(α) we have:

M(O) = M(κ(O)) and χ(O) + χ(κ(O)) = n|O|/2.

While the second statement trivially follows from the fact that this is a setwise com-
plement, the first is slightly more complicated. We do not have M(I) = M(κ(I)) for all
ideals I, for example if I is the empty ideal, M(I) = 0 whereas M(κ(I)) = s, where 2s
is the length of α.

→ → → → → → →

Figure 4: Setwise complement of the orbit from Figure 3 gives an orbit on F((3, 2, 1, 1))

When a statistic has the same average on all orbits with the same period, it is called
orbomesic. Extending the idea of homomesy, the orbomesy phenomenon is introduced
in [2] and illustrated through a number of cases it applies to. The orbit structure of
rowmotion on fences is periodic in nature and only depends on how often we get shared
elements, that is, how in sync the action on different segments are. The examples of
orbomesy given in [2], though not isomorphic in a well-defined sense, are structurally
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equivalent and are formed by picking different pairings of moduli that are out of sync.
As a result, they naturally have the same length, M value and χ value, resulting in an
apparent orbomesy. In the circular case, we see that the orbomesy of χ breaks down
completely, in that we either get a full homomesy or we get two orbits of the same
period with different χ values (See Table 2. Indeed, in the case of (3r + 1, 1, 1, 1) we get
orbits that are complementary, that is, they have the same period and their χ statistics
sum up to n(|O|). A similar situation occurs in the case of (a, a, a, a), where the orbit
situation is more complex (see [10] for a full description). This behaviour is probably a
result of how the setwise complement map affects the orbits and the symmetry of the
rank lattice. It might be interesting to pursue if this phenomenon continues in larger
examples. In particular, are there any examples of circular lattices where χ is orbomesic
but not homomesic?

5 Comments, Questions and Future Directions

We list some questions and observations here that are of natural interest.

• A Bijective Proof: After a preliminary version of this paper was shared on the
arXiv, Sagan and Elizalde came up with a lovely bijective proof of rank polynomial
symmetry for circular fences [3].

• Connection to PSLq(2, Z): In [4], Leclere and Morier-Genoud define matrices
Mq(c1, . . . , ck) ∈ PSLq(2, Z) whose traces, up to a multiple of ±qN, are symmetric
polynomials in q with non-negative integer entries. Similarly to circular rank poly-
nomials, they are invariant under cyclic shifts of the sequence [[c1, . . . , ck]]. Indeed,
when the rational number with continued fraction representation [c1; c2, . . . , ck] is
≥ 1, the traces turn out to equal circular rank polynomials [9].

• A Polyhedral Perspective: Given a composition α of n, consider the polytope Pα ⊂
Rn given by the indicator vectors of J(α), the set of all lower ideals of the associated
circular fence poset. Consider the sections of the polytope:

Pt
α = Pα ∩ {x ∈ Rn, ∑

i
xi = t}.

The symmetry of the rank polynomial for circular fences implies that for every

positive integer t, the polytopes Pt
α and P

n
2−t
α have the same number of lattice

points. We performed several computer assisted calculations on these polytopes
and one of the curious facts we observed that the function t → Vol Pt

α is symmetric
about the point n/2, that is, Vol(Pt

α) = Vol(Pn/2−t
α ), despite these polytopes not

necessarily being combinatorially equivalent. A natural explanation of this would
be interesting.
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• Refinements of Unimodality: McConville, Sagan and Smyth [5] investigated the
existence of chain decompositions as a possible method for proving unimodality.
The examples we considered lead us the believe that for circular fences (apart from
the case α = (a, 1, a, 1), see Figure 2), the associated lattices admit symmetric chain
decompositions and are thus strongly Sperner. We leave this as an open question.
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[10] E. K. Oğuz and M. Ravichandran. “Rank polynomials of fence posets are unimodal”. 2021.
arXiv:2112.00518.

[11] R. P. Stanley. Enumerative Combinatorics. Vol. 1. Cambridge Studies in Advanced Mathe-
matics 49. Cambridge: Cambridge University Press, 2012, pp. xiii + 626.

https://arxiv.org/abs/2005.02083
https://arxiv.org/abs/2108.12443
https://arxiv.org/abs/2108.12443
https://dx.doi.org/10.48550/ARXIV.2201.03044
https://dx.doi.org/10.1016/j.aam.2021.102223
https://dx.doi.org/10.1016/j.disc.2021.112483
https://dx.doi.org/10.1017/fms.2020.9
https://dx.doi.org/10.1137/S0895480103432283
https://dx.doi.org/10.1016/S0012-365X(02)00378-3
https://arxiv.org/abs/2112.00518

	Introduction
	Circular Fences
	Rank Unimodality
	Rowmotion on Circular Fences
	Comments, Questions and Future Directions

