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Abstract. For every finite simple connected graph G = (V, E), we introduce an in-
variant, its blowup-polynomial pG({nv : v ∈ V}). This is obtained by dividing the
determinant of the distance matrix of its blowup graph G[n] (containing nv copies of
v) by an exponential factor. We show that pG(n) is indeed a polynomial function in the
sizes nv, which is moreover multi-affine and real-stable. This associates a hitherto un-
explored delta-matroid to each graph G; and we provide a second novel one for each
tree. We also obtain a new characterization of complete multipartite graphs, via the
homogenization at −1 of pG being completely/strongly log-concave, i.e., Lorentzian.
(These results extend to weighted graphs.) Finally, we show pG is indeed a graph
invariant, i.e., pG and its symmetries (in the variables n) recover G and its isometries.

Keywords: distance matrix, blowup-polynomial, real-stable polynomial, Zariski den-
sity, delta-matroid

Fifty years ago, Graham and Pollak [17] showed the following striking result in alge-
braic combinatorics: Given a tree T = (V, E) with distance matrix DT, the scalar det DT is
independent of the tree structure, and depends only on |V| = |E|+ 1. Here, DG for a finite
connected, simple graph G denotes its distance matrix, with the (v, w) entry given by
the length of the shortest path connecting v 6= w ∈ V, and (DG)vv = 0 for all v ∈ V. This
result has been extended to multiple other settings, including q-distance matrices, multi-
plicative distances, and even combinations of these — see, e.g. [14] and its references for
details and for an overarching generalization. The area has remained active ever since.

Graham then explored the spectral side with Lovász [16], including computing the
characteristic polynomial (and roots) and inverse of DT. This line of research too remains
active, and has led to the study of “distance spectra” of graphs — see, e.g., the survey [2].

Our work was motivated by both directions. On the algebraic side, we sought natural
graph families {Gi : i ∈ I}— e.g. trees on n vertices — such that the map i 7→ det DGi is a
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“nice” function from I to R. On the analysis side, it is well-known that the characteristic
polynomial det(x Id−DG) of the distance matrix of G does not recover G, i.e., there are
graphs G 6∼= H with the same number of nodes, which are “distance co-spectral”. Thus,
we were interested in finding a different byproduct of DG that recovers G.

The purpose of this note is to describe such a byproduct of DG (or of G), which we
introduce in the work [15], and which we term the (multivariate) blowup-polynomial of G.
We then explain how this polynomial achieves the above two goals. A third, interesting
byproduct of our work is a — to our knowledge — novel family of delta-matroids, one
for each graph G. This holds because the blowup-polynomial turns out to be multi-affine
and real-stable. We further introduce another novel delta-matroid for every tree.

1 The blowup-polynomial of a graph, and its symmetries

We begin by introducing the key ingredient needed to define the blowup-polynomial:
the family of blowup graphs of G:

Definition 1.1. Given a finite simple connected (unweighted) graph G = (VG, EG), and a set
of positive integers n = {nv : v ∈ VG}, the blowup graph G[n] is the finite simple connected
graph with nv copies of the vertex v, such that a copy of v is adjacent to one of w if and only if
v 6= w and (v, w) ∈ EG. Define MG := DG + 2 IdVG , where DG is the distance matrix of G.

These are studied in extremal and probabilistic graph theory; see, e.g., [20, 21, 22].
We now claim that — akin to trees on n vertices for any fixed n ≥ 1 — the family of

blowups of a fixed graph G is well-behaved vis-a-vis computing det DG[n]:

Theorem 1.2. Given a finite simple connected (unweighted) graph G, there exists a polynomial
pG(n) in the sizes nv, with integer coefficients, such that

det DG[n] = (−2)∑v(nv−1)pG(n), n ∈ ZV
>0.

Also, pG is multi-affine in n, with constant term (−2)|V| and linear term −(−2)|V|∑v∈V nv.

Here and below, we mildly abuse notation and refer to both the integer sizes as
well as indeterminates by nv; this will be clear from context. Also recall, a polynomial
p({nv}) is multi-affine if degnv

(p) ≤ 1 for all v.

Definition 1.3. For a graph G as in Theorem 1.2, define its (multivariate) blowup-polynomial
to be pG(n) ∈ Z[n], where we think of the nv as indeterminates. Also define the univariate
blowup-polynomial of G to be uG(n) := pG(n, n, . . . , n).

We clarify this definition with a remark. The polynomial function (by Theorem 1.2)

n 7→ (−2)−∑v(nv−1) det DG[n], n ∈ ZV
>0
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has to first be extended to RV from its Zariski dense subset ZV
>0. It can then be identified

with a polynomial in R[n] (with integer coefficients), and it is this polynomial that we
denote here and below by pG(n) as well.

Proof of Theorem 1.2. We provide a quick sketch; the key ingredient is again algebraic
here: Zariski density. (In fact, this result holds over a general commutative ring, and we
refer the reader to the full paper [15] for details.) Let k := |V|, fix (throughout this note)
an enumeration (n1, . . . , nk) of {nv : v ∈ V}, let DG = (dij)

k
i,j=1, and define

K :=
k

∑
i=1

ni, WK×k :=


1n1×1 0n1×1 · · · 0n1×1
0n2×1 1n2×1 · · · 0n2×1

...
... . . . ...

0nk×1 0nk×1 · · · 1nk×1

 .

Given an integer tuple n ∈ Zk
>0, recall that DG[n] = MG[n] − 2 IdK. Notice that MG[n]

is a block k × k matrix with (i, j) block dij · 1ni×nj for i 6= j and 2 · 1ni×ni for i = j; in
particular, MG[n] = WMGWT. We now employ Zariski density, by first considering
the entries of MG as well as the sizes ni to be variables, and working over the field F

of rational functions in these, with coefficients in Q. In particular, det MG ∈ F×. We
compute, using Schur complements repeatedly:

det DG[n] = det(WMGWT − 2 IdK) = det
(
−2 IdK −W
WT M−1

G

)
det(MG), (1.1)

= (−2)K det(M−1
G − 2−1WTW)det(MG) = (−2)K−k det((−2) Idk +∆nMG),

where ∆n =WTW is the diagonal matrix with (i, i) entry ni. Now (1.1) proves the result
over the field F of rational functions, hence — by Zariski density — in the subring of
polynomials in the same variables, since both sides of (1.1) are polynomial functions. As
Q is infinite, we obtain an equality of polynomials, both of which have integer coeffi-
cients. Finally, specialize the sizes ni and the entries of MG to the given graph-data.

Remark 1.4. It also follows from the above proof that pG(n) = det(∆nMG − 2 Idk).
Theorem 1.2 and its proof enable us to do more: we can compute the coefficient of

every monomial in pG, and relate pG to pH for certain induced subgraphs H of G:

Proposition 1.5. Using the same notation as above:

1. Given a subset I ⊂ V, the coefficient in pG(n) of ∏i∈I ni is (−2)|V\I| det(MG)I×I , where
(MG)I×I is the principal submatrix of MG formed by the rows and columns indexed by I.

2. Let H be an induced subgraph of G with vertex set I ⊂ V and no isolated nodes. Then,

pH({ni : i ∈ I}) = pG(n)|nj=0 for all j 6∈I · (−2)−|V\I|.

Thus if some monomial ∏i∈I0
ni (for I0 ⊂ I) does not occur in pH, it does not occur in pG.
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3. Suppose H, K are induced subgraphs of G, say on node sets I, J ⊂ V respectively, and each
without isolated nodes. If H, K are isomorphic, then the coefficients in pG(n) of ∏i∈I ni
and ∏j∈J nj are equal.

4. The iterated blowup of a graph G = (V, E) is also a blowup of G. In particular, the
blowup-polynomial of pG[n] has total degree at most |V|, for all n ∈ ZV

>0.

As a simple illustration of the final assertion here, notice that the path graph P3,
the cycle C4, and all star graphs K1,n are instances of complete bipartite graphs Kr,s.
As Kr,s = K2[(r, s)] is a blowup of the edge K2, the blowup-polynomials of all of these
graphs are multi-affine of degree 2, and can be easily computed.

Proposition 1.5 has multiple applications; we provide two here. First, it makes
tractable the computation of pG(·) for certain more involved graphs. Here is an example.

Example 1.6. Given integers k, l with 0 ≤ l ≤ k− 2, let K(l)
k denote the graph on vertices

{1, . . . , k}, with all edges connected except for (1, 2), . . . , (1, l + 1). These form a family
of chordal graphs, with isomorphism/isometry group Sl × Sk−l−1 corresponding to the
partition of the vertex set V = {1} t {2, . . . , l + 1} t {l + 2, . . . , k}. Now we have:

p
K(l)

k
(n) =

l

∑
r=0

k−l−1

∑
s=0

[
(−2)k−r−s(1 + r + s)

]
er(n2, . . . , nl+1)es(nl+2, . . . , nk) (1.2)

+ n1

l

∑
r=0

k−l−1

∑
s=0

[
(−2)k−r−s−1(1− r)(s + 2)

]
er(n2, . . . , nl+1)es(nl+2, . . . , nk),

with er(·) the elementary symmetric polynomial. (The graphs K(1)
k were crucially used

in [18].)

The above decomposition of the nodes of K(l)
k is into subsets, each containing nodes

that are all isomorphic to one another. These auto-isometries (i.e., adjacency-preserving
bijections) of the underlying graph translate into symmetries of the blowup-polynomial,
as seen in (1.2). (We may thus call pG a partially symmetric polynomial.) Conversely, it
is natural to ask if pG can recover the auto-isometries of G — and more strongly, if pG
recovers the graph G itself. Our next result provides a positive answer.

Proposition 1.7. Given G as above, the symmetries of pG coincide with the auto-isometries of
G. More strongly, the polynomial pG recovers G. However, this is not true for the univariate
specialization uG.

Proof-sketch. The first claim follows from the second, which holds because the Hessian
equals

H(pG) := ((∂ni ∂nj pG)(0))k
i,j=1 = (−2)k1k×k − (−2)k−2M◦2G ,

where given a matrix M = (mij), M◦2 := (m2
ij) is its entrywise square. Finally, to study

uG, define the graphs H, K in Figure 1, both with vertices {1, . . . , 6}. Next, we define:
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2 3 4 5 6

1

H

2 3 4 5 6

1

K

Figure 1: Two non-isomorphic graphs on six vertices with co-spectral blowups.

H′ := H[(2, 1, 1, 2, 1, 1)], K′ := K[(2, 1, 1, 1, 1, 2)].

It is easily checked by direct computations that H′, K′ are not isomorphic, but

uH′(n) = uK′(n) = −320n6 + 3712n5 − 10816n4 + 10880n3 − 1664n2 − 2048n + 256.

Thus, H′ 6∼= K′ (both with |V| = 8) are graphs whose distance matrices have the same
characteristic polynomial and equal univariate polynomials uH′ = uK′ ; but pH′ 6= pK′ .

Our second application of Proposition 1.5 involves a special case of the graphs K(l)
k

— namely, for l = 0, in which case K(l)
k = Kk, a complete graph. In this case, one checks:

pKk(n1, . . . , nk) =
k

∏
i=1

(ni − 2) +
k

∑
i=1

ni ∏
i′ 6=i

(ni′ − 2). (1.3)

This is “fully” symmetric in the ni. In fact, there are no other graphs with this property:

Proposition 1.8. Given a graph G as above, the blowup-polynomial pG(n) is symmetric in the
variables {ni : 1 ≤ i ≤ k} if and only if G is complete.

2 Real-stability and related properties

Our next goal is to explain how the blowup-polynomial gives rise to a hitherto unex-
plored delta-matroid for every graph. (More generally, one obtains such a delta-matroid
from every finite metric space — see Remark 2.5.) This will follow from the polynomial
pG possessing additional desirable features, which we describe in this section.

As a motivating example, note that specializing the polynomial pKk(n) in (1.3) yields
the univariate blowup-polynomial uKk(n) = (n − 2)k−1(kn + n − 2), and this is real-
rooted. More generally, this turns out to hold for all graphs G — in fact, far more
is true. Real-rootedness is the one-variable manifestation of a more general, and far
more powerful notion: a polynomial p(z1, . . . , zk) with real coefficients and complex
arguments is said to be real-stable if it is non-vanishing whenever =(zj) > 0 for all j. Real-
stable polynomials and their generalizations are the focus of tremendous recent research,
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see, e.g., the well-known papers by Borcea–Brändén [3, 4, 5] and Marcus–Spielman–
Srivastava [23, 24], in which longstanding conjectures of Bilu–Linial, Johnson, Kadison–
Singer, Lubotzky, and others are resolved, and the Laguerre–Pólya–Schur program from
the early 20th century is significantly extended (among other remarkable achievements).

In combinatorics, the importance of real-rootedness and (strong) log-concavity is very
well known, see, e.g., [12, 26]. Recently, there has been much work in going beyond these
notions and studying the connections of stability to combinatorics and statistical physics;
see, e.g., [10, 25]. Our next result shows that graph blowup-polynomials pG(·) are indeed
real-stable (which is what will yield novel delta-matroids, below):

Theorem 2.1. Given a finite simple connected graph G, its blowup-polynomial pG(n) is real-
stable in the variables {nv : v ∈ V} = {n1, . . . , nk}. (In particular, uG(n) is always real-rooted.)

Recall from [9, 27] that a multi-affine polynomial f (z1, . . . , zn) is real-stable if and only
if ∂i f · ∂j f ≥ f · ∂i∂j f on Rn, for all i, j. The class of real-stable multi-affine polynomials is
also connected to matroids; see [9, 13]. Theorem 2.1 says that graph blowup-polynomials
pG(n) provide novel (to our knowledge) examples of such maps.

Proof. As the goal is to prove real-stability, in this proof we write pG(z1, . . . , zk) to indicate
that the variables are complex (rather than algebraic). From Remark 1.4,

pG(z) = det(∆zMG − 2 Idk) =
k

∏
j=1

zj · det(2−1MG − ∆−1
z ) · 2k

= 2k
k

∏
j=1

zj · det

(
2−1MG +

k

∑
j=1

(−z−1
j Ejj)

)
, (2.1)

where Ejj ∈ Zk×k is the elementary matrix with (j, j)-entry 1. Now we recall a funda-
mental determinantal example of real-stable polynomials by Borcea–Brändén — see [3]
(or [9, Lemma 4.1]). The authors show that if A1, . . . , Ak, B are real symmetric matrices,
with all Aj positive semidefinite, then the polynomial

f (z1, . . . , zk) := det

(
B +

k

∑
j=1

zj Aj

)
(2.2)

is real-stable or identically zero. Moreover, “inversion preserves stability”: if g(z1, . . . , zk)

is a polynomial with zj-degree dj ≥ 1 that is real-stable, then so is zd1
1 g(−z−1

1 , z2, . . . , zk).
(This is because the map z 7→ −1/z preserves the upper half-plane.) Now apply (2.2) to
Aj = Ejj and B = 2−1MG, and then apply inversion in each variable, to conclude via (2.1)
that pG is real-stable.

Returning to uG, which we now know is real-rooted, we also note that it is indeed
related to the distance spectrum of G (i.e., to the characteristic polynomial of DG):
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Proposition 2.2. For any finite simple connected (unweighted) graph G, a real number n is a
root of uG if and only if n 6= 0 and 2n−1− 2 is an eigenvalue of DG (with the same multiplicity).

2.1 A novel characterization of complete multipartite graphs

We next mention two other notions related to stability, which have been greatly stud-
ied in recent years, and which are not satisfied by pG. By the final assertion in The-
orem 1.2, the coefficients of the multi-affine polynomial pG cannot be normalized to
form a probability distribution, since they are not all of the same sign. Similarly, the
polynomial pG is clearly not homogeneous. In two fundamental and important pa-
pers, stable polynomials with these two properties have been studied (in broader set-
tings) by Borcea–Brändén–Liggett [6] and Brändén–Huh [11], under the name of strongly
Rayleigh measures/polynomials and Lorentzian polynomials, respectively. Our next result
explains that while pG is neither strongly Rayleigh nor Lorentzian, a suitable normaliza-
tion/homogenization can be. In fact, we completely characterize all such graphs:

Theorem 2.3. Given a graph G as above, define its homogenized blowup-polynomial

p̃G(z0, z1, . . . , zk) := (−z0)
k pG

(
z1

−z0
, . . . ,

zk
−z0

)
∈ R[z0, z1, . . . , zk]. (2.3)

The following are equivalent.

1. The homogenized polynomial p̃G(z0, z1, . . . , zk) is real-stable.

2. The polynomial p̃G(z0, z1, . . . , zk) is Lorentzian. That is, p̃G(·) is homogeneous of degree
k with non-negative coefficients, and given indices 0 ≤ j1, . . . , jk−2 ≤ k, if

g(z0, z1, . . . , zk) :=
(

∂zj1
· · · ∂zjk−2

p̃G

)
(z0, z1, . . . , zk),

then its Hessian matrix Hg := (∂zi ∂zj g)
k
i,j=0 ∈ R(k+1)×(k+1) is Lorentzian (i.e., Hg is

nonsingular and has exactly one positive eigenvalue).

3. p̃G(·) has all coefficients non-negative (i.e., of the monomials zk−|J|
0 ∏j∈J zj).

4. (−1)k pG(−1, . . . ,−1) > 0, and the normalized “reflected” polynomial

(z1, . . . , zk) 7→ pG(−z1, . . . ,−zk)

pG(−1, . . . ,−1)

is strongly Rayleigh. That is, this multi-affine polynomial is real-stable, has non-negative
coefficients (of all monomials ∏j∈J zj), and these sum up to 1.

5. The matrix MG = DG + 2 Idk is positive semidefinite.
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6. The graph G is a blowup of a complete graph — that is, G is a complete multipartite graph.

Theorem 2.3 characterizes the complete multipartite graphs in terms of stability. We
refer the reader to the full paper [15] for the proof.

It turns out that two additional, related notions in the literature also characterize the
complete multipartite graphs, and we mention them here for completeness. Suppose a
polynomial p ∈ R[z1, . . . , zk] has non-negative coefficients. In [19], Gurvits defines p to

be strongly log-concave if for every α ∈ Zk
≥0, either the derivative ∂α(p) :=

k

∏
i=1

∂
αi
xi · p is

identically zero, or ∂α p > 0 and log(∂α(p)) is concave on (0, ∞)k. Next in [1], Anari,
Oveis Gharan, and Vinzant define p to be completely log-concave if for all m ∈ Z>0 and

matrices A = (aij) ∈ [0, ∞)m×k, either the derivative ∂A(p) :=
m

∏
i=1

(
k

∑
j=1

aij∂xj

)
· p is

identically zero, or ∂A(p) > 0 and log(∂A(p)) is concave on (0, ∞)k. We now have:

Corollary 2.4. We use the notation as in Theorem 2.3. Then G is complete multipartite if and
only if either of the following holds:

7. The polynomial p̃G(z0, . . . , zk) is strongly log-concave.

8. The polynomial p̃G(z0, . . . , zk) is completely log-concave.

Proof. For arbitrary real homogeneous polynomials, [11, Theorem 2.30] shows that both
of these assertions are equivalent to: p̃G is Lorentzian. Now use Theorem 2.3.

Remark 2.5. As a concluding remark concerning the results mentioned until this point,
we discuss how these results hold in greater generality. First, the definitions of a blowup
and the blowup-polynomial extend to all finite metric spaces (X, d). Now Theorems 1.2,
2.1, and 2.3, Corollary 2.4, as well as Propositions 1.5 and 1.8 extend to arbitrary finite
metric spaces, possibly with some modifications. We refer the reader to [15] for the
details.

3 A blowup delta-matroid for graphs, and one for trees

In addition to being a graph invariant and a multi-affine polynomial, pG also yields a
novel delta-matroid for every graph G. Delta-matroids were introduced by Bouchet [7],
and consist of a finite “ground set” E and a nonempty subset of its power set F ⊂ 2E.
The elements F of F are called feasible subsets, and satisfy: (1)

⋃
F∈F F = E; (2) the

symmetric exchange axiom: Given A, B ∈ F and x ∈ A∆B (their symmetric difference),
there exists y ∈ A∆B such that A∆{x, y} ∈ F .

Brändén has shown [9] that the set of monomials occurring in a real-stable multi-
affine polynomial forms a delta-matroid. In particular:
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Definition 3.1. The blowup delta-matroid of G is denoted byMMG ; it has ground set V and
feasible subsets corresponding to the nonzero monomials in pG.

In fact, more is true: this delta-matroid is linear [8], in that its feasible subsets are
precisely the sets of indices I ⊂ {1, . . . , k} for which the principal matrix (MG)I×I is
nonsingular (by Proposition 1.5(1)). This delta-matroid appears to be unexplored in the
literature, and was not known to experts.

The goal of this section is to construct another delta-matroid M′(T), this time for
all trees T. We begin by taking a closer look at MMG for G a “small” path graph
Pk = {(1, 2), . . . , (k− 1, k)}. Indeed, one can verify that, for k ≤ 4,

MMPk
= 2{1,...,k} \ { {i, i + 1, i + 2}, {i, i + 2} : 1 ≤ i ≤ k− 2} . (3.1)

Let us explain why the sets {i, i + 1, i + 2} and {i, i + 2} are infeasible — i.e., why
the coefficients of the monomials nini+1ni+2, nini+2 in pPk vanish — for all k ≥ 3. This
happens because the points {i, i + 2} are part of a graph {i, i + 1, i + 2} ∼= P3, which is a
blowup of K2 = P2 — and in this blowup, i, i + 2 are copies of a vertex. More generally:

Proposition 3.2. Suppose G, H are finite simple connected graphs, and the tuple n ∈ Z
V(G)
>0 is

such that G[n] is an induced subgraph of H. If some nv ≥ 2 and v1, v2 ∈ G[n] are copies of v,
then the coefficient of ∏i∈I ni in pH(·) is zero whenever {v1, v2} ⊂ I ⊂ V(G[n]).

Proof. By Proposition 1.5(1), it suffices to show that (MH)I×I is singular. In turn, this
holds because one verifies that the rows of MH indexed by v1, v2 are identical.

As a consequence of Proposition 3.2, the assertion preceding it, which involved
nini+1ni+2, now extends to arbitrary graphs containing two independent nodes a, c with
a common neighbor b. It is thus natural to return to (3.1), and ask two things: (a) Does
this equality hold for all k? (b) Independent of (a), is the right-hand side also a delta-
matroid? It is also natural to ask if (c) the converse to Proposition 3.2 holds: namely, if
a monomial does not occur in pG, does the induced subgraph on those vertices contain
two copies of a vertex inside some blowup? The next result answers these questions.

Proposition 3.3. Using the same notation as above:

1. The right-hand side of (3.1) is a delta-matroid for every k.

2. The equality in (3.1) holds if and only if k ≤ 8.

3. The converse to Proposition 3.2 does not hold, even for path graphs.

Proof. The first part is presently explained in greater generality, for all trees. Second,
the equality in (3.1) holds for k ≤ 8 by explicit computations (e.g., using a computer).
One also computes: det(MP9) = 0. Hence by Proposition 1.5(3), the coefficient of
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nini+1 · · · ni+8 in pPk(n) is zero for all 1 ≤ i ≤ k − 8. It follows that the left-hand side
of (3.1) is a strict subset of the right-hand side, for k ≥ 9. The third/final assertion now
follows from this computation, since P9 is not the blowup of a smaller graph.

We now explore if the right-hand delta-matroid in (3.1) can be generalized to other
graphs. This indeed turns out to hold for all trees; to describe it, recall that the Steiner
tree T(I) of a subset of vertices I of a tree is the unique smallest sub-tree containing I.

Theorem 3.4. Suppose T is any tree, and we define a subset of vertices I to be infeasible if its
Steiner tree T(I) has two leaves which are in I and have the same parent. (All other subsets are
feasible.) Then the setM′(T) of feasible subsets is a delta-matroid.

(See [15] for the proof.) We term this delta-matroid the tree-blowup delta-matroid M′(T).
Notice by Proposition 3.3(2) that M′(Pk) 6= MMPk

for k ≥ 9, so this is not the blowup
delta-matroid of Pk. Moreover,M′(T) also appears to not be known to experts.

Our final result answers a natural question: Akin to the delta-matroid MMPk
, can the

definition of M′(T) also be extended to yield a delta-matroid for every graph? In this regard,
a key observation is that in Theorem 3.4, a set of nodes I is infeasible if and only if its
Steiner tree T(I) is a blowup of a graph with a strictly smaller vertex set. We therefore
introduce the following two possible extensions of this version of infeasibility to general
graphs, which are both natural choices:

Definition 3.5. Let G = (V, E) be a finite simple connected graph. Say that a subset I ⊂ V is

1. infeasible of the first kind if there are vertices v1 6= v2 ∈ I and a subset I ⊂ Ĩ ⊂ V,
satisfying: (a) the induced subgraph G( Ĩ) on Ĩ of G is connected, and (b) v1, v2 have the
same set of neighbors in G( Ĩ).

2. infeasible of the second kind if there exist v1 6= v2 ∈ I and I ⊂ Ĩ ⊂ V, with: (a) the in-
duced graph G( Ĩ) has: MG( Ĩ) = (MG) Ĩ× Ĩ and (b) v1, v2 have the same neighbors in G( Ĩ).

Also defineM′
1(G) (respectively,M′

2(G)) to comprise all subsets of V that are not infeasible of
the first (respectively, second) kind.

As an example, if G = T is a tree, then one checks that M′
1(T) =M′

2(T) =M′(T).
It is now natural to ask if eitherM′

1(G) orM′
2(G) is a delta-matroid for all graphs G. It

turns out that this is not the case:

Proposition 3.6 ([15]). For the graph G = G◦ (see Figure 2), neitherM′
1(G) norM′

2(G) is a
delta-matroid.

In closing, we note the above results describe several novel invariants associated to
finite simple connected graphs (in fact, finite metric spaces). These include the polyno-
mials pG(n), uG(n); the delta-matroidMMG (andM′(G) for G a tree); but also “simpler”
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Figure 2: The graph G◦.

invariants like deg pG, deg uG. (These degrees are not necessarily |V| even if G is not a
blowup of a smaller graph; e.g., G = Pk for k ≥ 9, by Proposition 3.3.) It would be de-
sirable and interesting to explore if these are relatable to more “familiar” combinatorial
graph invariants.
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